首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
2.
It is of practical interest to investigate the effect of nitrates on bacterial metabolic regulation of both fermentation and energy generation, as compared to aerobic and anaerobic growth without nitrates. Although gene level regulation has previously been studied for nitrate assimilation, it is important to understand this metabolic regulation in terms of global regulators. In the present study, therefore, we measured gene expression using DNA microarrays, intracellular metabolite concentrations using CE-TOFMS, and metabolic fluxes using the (13)C-labeling technique for wild-type E. coli and the ΔarcA (a global regulatory gene for anoxic response control, ArcA) mutant to compare the metabolic state under nitrate conditions to that under aerobic and anaerobic conditions without nitrates in continuous culture conditions at a dilution rate of 0.2 h(-1). In wild-type, although the measured metabolite concentrations changed very little among the three culture conditions, the TCA cycle and the pentose phosphate pathway fluxes were significantly different under each condition. These results suggested that the ATP production rate was 29% higher under nitrate conditions than that under anaerobic conditions, whereas the ATP production rate was 10% lower than that under aerobic conditions. The flux changes in the TCA cycle were caused by changes in control at the gene expression level. In ΔarcA mutant, the TCA cycle flux was significantly increased (4.4 times higher than that of the wild type) under nitrate conditions. Similarly, the intracellular ATP/ADP ratio increased approximately two-fold compared to that of the wild-type strain.  相似文献   

3.
Constraint-based metabolic modeling comprises various excellent tools to assess experimentally observed phenotypic behavior of micro-organisms in terms of intracellular metabolic fluxes. In combination with genome-scale metabolic networks, micro-organisms can be investigated in much more detail and under more complex environmental conditions. Although complex media are ubiquitously applied in industrial fermentations and are often a prerequisite for high protein secretion yields, such multi-component conditions are seldom investigated using genome-scale flux analysis. In this paper, a systematic and integrative approach is presented to determine metabolic fluxes in Streptomyces lividans TK24 grown on a nutritious and complex medium. Genome-scale flux balance analysis and randomized sampling of the solution space are combined to extract maximum information from exometabolome profiles. It is shown that biomass maximization cannot predict the observed metabolite production pattern as such. Although this cellular objective commonly applies to batch fermentation data, both input and output constraints are required to reproduce the measured biomass production rate. Rich media hence not necessarily lead to maximum biomass growth. To eventually identify a unique intracellular flux vector, a hierarchical optimization of cellular objectives is adopted. Out of various tested secondary objectives, maximization of the ATP yield per flux unit returns the closest agreement with the maximum frequency in flux histograms. This unique flux estimation is hence considered as a reasonable approximation for the biological fluxes. Flux maps for different growth phases show no active oxidative part of the pentose phosphate pathway, but NADPH generation in the TCA cycle and NADPH transdehydrogenase activity are most important in fulfilling the NADPH balance. Amino acids contribute to biomass growth by augmenting the pool of available amino acids and by boosting the TCA cycle, particularly when using glutamate and aspartate. Depletion of glutamate and aspartate causes a distinct shift in fluxes of the central carbon and nitrogen metabolism. In the current work, hurdles encountered in flux analysis at a genome-scale level are addressed using hierarchical flux balance analysis and uniform sampling of the constrained solution space. This general framework can now be adopted in further studies of S. lividans, e.g., as a host for heterologous protein production.  相似文献   

