首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nup475 (also known as tristetraprolin and TIS11) includes two zinc-binding domains of the form Cys-X8-Cys-X5-Cys-X3-His. These domains are required for rapid degradation of tumor necrosis factor (TNF) and other mRNAs through the interaction with AU-rich elements in their 3'-untranslated regions. The three-dimensional solution structure of the first domain was determined by multidimensional nuclear magnetic resonance spectroscopy, revealing a novel fold around a central zinc ion. The core structure is disk-like with a diameter of approximately 25 A and a width of approximately 12 A. This structure provides a basis for evaluating the role of individual residues for structural stability and for nucleic acid binding.  相似文献   

2.
3.
The structure of a CCHHC zinc-binding domain from neural zinc finger factor-1 (NZF-1) has been determined in solution though the use of NMR methods. This domain is a member of a family of domains that have the Cys-X(4)-Cys-X(4)-His-X(7)-His-X(5)-Cys consensus sequence. The structure determination reveals a novel fold based around a zinc(II) ion coordinated to three Cys residues and the second of the two conserved His residues. The other His residue is stacked between the metal-coordinated His residue and a relatively conserved aromatic residue. Analysis of His to Gln sequence variants reveals that both His residues are required for the formation of a well-defined structure, but neither is required for high-affinity metal binding at a tetrahedral site. The structure suggests that a two-domain protein fragment and a double-stranded DNA binding site may interact with a common two-fold axis relating the two domains and the two half-sites of the DNA-inverted repeat.  相似文献   

4.
5.
6.
7.
Ube2g2 is an E2 enzyme which functions as part of the endoplasmic reticulum‐associated degradation (ERAD) pathway responsible for identification and degradation of misfolded proteins in the endoplasmic reticulum. In tandem with a cognate E3 ligase, Ube2g2 assembles K48‐linked polyubiquitin chains and then transfers them to substrate, leading ultimately to proteasomal degradation of the polyubiquitin‐tagged substrate. We report here the solution structure and backbone dynamics of Ube2g2 solved by nuclear magnetic resonance spectroscopy. Although the solution structure agrees well with crystallographic structures for the E2 core, catalytically important loops (encompassing residues 95–107 and 130–135) flanking the active site cysteine are poorly defined. 15N spin relaxation and residual dipolar coupling analysis directly demonstrates that these two loops are highly dynamic in solution. These results suggest that Ube2g2 requires one or more of its protein partners, such as cognate E3, acceptor ubiquitin substrate or thiolester‐linked donor ubiquitin, to assume its catalytically relevant conformation. Within the NMR structural ensemble, interactions were observed between His94 and the highly mobile loop residues Asp98 and Asp99, supporting a possible role for His94 as a general base activated by the carboxylate side‐chains of Asp98 or Asp99. Proteins 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

8.
Mechanism of activation of the vav protooncogene   总被引:20,自引:0,他引:20  
vav is a human locus that appears to be specifically expressed in cells of hematopoietic origin regardless of their differentiation lineage. This gene was first identified as a result of its malignant activation during the course of gene transfer assays (Katzav, S., Martin-Zanca, D., and Barbacid, M. EMBO J., 8: 2283-2290, 1989). In this study, we report the isolation of complementary DNA clones containing the entire coding sequence of the mouse vav protooncogene. Antisera raised against a peptide corresponding to a predicted hydrophilic domain have allowed us to identify the product of the vav gene as a 95,000 Da protein. Analysis of the deduced amino acid sequence of p95vav revealed an amino-terminal leucine-rich region not present in the activated vav oncogene. This region consists of an amphipathic helix-loop-helix followed by a leucine zipper, a structure reminiscent of the carboxy-terminal region of myc proteins and the steroid binding domain of nuclear receptors. In vitro mutagenicity studies have indicated that removal of the amphipathic helix-loop-helix is sufficient to activate the transforming potential of human and mouse vav protooncogenes. vav proteins also possess a cysteine-rich domain whose sequence predicts the formation of two putative metal binding-like domains, Cys-X2-Cys-X13-Cys-X2-Cys and His-X2-Cys-X6-Cys-X2-His. Replacement of some of these cysteine and histidine residues completely abolished the transforming activity of vav genes. Further examination of the alignment of cysteine residues in this region revealed an alternative structure, Cys-X2-Cys-X13-Cys-X2-Cys-X7-Cys-X6-Cys, which is reminiscent of the phorbol ester binding domain of protein kinase C. A similar domain has been recently identified in a second enzyme, diacylglycerol kinase. These structural similarities, along with its expression pattern, suggest that the vav protooncogene codes for a new type of signal-transducing molecule that may play an important role in controlling hematopoiesis.  相似文献   

