首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The oocyte of the domestic dog is unique from that of other mammalian species studied to date. Ovulation occurs either once or twice per year, with the oocyte released at the germinal vesicle stage, and then completing nuclear and cytoplasmic maturation within the oviduct under the influence of rising circulating progesterone. In vivo meiotic maturation of the bitch oocyte is completed within 48-72 h after ovulation, which is longer than 12-36 h required for oocytes from most other mammalian species. Due to these inherently novel traits, in vitro culture systems developed for maturing oocytes of other species have been found inadequate for maturation of dog oocytes. On average, only 15-20% of ovarian oocytes achieve the metaphase II stage after 48-72 h of in vitro culture. Thus far, no offspring have been produced in the dog (or other canids) by transferring embryos derived from in vitro matured oocytes. This review addresses current knowledge about dog reproductive physiology, specifically those factors influencing in vitro developmental competence of the oocyte. This summary lays a foundation for identifying the next steps to understanding the mechanisms regulating meiotic maturation and developmental competence of the dog oocyte.  相似文献   

2.
邢华 《动物学杂志》2009,44(6):160-165
犬(Canis familiaris)是生物医学研究的最重要模型动物之一.但由于生殖生理的特殊性,其卵母细胞的体外培养成熟率低,辅助生殖研究进展缓慢,严重制约了该动物在生物科学研究中的运用.在犬科动物体内,排卵前卵母细胞处于高浓度孕酮的卵泡环境中,在生发泡期排到输卵管内,并在此恢复和完成减数分裂.因此,犬卵母细胞体外成熟所需的条件不同于其他哺乳动物,目前主要采用以添加相关因子的M199作为培养液,但体外培养发育至MⅡ期的比率仅为15%~20%.所以,必须在了解犬卵母细胞体内成熟机制的基础上,建立一套类似于体内生理环境的体外成熟培养体系.本文在阐述犬卵母细胞体内成熟生理过程的基础上,对其体外成熟培养方法和影响因素的研究现状进行分析,为相关研究提供参考.  相似文献   

3.
The objective of the development of assisted reproduction techniques in dogs and cats is their application to non-domestic canine and feline species, most of which are considered threatened or endangered. Among these techniques, an entirely in vitro system for embryo production is effectively an important tool for conservation of wildlife. In the last decade, progress has been made in embryo production in carnivores. It has been shown that canine oocytes can resume meiosis in vitro and that these oocytes can be fertilized and developed in vitro, although at a much lower rate than most other domestic animal oocytes. The reason lies in the dissimilarities of reproductive physiology of the dog compared to other species and the lack of precise information concerning the oviductal environment, in which oocyte maturation, fertilization and early embryonic development take place. Successful in vitro embryo production in the domestic cat has been attained with oocytes matured in vitro, and kittens were born after transfer of IVM/IVF derived embryos. On the basis of these results the in vitro fertilization of oocytes has also been applied in several non-domestic feline species. The effectiveness of such protocols in the preservation of genetic material of rare species can be improved by developing better techniques for long-term storage of gametes. In dogs and cats sperm cells have been successfully frozen and the cryopreservation of oocytes would greatly increase their availability for a range of reproductive technologies. Cryopreserved cat oocytes can be fertilized successfully and their development in vitro after fertilization is enhanced when mature oocytes are frozen. Thus refined techniques of oocyte maturation and fertilization in vitro coupled with oocyte cryopreservation could allow for an easy establishment of genetic combinations when male and female gametes in the desired combination are not simultaneously available, and the propagation of endangered carnivores would be facilitated.  相似文献   

4.
In vitro maturation in the bitch has yet to be fully investigated, and perfection of the technique is essential for future gamete salvage programs in endangered canine species. For optimal success with these techniques, knowledge of the individual animal and of oocyte effects upon maturational competence would be useful. Two factors were therefore studied using an aceto-orcein staining technique, which has been shown to be effective for monitoring nuclear maturation of canine oocytes following oocyte culture in medium supplemented with bovine serum albumin (BSA). Oocytes of different sizes were cultured in vitro and their nuclear maturation monitored. It was shown that the selection of oocytes which had acquired meiotic competence through adequate intrafollicular growth was important for in vitro maturation. In vitro maturation of oocytes from bitches aged 1 to 6 yr, and from those 7 yr and older was then compared, and it was found that oocytes from young bitches had a greater potential to mature than those collected from the older animals.  相似文献   