4.
When cultured hepatocytes are exposed to challenging environments such as plasma, they frequently suffer a decline in liver-specific functions. Media supplements are sought to reduce or eliminate this effect. A rational design approach for amino acid supplementation in hepatocyte culture has been developed in our prior work, and designed amino acid supplementation (DAA) was found to increase urea and albumin production. To fully characterize the metabolic state of hepatocytes under different amino acid supplementations, a number of metabolite measurements are performed in this work and used in a metabolic network flexibility analysis framework including thermodynamic constraints to determine the range of values for the intracellular fluxes. A metabolic objective prediction model is used to infer the metabolic objectives of the hepatocytes and to quantify the intracellular flux distribution for three different amino acid supplementations. The results illustrate that DAA leads to greater fluxes in the tricarboxylic acid cycle (TCA) cycle, urea cycle, and fatty acid oxidation concomitant with lower fluxes in intracellular lipid metabolism compared with empirical amino acid and no amino acid supplementation for hepatocytes during plasma exposure. It is also found that hepatocytes exhibit flexibility in their metabolic objectives depending on the composition of the amino acid supplementations. By incorporating both experimental data and thermodynamic constraints into the mathematical model, the proposed approach leads to identification of metabolic objectives and characterization of fluxes' variability and pathway changes due to different cultured conditions.  相似文献   

5.
The metabolic fluxes through the central carbon pathways in the bioprocess for serine alkaline protease (SAP) production by Bacillus licheniformis were calculated by the metabolic flux-based stoichiometric model based on the proposed metabolic network that contains 102 metabolites and 133 reaction fluxes using the time profiles of citrate, dry cell, organic acids, amino acids, and SAP as the constraints. The model was solved by minimizing the SAP accumulation rate in the cell. The effects of the oxygen-transfer rate (OTR) on the metabolic fluxes were investigated in a defined medium where citrate was used as the sole carbon source. The central pathways were active for the growth and the SAP synthesis in all the periods of the bioprocess at low (LOT), medium (MOT), and high (HOT) oxygen-transfer conditions. The flux partitioning in the TCA cycle at alpha-ketoglutarate towards glutamate group and at oxalacetate (OA) toward aspartic acid group amino acids were dependent on the OTR. The flux of the anaplerotic reaction that connects the TCA cycle either from malate or OA to the gluconeogenesis pathway via the main branch point pyruvate (Pyr) was also influenced by the OTR. With the decrease in the OTR, the intracellular flux values after glycerate 3-phosphate (PG3) in the gluconeogenesis pathway and the specific growth rate decreased. The total ATP-generation rate increased with the increase in OTR. The pathway towards the aspartic acid family amino acids which is important for sporulation that precedes the SAP synthesis were all active throughout the bioprocess. Metabolic flux analysis results at LOT, MOT, and HOT conditions encourage the design of an oxygen-transfer strategy in the bioreactor; moreover, asparagine synthetase or aspartate kinase could be the potential metabolic engineering sites due to the low value of the flux from the branch point aspartate toward asparagine.  相似文献   

6.
刘辉  陈宁  温廷益 《微生物学报》2007,47(2):249-253
应用途径分析方法分析了在拟稳态时黄色短杆菌(Brevibacterium flavum)TK0303由葡萄糖发酵生产L-亮氨酸的代谢途径,确定了L-亮氨酸合成的最佳途径和最大理论产率。通过比较途径分析所获得的反应模型,确定了丙酮酸和乙酰辅酶A是L-亮氨酸合成途径的关键节点。在此基础上改变外界环境因子,强化L-亮氨酸生物合成途径中丙酮酸和乙酰辅酶A两个关键节点的代谢流,以期进一步提高L-亮氨酸产率。结果表明,经过谷氨酸以及醋酸铵的调节,代谢途径流量发生显著变化,L-亮氨酸产量有明显提高。  相似文献   

7.
A mass flux balance-based stoichiometric model of Bacillus licheniformis for the serine alkaline protease (SAP) fermentation process has been established. The model considers 147 reaction fluxes, and there are 105 metabolites that are assumed to be in pseudo-steady state. Metabolic flux distributions were obtained from the solution of the model based on the minimum SAP accumulation rate assumption in B. licheniformis in combination with the off-line extracellular analyses of the metabolites that were the sole carbon source citrate, dry cell, organic acids, amino acids, and SAP; variations in the intracellular fluxes were demonstrated for the three periods of the batch bioprocess. The flux distribution maps showed that the cells completed the TCA cycle and utilized the gluconeogenesis pathway, pentose phosphate pathway, and anaplerotic reactions throughout the fermentation; however, the glycolysis pathway was inactive in all the periods of the fermentation. The flux values toward SAP increased throughout the bioprocess and slightly decreased in the last period; however, SAP selectivity values were almost the same in Periods II and III and higher than Period I. The diversions in the pathways and certain metabolic reactions depending on the bioprocess periods are also presented and the results indicated that the intracellular amino acid fluxes played an important role in the SAP fermentation process.  相似文献   