9.
A rhamnose-binding glycoprotein (lectin), named SML, was isolated from the eggs of Spanish mackerel (Scomberomorous niphonius) by affinity and ion-exchange chromatographies. SML was composed of a non-covalently linked homodimer. The SML subunit was composed of 201 amino acid residues with two tandemly repeated domains, and contained 8 half-Cys residues in each domain, which is highly homologous to the N-terminal lectin domain of calcium-independent alpha-latrotoxin receptor in mammalian brains. Each domain has the same disulfide bonding pattern; Cys10-Cys40, Cys20-Cys99, Cys54-Cys86 and Cys67-Cys73 were located in the N-terminal domain, and Cys108-Cys138, Cys117-Cys195, Cys152-Cys182 and Cys163-Cys169 were in the C-terminal domain. SML was N-glycosylated at Asn168 in the C-terminal domain. The structure of the sugar chain was determined to be NeuAc-Galbeta1-4GlcNAcbeta1-2Manalpha1-6-(NeuAc-Galbeta1-4GlcNAcbeta1-2Manalpha1-3)Manbeta1-4GlcNAcbeta1-4GlcNAc-Asn.  相似文献   

10.
In this study the three-dimensional (3-D) model of the ligand-binding domain (V106-P322) of human interleukin-6 receptor (hIL-6 R) was constructed by computer-guided homology modeling technique using the crystal structure of the ligand-binding domain (K52-L251) of human growth hormone receptor (hGHR) as templet. Furthermore, the active binding region of the 3-D model of hIL-6R with the ligand (hIL-6) was predicted. In light of the structural characteristics of the active region, a hydrophobic pocket shielded by two hydrophilic residues (E115 and E505) of the region was identified by a combination of molecular modelling and the site-directed or double-site mutation of the twelve crucial residues in the ligand-binding domain of hIL-6R (V106-P322). We observed and analyzed the effects of these mutants on the spatial conformation of the pocket-like region of hIL-6 R. The results indicated that any site-directed mutation of the five Cys residues (four conservative Cys residues: Cys121, Cys132, Cys165, Cys176; near membrane Cys residue: Cys193) or each double-site mutation of the five residues in WSEWS motif of hIL-6R (V106-P322) makes the corresponding spatial conformation of the pocket region block the linkage between hIL-6 R and hIL-6. However, the influence of the site-directed mutation of Cys211 and Cys277 individually on the conformation of the pocket region benefits the interaction between hIL-6R and hIL-6. Our study suggests that the predicted hydrophobic pocket in the 3-D model of hIL-6R (V106-P322) is the critical molecular basis for the binding of hIL-6R with its ligand, and the active pocket may be used as a target for designing small hIL-6R-inhibiting molecules in our further study.  相似文献   

11.
The mechanisms that promote excitatory synapse formation and maturation have been extensively studied. However, the molecular events that limit excitatory synapse development so that synapses form at the right time and place and in the correct numbers are less well understood. We have identified a RhoA guanine nucleotide exchange factor, Ephexin5, which negatively regulates excitatory synapse development until EphrinB binding to the EphB receptor tyrosine kinase triggers Ephexin5 phosphorylation, ubiquitination, and degradation. The degradation of Ephexin5 promotes EphB-dependent excitatory synapse development and is mediated by Ube3A, a ubiquitin ligase that is mutated in the human cognitive disorder Angelman syndrome and duplicated in some forms of Autism Spectrum Disorders (ASDs). These findings suggest that aberrant EphB/Ephexin5 signaling during the development of synapses may contribute to the abnormal cognitive function that occurs in Angelman syndrome and, possibly, ASDs.  相似文献   