5.
The potential benefits of assisted reproduction techniques, such as in vitro maturation (IVM) and in vitro fertilization (IVF) in canids, are linked to the protection and saving of species threatened by extinction due to worldwide habitat destruction and pollution. In both domestic and wild species, these technologies will form the basis for the next leap in reproductive performance by improving fertility rates in valuable middle-aged females, by improving pregnancy rate in infertile or sub-fertile populations and by rescuing biological material to replenish populations of endangered species. In vitro techniques are supposed to answer the reproductive questions of canids, to introduce new methods for contraception and to compete with artificial insemination (AI) as the major or predominant method of embryo production, oocyte- and embryo cryopreservation and cloning. The causes affecting in vitro meiosis of dog oocytes are likely to be diverse. Incomplete understanding of the events associated with oocyte developmental competence are imputed to species reproductive physiology, medium composition and source of ovarian oocyte population used for in vitro maturation. This review addresses some issues on the current state of in vitro maturation and in vitro fertilization of canine oocytes.  相似文献   

6.
Oocyte maturation invokes complex signaling pathways to achieve cytoplasmic and nuclear competencies for fertilization and development. The Src-family kinases FYN, YES and SRC are expressed in mammalian oocytes but their function during oocyte maturation remains an open question. Using chemical inhibitor, siRNA knockdown, and gene deletion strategies the function of Src-family kinases was evaluated in mouse oocytes during maturation under in vivo and in vitro conditions. Suppression of Src-family as a group with SKI606 greatly reduced meiotic cell cycle progression to metaphase-II. Knockdown of FYN kinase expression after injection of FYN siRNA resulted in an approximately 50% reduction in progression to metaphase-II similar to what was observed in oocytes isolated from FYN (−/−) mice matured in vitro. Meiotic cell cycle impairment due to a Fyn kinase deficiency was also evident during oocyte maturation in vivo since ovulated cumulus oocyte complexes collected from FYN (−/−) mice included immature metaphase-I oocytes (18%). Commonalities in meiotic spindle and chromosome alignment defects under these experimental conditions demonstrate a significant role for Fyn kinase activity in meiotic maturation.  相似文献   

7.
Meiotic maturation in mammalian oocytes is initiated during fetal development, and is then arrested at the dictyate stage - possibly for several years. Oocyte meiosis resumes in preovulatory follicles in response to the lutenizing hormone (LH) surge or spontaneously when competent oocytes are removed from follicles and cultured. The mechanisms involved in meiotic arrest and resumption in bovine oocytes are not fully understood, and several studies point to important differences between oocytes from rodent and livestock species. This paper reviews earlier and contemporary studies on the effects of cAMP-elevating agents and phosphodiesterase (PDE) enzyme inhibitors on the maintenance of meiotic arrest in bovine oocytes in vitro. Contrary to results obtained with mouse oocytes, bovine oocyte meiosis is inhibited by activators of the energy sensor adenosine monophosphate-activated protein kinase (AMPK, mammalian gene PRKA), which is activated by AMP, the degradation product of cAMP. It is not clear whether or not the effects were due to AMPK activation, and they may depend on culture conditions. Evidence suggests that other signaling pathways (for example, the cGMP/nitric oxide pathway) are involved in bovine oocyte meiotic arrest, but further studies are needed to understand the interactions between the signaling pathways that lead to maturation promoting factor (MPF) being inactive or active. An improved understanding of the mechanisms involved in the control of bovine oocyte meiosis will facilitate better control of the process in vitro, resulting in increased developmental competence and increased efficiency of in vitro embryo production procedures.  相似文献   