8.
The response of the central carbon metabolism of Escherichia coli to temperature-induced recombinant production of human fibroblast growth factor was studied on the level of metabolic fluxes and intracellular metabolite levels. During production, E. coli TG1:plambdaFGFB, carrying a plasmid encoded gene for the recombinant product, revealed stress related characteristics such as decreased growth rate and biomass yield and enhanced by-product excretion (acetate, pyruvate, lactate). With the onset of production, the adenylate energy charge dropped from 0.85 to 0.60, indicating the occurrence of a severe energy limitation. This triggered an increase of the glycolytic flux which, however, was not sufficient to compensate for the increased ATP demand. The activation of the glycolytic flux was also indicated by the readjustment of glycolytic pool sizes leading to an increased driving force for the reaction catalyzed by phosphofructokinase. Moreover, fluxes through the TCA cycle, into the pentose phosphate pathway and into anabolic pathways decreased significantly. The strong increase of flux into overflow pathways, especially towards acetate was most likely caused by a flux redirection from pyruvate dehydrogenase to pyruvate oxidase. The glyoxylate shunt, not active during growth, was the dominating anaplerotic pathway during production. Together with pyruvate oxidase and acetyl CoA synthase this pathway could function as a metabolic by-pass to overcome the limitation in the junction between glycolysis and TCA cycle and partly recycle the acetate formed back into the metabolism.  相似文献   

9.
In the present work LC-MS/MS was applied to measure the concentrations of intermediates of glycolysis and TCA cycle during autonomous, cell-cycle synchronized oscillations in aerobic, glucose-limited chemostat cultures of Saccharomyces cerevisiae. This study complements previously reported oscillations in carbon dioxide production rate, intracellular concentrations of trehalose and various free amino acids, and extracellular acetate and pyruvate in the same culture. Of the glycolytic intermediates, fructose 1,6-bisphosphate, 2- and 3-phosphoglycerate, and phosphoenolpyruvate show the most pronounced oscillatory behavior, the latter three compounds oscillating out of phase with the former. This agrees with previously observed metabolic control by phosphofructokinase and pyruvate kinase. Although individually not clearly oscillating, several intermediates of the TCA cycle, i.e., alpha-ketoglutarate, succinate, fumarate, and malate, exhibited increasing concentration during the cell cycle phase with high carbon flux through glycolysis and TCA cycle. The average mass action ratios of beta-phosphoglucomutase and fumarase agreed well with previously determined in vitro equilibrium constants. Minor differences resulted for phosphoglucose isomerase and enolase. Together with the observed close correlation of the pool sizes of the involved metabolites, this might indicate that, in vivo, these reactions are operating close to equilibrium, whereby care must be taken due to possible differences between in vivo and in vitro conditions. Combining the data with previously determined intracellular amino acid levels from the same culture, a few clear correlations between catabolism and anabolism could be identified: phosphoglycerate/serine and alpha-ketoglutarate/lysine exhibited correlated oscillatory behavior, albeit with different phase shifts. Oscillations in intracellular amino acids might therefore be, at least partly, following oscillations of their anabolic precursors.  相似文献   