12.
In this study the three-dimensional (3-D) model of the ligand-binding domain (V106-P322) of human interleukin-6 receptor (hlL-6 R) was constructed by computer-guided ho-mology modeling technique using the crystal structure of the ligand-binding domain (K52-L251) of human growth hormone receptor (hGHR) as templet. Furthermore, the active binding region of the 3-D model of hlL-6R with the ligand (hlL-6) was predicted. In light of the structural characteristics of the active region, a hydrophobic pocket shielded by two hydrophilic residues (E115 and E505) of the region was identified by a combination of molecular modelling and the site-directed or double-site mutation of the twelve crucial residues in the ligand-binding domain of hIL-6R (V106-P322). We observed and analyzed the effects of these mutants on the spatial conformation of the pocket-like region of hlL-6 R. The results indicated that any site-directed mutation of the five Cys residues (four conservative Cys residues: Cyst 21, Cys132, Cys165, Cys1  相似文献   

13.
Altered expression of the E3 ubiquitin ligase UBE3A, which is involved in protein degradation through the proteasome-mediated pathway, is associated with neurodevelopmental and behavioral defects observed in Angelman syndrome (AS) and autism. However, little is known about the neuronal function of UBE3A and the pathogenesis of UBE3A-associated disorders. To understand the in vivo function of UBE3A in the nervous system, we generated multiple mutations of ube3a, the Drosophila ortholog of UBE3A. We found a significantly increased number of total boutons and satellite boutons in conjunction with compromised endocytosis in the neuromuscular junctions (NMJs) of ube3a mutants compared to the wild type. Genetic and biochemical analysis showed upregulation of bone morphogenetic protein (BMP) signaling in the nervous system of ube3a mutants. An immunochemical study revealed a specific increase in the protein level of Thickveins (Tkv), a type I BMP receptor, but not other BMP receptors Wishful thinking (Wit) and Saxophone (Sax), in ube3a mutants. Ube3a was associated with and specifically ubiquitinated lysine 227 within the cytoplasmic tail of Tkv, and promoted its proteasomal degradation in Schneider 2 cells. Negative regulation of Tkv by Ube3a was conserved in mammalian cells. These results reveal a critical role for Ube3a in regulating NMJ synapse development by repressing BMP signaling. This study sheds new light onto the neuronal functions of UBE3A and provides novel perspectives for understanding the pathogenesis of UBE3A-associated disorders.  相似文献   

14.
15.
Gene 4 of bacteriophage T7 encodes two proteins, a 63 kDa and a colinear 56 kDa protein. The coding sequence of the 56 kDa protein begins at the residues encoding an internal methionine located 64 amino acids from the N-terminus of the 63 kDa protein. The 56 kDa gene 4 protein is a helicase and the 63 kDa gene 4 protein is a helicase and a primase. The unique 7 kDa N-terminus of the 63 kDa gene 4 protein is essential for primer synthesis and contains sequences with homology to a Cys4 metal binding motif, Cys-X2-Cys-X17-Cys-X2-Cys. The zinc content of the 63 kDa gene 4 protein is 1.1 g-atom/mol protein, while the zinc content of the 56 kDa gene 4 protein is < 0.01, as determined by atomic absorption spectrometry. A bacteriophage deleted for gene 4, T7 delta 4-1, is incapable of growing on Escherichia coli strains that contain plasmids expressing gene 4 proteins with single amino acid substitutions of Ser at each of the four conserved Cys residues (efficiency of plating, 10(-7)). Primase containing a substitution of the third Cys for Ser has been overexpressed in E. coli and purified to homogeneity. This mutant primase cannot catalyze template-directed synthesis of oligoribonucleotides although it is able to catalyze the synthesis of random diribonucleotides in a template-independent fashion. The mutant primase has reduced helicase activity although it catalyzes single-stranded DNA-dependent hydrolysis of dTTP at rates comparable with wild type primase. The zinc content of the mutant primase is 0.5 g-atom/mol protein.  相似文献   