8.
Lipid content in mammalian oocytes or embryos differs among species, with bovine and porcine oocytes and embryos showing large cytoplasmic droplets. These droplets are considered to play important roles in energy metabolism during oocyte maturation, fertilisation and early embryonic development, and also in the freezing ability of oocytes or embryos; however, their detailed distribution or function is not well understood. In the present study, changes in the distribution and morphology of porcine lipid droplets during in vivo and in vitro fertilisation, in contrast to parthenogenetic oocyte activation, as well as during their development to blastocyst stage, were evaluated by transmission electron microscopy (TEM). The analysis of semi-thin and ultra-thin sections by TEM showed conspicuous, large, electron-dense lipid droplets, sometimes associated with mitochondrial aggregates in the oocytes, irrespective of whether the oocytes had been matured in vivo or in vitro. Immediately after sperm penetration, the electron density of the lipid droplets was lost in both the in vivo and in vitro oocytes, the reduction being most evident in the oocytes developed in vitro. Density was restored in the pronculear oocytes, fully in the in vivo specimens but only partially in the in vitro ones. The number and size of the droplets seemed, however, to have decreased. At 2- to 4-cell and blastocyst stages, the features of the lipid droplets were almost the same as those of pronuclear oocytes, showing a homogeneous or saturated density in the in vivo embryos but a marbled or partially saturated appearance in the in vitro embryos. In vitro matured oocytes undergoing parthenogenesis had lipid droplets that resembled those of fertilised oocytes until the pronuclear stage. Overall, results indicate variations in both the morphology and amount of cytoplasmic lipid droplets during porcine oocyte maturation, fertilisation and early embryo development as well as differences between in vivo and in vitro development, suggesting both different energy status during preimplantation development in pigs and substantial differences between in vitro and in vivo development.  相似文献   

9.
There have not been successful and repeatable methods for in vitro embryo production in the dog. Up to date, only one blactocyst has been achieved on in vitro culture. Since reproductive physiology of the dog is different from that of other mammalian species, it seems that a suitable method for in vitro production of canine embryos is still far from being designed and routinely applied, and an effective protocol is needed. Therefore, the aim of the present study was to examine the effects of adding hormones sequentially, for mimicking the dog's in vivo endocrine milieu, on maturation of immature dog oocytes in vitro. At the end of the 96 h IVM period, nuclear maturation rates were evaluated by the aceto-orcein staining method. In comparison relating IVM rates, the sequential hormone addition was more beneficial on IVM rates (MI + MII) than the traditional hormone addition and control groups (48.1%, 38.9% and 23.0% respectively; P < 0.0001). As a result, hormone addition sequentially may be an effective approach for the IVM of the immature dog oocytes. We suggest that attempts to define the adequate conditions for IVM in the dog should extend towards this new perspective.  相似文献   

10.
Supplementation of energy substrates to culture medium is essential for resumption and completion of meiosis in vitro for many mammalian species. Objectives were to study the dog oocyte, specifically the influences of pyruvate and glutamine on maturation and the utilization of these two substrates at various developmental stages and incubation times. Ovarian oocytes (n=681) were obtained from spayed bitches and cultured for 48 hr in TCM 199 medium containing various concentrations of pyruvate (0-2.5 mM) and glutamine (0-4 mM) before being assessed for nuclear status. For analyzing metabolic activity, 259 dog oocytes were cultured for 0, 12, 24, 36, or 48 hr, assessed for pyruvate and glutamine metabolism using the hanging drop method and then evaluated for nuclear status. Neither pyruvate nor glutamine had influence (P > 0.05) on oocyte maturation in vitro (IVM). However, both culture interval and meiotic status influenced pyruvate uptake (P < 0.05). Specifically, pyruvate uptake declined as the oocyte progressed from the germinal vesicle (GV) to metaphase II (MII) stage. Glutamine oxidation decreased as culture duration progressed (P < 0.05). In summary, pyruvate or glutamine is not required to promote successful IVM of dog oocytes. But, both substrates are being metabolized, and in patterns different to the domestic cat, another carnivore species. Pyruvate played an important role earlier in the maturational process, and less glutamine was oxidized as the oocyte neared nuclear maturation. These variations emphasize the importance of defining species specificities in carnivores before expecting consistently successful IVM/IVF.  相似文献   