10.
为了探讨酵母进入对数生长后期以后酒精生产速度降低的原因,我们利用酵母表达谱芯片技术对酿酒酵母细胞从对数生长中期进入对数生长后期时的全基因组表达谱进行了分析,发现酵母在对数生长中期的表达谱非常稳定,而一旦进入对数生长后期.则出现明显的代谢重构现象.许多氨基酸合成和代谢相关的基因、离子转移以及与能量的生成和储存等功能相关的基因出现了不同程度的上调;而许多涉及酵母转座和DNA重组的基因则表达下调;一些中心代谢途径也发生了代谢重构.包括:琥珀酸和α-酮戊二酸生成途径基因的一致上调,都与氨基酸合成和代谢相关基因表达的结果相吻合.结果表明:由于氨基酸合成的需求量增加,进入对数生长后期酵母的代谢转向TCA循环和乙醛酸循环,导致酒精的生产速率降低.  相似文献   

11.
12.
The central metabolic fluxes of Shewanella oneidensis MR-1 were examined under carbon-limited (aerobic) and oxygen-limited (microaerobic) chemostat conditions, using 13C-labeled lactate as the sole carbon source. The carbon labeling patterns of key amino acids in biomass were probed using both gas chromatography-mass spectrometry (GC-MS) and 13C nuclear magnetic resonance (NMR). Based on the genome annotation, a metabolic pathway model was constructed to quantify the central metabolic flux distributions. The model showed that the tricarboxylic acid (TCA) cycle is the major carbon metabolism route under both conditions. The Entner-Doudoroff and pentose phosphate pathways were utilized primarily for biomass synthesis (with a flux below 5% of the lactate uptake rate). The anaplerotic reactions (pyruvate to malate and oxaloacetate to phosphoenolpyruvate) and the glyoxylate shunt were active. Under carbon-limited conditions, a substantial amount (9% of the lactate uptake rate) of carbon entered the highly reversible serine metabolic pathway. Under microaerobic conditions, fluxes through the TCA cycle decreased and acetate production increased compared to what was found for carbon-limited conditions, and the flux from glyoxylate to glycine (serine-glyoxylate aminotransferase) became measurable. Although the flux distributions under aerobic, microaerobic, and shake flask culture conditions were different, the relative flux ratios for some central metabolic reactions did not differ significantly (in particular, between the shake flask and aerobic-chemostat groups). Hence, the central metabolism of S. oneidensis appears to be robust to environmental changes. Our study also demonstrates the merit of coupling GC-MS with 13C NMR for metabolic flux analysis to reduce the use of 13C-labeled substrates and to obtain more-accurate flux values.  相似文献   

13.
【目的】研究乳酸钠(一种糖代谢产物)的加入对法夫酵母JMU-VDL668发酵过程中细胞生长和虾青素合成的影响。【方法】分别在摇瓶和7 L发酵罐实验基础上,采用代谢通量分析的方法分析添加乳酸钠对法夫酵母菌株JMU-VDL668合成虾青素代谢流的影响。【结果】在7 L发酵罐实验中添加乳酸钠,虾青素产量最高可达17.70 mg/L,与对照组相比提高26%。代谢通量分析表明,乳酸钠可以调节丙酮酸、乙酰辅酶A节点处的代谢通量分布,乳酸在乳酸脱氢酶的作用下可以直接进入代谢网络的后半程,乙酰辅酶A的通量和进入TCA循环的通量得到了显著加强。【结论】乳酸钠的加入提供了更多的乙酰辅酶A等前体物质和能量供给,因此促进了虾青素的合成。  相似文献   

14.
The tricarboxylic acid (TCA) cycle is the central hub of oxidative metabolism, running in the classic forward direction to provide carbon for biosynthesis and reducing agents for generation of ATP. Our metabolic tracer studies in melanoma cells showed that in hypoxic conditions the TCA cycle is largely disconnected from glycolysis. By studying the TCA branch point metabolites, acetyl CoA and citrate, as well as the metabolic endpoint glutamine and fatty acids, we developed a comprehensive picture of the rewiring of the TCA cycle that occurs in hypoxia. Hypoxic tumor cells maintain proliferation by running the TCA cycle in reverse. The source of carbon for acetyl CoA, citrate, and fatty acids switches from glucose in normoxia to glutamine in hypoxia. This hypoxic flux from glutamine into fatty acids is mediated by reductive carboxylation. This reductive carboxylation is catalyzed by two isocitrate dehydrogenases, IDH1 and IDH2. Their combined action is necessary and sufficient to effect the reverse TCA flux and maintain cellular viability.  相似文献   