16.
A rhamnose-binding glycoprotein (lectin), named SML, was isolated from the eggs of Spanish mackerel (Scomberomorous niphonius) by affinity and ion-exchange chromatographies. SML was composed of a non-covalently linked homodimer. The SML subunit was composed of 201 amino acid residues with two tandemly repeated domains, and contained 8 half-Cys residues in each domain, which is highly homologous to the N-terminal lectin domain of calcium-independent α-latrotoxin receptor in mammalian brains. Each domain has the same disulfide bonding pattern; Cys10–Cys40, Cys20–Cys99, Cys54–Cys86 and Cys67–Cys73 were located in the N-terminal domain, and Cys108–Cys138, Cys117–Cys195, Cys152–Cys182 and Cys163–Cys169 were in the C-terminal domain. SML was N-glycosylated at Asn168 in the C-terminal domain. The structure of the sugar chain was determined to be NeuAc-Galβ1-4GlcNAcβ1-2Manα1-6-(NeuAc-Galβ1-4GlcNAcβ1-2Manα1-3)Manβ1-4GlcNAcβ1-4GlcNAc-Asn.  相似文献   

17.
18.
In gene targeting studies of the Prader-Willi syndrome (PWS)/Angelman syndrome (AS) domain in mouse ES cells, we recovered only recombinants with the paternal allele for constructs at exons 2 or 3 of the imprinted, maternally silenced Snurf-Snrpn gene. These sites lie close to the imprinting center (IC) for this domain. In contrast, recombinants for Ube3a within the same imprinted domain were recovered with equal frequency on the maternal and paternal alleles. In addition, gene targeting of the paternal allele for Snurf-Snrpn resulted in partial or complete demethylation in trans with activation of expression for the previously silenced maternal allele. The imprint switching of the maternal allele in trans is not readily explained by competition for trans-acting factors and adds to a growing body of evidence indicating homologous association of oppositely imprinted chromatin domains in somatic mammalian cells.  相似文献   

19.
D Pei 《FEBS letters》1999,457(2):262-270
A matrix metalloproteinase (MMP)-like gene was identified in mouse to contain a conserved MMP catalytic domain and an RRRR motif. It lacks a classic cysteine switch, but it possesses two novel motifs: a cysteine array (Cys-X(6)-Cys-X(8)-Cys-X(10)-Cys-X(3)-Cys-X(2)-Cys), and a novel Ig-fold. It is named CA-MMP after the distinct cysteine array motif, and little is known about its biochemical function. In an attempt to characterize CA-MMP activity, the full-length sequence was expressed in mammalian cells and its product found to be cell-associated without detectable secretion. In light of this unusual finding, a chimera combining the catalytic domain of CA-MMP with the prodomain of stromelysin-3 was constructed to express a fully active enzyme in mammalian cells. Purified CA-MMP catalytic domain expresses proteolytic activity against protein substrates in an MMP inhibitor sensitive fashion. Taken together, it is concluded that CA-MMP is an MMP with distinct structure, biochemical properties and evolutionary history that may define a new subclass of the MMP superfamily.  相似文献   

20.
Childhood neurodevelopmental disorders like Angelman syndrome and autism may be the result of underlying defects in neuronal plasticity and ongoing problems with synaptic signaling. Some of these defects may be due to abnormal monoamine levels in different regions of the brain. Ube3a, a gene that causes Angelman syndrome (AS) when maternally deleted and is associated with autism when maternally duplicated has recently been shown to regulate monoamine synthesis in the Drosophila brain. Therefore, we examined monoamine levels in striatum, ventral midbrain, frontal cerebral cortex, cerebellar cortex and hippocampus in Ube3a deficient and Ube3a duplication animals. We found that serotonin (5HT), a monoamine affected in autism, was elevated in the striatum and cortex of AS mice. Dopamine levels were almost uniformly elevated compared to control littermates in the striatum, midbrain and frontal cortex regardless of genotype in Ube3a deficient and Ube3a duplication animals. In the duplication 15q autism mouse model, paternal but not maternal duplication animals showed a decrease in 5HT levels when compared to their wild type littermates, in accordance with previously published data. However, maternal duplication animals show no significant changes in 5HT levels throughout the brain. These abnormal monoamine levels could be responsible for many of the behavioral abnormalities observed in both AS and autism, but further investigation is required to determine if any of these changes are purely dependent on Ube3a levels in the brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号