11.
12.
Development of nymphs and oocyte maturation in adults were examined in Blattella germanica (L.) reared on three commercial diets. Nymphs fed rat food developed significantly faster than nymphs fed two commercial dog foods. Similarly, oocytes matured more quickly in adult females that were raised on rat food than in females raised on dog food. Nymphal development and oocyte maturation were slower in insects that were fed whole dog food pellets than in insects fed ground dog food, suggesting that grinding the diet diminishes a mechanical barrier in whole dog food pellets. Comparisons of processed canine food and unprocessed canine food indicated that diets were significantly inferior after the steam extrusion process. Rat food is normally not subjected to such conditions and both processed and unprocessed rat food are equally suitable for B. germanica. The significance and implications for comparative studies with cockroaches are discussed.  相似文献   

13.
14.
Protein patterns of pig oocytes during in vitro maturation   总被引:4,自引:0,他引:4  
In vitro maturation (IVM) of fully grown mammalian oocytes is characterized by initial germinal vesicle (GV) breakdown and rearrangement of microtubule network during the first meiosis (MI), followed by extrusion of the first polar body and block of the oocytes in metaphase of the second meiosis (MII). Only fully matured oocytes are capable of undergoing fertilization and the initiation of zygotic development. These observations are mostly based on morphological evaluation; however, the molecular events responsible for these processes are not known. In this study, we have launched the analysis of pig oocytes during in vitro maturation using a proteomics approach. First, oocyte proteins have been separated by two-dimensional gel electrophoresis and identified by mass spectrometry. Remarkably, several proteins, including peroxiredoxins, ubiquitin carboxyl-terminal hydrolase isozyme L1, and spermine synthase, are even more abundant than actin, usually the most abundant protein in somatic cells. Furthermore, we have initiated comparative analysis of the oocytes at different stages of maturation to characterize candidate proteins, which are differentially expressed during in vitro maturation. To date, we have identified antiquitin (D7A1), the member of aldehyde dehydrogenase family7 that has been significantly increased in MI and MII stages compared with GV oocytes. To our knowledge, this is the first pig oocyte proteome available so far that may be used as a reference map. The proteins that are differentially regulated during IVM may present potential biomarkers of oocyte maturation and quality. It is a useful inventory toward a deeper understanding of the mechanisms underlying reproduction and development.  相似文献   

15.
16.
van den Hurk R  Zhao J 《Theriogenology》2005,63(6):1717-1751
The limited knowledge on the regulation of oocyte formation, the different steps of folliculogenesis and the required conditions for oocytes to undergo proper growth, differentiation and maturation are major causes of the failure in obtaining viable offspring from in vitro cultured early oocytes from domestic animals and humans. This review highlights the factors that at present are known to be involved in the formation of mammalian oocytes and their growth, differentiation and maturation within ovarian follicles.  相似文献   

17.
Although somatic cell nuclear transfer (SCNT) technology and applications are well developed in most domesticated and laboratory animals, their use in dogs has advanced only slowly. Many technical difficulties had to be overcome before preliminary experiments could be conducted. First, due to the very low efficiency of dog oocyte maturation in vitro, in vivo matured oocytes were generally used. The nucleus of an in vivo matured oocyte was removed and a donor cell (from fetal or adult fibroblasts) was injected into the oocyte. Secondly, fusion of the reconstructed oocytes was problematic, and it was found that a higher electrical voltage was necessary, in comparison to other mammalian species. By transferring the resulting fused oocytes into surrogate females, several cloned offspring were born. SCNT was also used for producing cloned wolves, validating reproductive technologies for aiding conservation of endangered or extinct breeds. Although examples of transgenesis in canine species are very sparse, SCNT studies are increasing, and together with the new field of gene targeting technology, they have been applied in many fields of veterinary or bio-medical science. This review summarizes the current status of SCNT in dogs and evaluates its potential future applications.  相似文献   

18.
Bone morphogenetic protein (BMP)-15 is a member of the transforming growth factor beta (TGF-beta) superfamily and is closely related to growth and differentiation factor (GDF)-9, both structurally and functionally. In mammals, BMP-15 is predominantly produced by oocytes and exerts important regulatory functions within the ovary, such as promoting early folliculogenesis, preventing premature luteinization and enhancing cumulus cell expansion. The role of BMP-15 in mammalian ovary differs between monoovulatory and polyovulatory species. Recent studies in zebrafish have provided initial evidence that BMP-15 is also an important regulator of ovarian functions. BMP-15 is produced by the zebrafish ovary throughout follicle development and maturation. In vitro studies using zebrafish follicles have revealed that incubation with recombinant human BMP-15 or over-expression of BMP-15 in oocytes results in an inhibition of gonadotropin- and maturation inducing hormone (MIH)-induced oocyte maturation. Conversely, immnunoneutralization with BMP-15 antiserum or silencing of BMP-15 expression using morpholino antisense oligonueclotides enhances oocyte maturation. A key step in BMP-15 action is the sensitivity of follicles to MIH. In vivo injection of BMP-15 antiserum causes a significant decrease in maturation-incompetent (insensitive to MIH) small early growth phase follicles and a concomitant increase in mature follicles. These findings support a role in BMP-15 in preventing precocious oocyte maturation in zebrafish. We propose that the suppression of premature oocyte maturation by BMP-15 may be important to maintain oocyte quality and subsequent ovulation and fertilization.  相似文献   

19.
Responses of oocytes and embryos to the culture environment   总被引:5,自引:0,他引:5  
Embryo development is strongly influenced by events occurring during oocyte maturation. Although many immature oocytes are capable of completing meiosis in vitro, only a small percentage of the original pool of immature oocytes is competent to continue development to the blastocyst stage and subsequently result in a pregnancy. This indicates that maturation of oocytes in vitro may not be occurring in an entirely normal manner. Cytoplasmic changes occurring during maturation, collectively termed cytoplasmic maturation, are essential for embryonic development. The cytoplasm of the oocyte may play a crucial role in assembling the correct metabolic machinery for production of sufficient energy for cellular functions during maturation, cleavage and blastocyst formation. A better understanding of the structural, functional and metabolic characteristics of the oocyte during maturation, and the consequence of changes in these parameters on developmental competence is needed. Understanding the role of cytoplasmic changes during oocyte maturation will help increase the efficiency of in vitro embryo production. Better embryo production strategies will facilitate basic research into the control of early development, improve implementation in endangered species, provide a source of high quality oocytes for nuclear transfer and transgenic technologies and benefit the commercial embryo transfer industry.  相似文献   

20.
In vitro fertilization (IVF) is being routinely used in humans and several domestic species, however, limited success has been achieved in the horse. Although immature equine oocytes are capable of completing meiosis in vitro, subsequent fertilization, and embryonic development of those oocytes are questionable. The lack of development of these oocytes could be attributed to an impaired cytoplasmic maturation. In the horse, the study of oocyte cytoplasmic maturation and post-fertilization development has been hindered by the lack of progress in IVF. In mammalian oocytes, migration of cortical granules (CG) has been used as an important criterion to evaluate cytoplasmic maturation. The aim of this study was to describe and quantify the CG distribution of equine oocytes during in vitro meiotic maturation and to assess activation of oocytes with calcium ionophore based upon fluorescein isothiocyanate (FITC)-labeled Lens culinaris agglutinin (LCA) and laser confocal microscopy. The results of this study indicate that CG are distributed throughout the cytoplasm of oocytes at the germinal vesicle (GV) stage (immature). As maturation proceeds, a progressive centripetal migration of CG to the oocyte cortex occurs with the formation of a monolayer adjacent to the plasma membrane starting by the end of a 30 hr incubation period and increasing significantly after 36 hr. After activation, significant reduction in the number of CG was observed (P < 0.001) suggesting that oocytes cultured under the present conditions possess the ability to release CG in response to the elevation of intracellular free calcium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号