15.
Metabolic fluxes estimated from stable-isotope studies provide a key to understanding cell physiology and regulation of metabolism. A limitation of the classical method for metabolic flux analysis (MFA) is the requirement for isotopic steady state. To extend the scope of flux determination from stationary to nonstationary systems, we present a novel modeling strategy that combines key ideas from isotopomer spectral analysis (ISA) and stationary MFA. Isotopic transients of the precursor pool and the sampled products are described by two parameters, D and G parameters, respectively, which are incorporated into the flux model. The G value is the fraction of labeled product in the sample, and the D value is the fractional contribution of the feed for the production of labeled products. We illustrate the novel modeling strategy with a nonstationary system that closely resembles industrial production conditions, i.e. fed-batch fermentation of Escherichia coli that produces 1,3-propanediol (PDO). Metabolic fluxes and the D and G parameters were estimated by fitting labeling distributions of biomass amino acids measured by GC/MS to a model of E. coli metabolism. We obtained highly consistent fits from the data with 82 redundant measurements. Metabolic fluxes were estimated for 20 time points during course of the fermentation. As such we established, for the first time, detailed time profiles of in vivo fluxes. We found that intracellular fluxes changed significantly during the fed-batch. The intracellular flux associated with PDO pathway increased by 10%. Concurrently, we observed a decrease in the split ratio between glycolysis and pentose phosphate pathway from 70/30 to 50/50 as a function of time. The TCA cycle flux, on the other hand, remained constant throughout the fermentation. Furthermore, our flux results provided additional insight in support of the assumed genotype of the organism.  相似文献   

16.
17.
18.
A program implementing a flux model of Escherichia coli metabolism was used to analyze the effects of the addition of amino acids (tryptophan, tyrosine, phenylalanine, leucine, isoleucine, valine, histidine, lysine, threonine, cysteine, methionine, arginine, proline) to minimal medium or media lacking nitrogen, carbon, or both. The overall response of the metabolic system to the addition of various amino acids to the minimal medium is similar. Glycolysis and the synthesis of pyruvate with its subsequent degradation to acetate via acetyl-CoA become more efficient, whereas the fluxes through the pentose phosphate pathway and the TCA cycle decrease. If amino acids are used as the sole source of carbon, nitrogen, or both, the changes in the flux distribution are determined mainly by the carbon limitation. The phosphoenolpyruvate to glucose-6-phosphate flux increases; the flux through the pentose phosphate path is directed towards ribulose-5-phosphate. Other changes are determined by the compounds that are the primary products of catabolism of the added amino acid.  相似文献   

19.
L-色氨酸生物合成的代谢流量分析   总被引:8,自引:3,他引:8  
建立了谷氨酸棒杆菌合成L-色氨酸(L-Try)的代谢流量平衡模型,应用该模型计算出发酵中后期的代谢流分布并通过MATLAB软件线性规划得到Try理想代谢流分布。结果表明75.15%的碳架进入糖酵解,24.85%的碳架进入HMP途径;但与理想代谢流相比,应从遗传改造和发酵控制方面降低TCA循环的代谢流,减少副产氨基酸的生成,摸索最适的溶氧控制对提高Try产率至关重要。  相似文献   

20.
Fermentative and aerobic metabolism in Rhizobium etli.   总被引:1,自引:1,他引:0       下载免费PDF全文
Strains of Rhizobium etli, Rhizobium meliloti, and Rhizobium tropici decreased their capacity to grow after successive subcultures in minimal medium, with a pattern characteristic for each species. During the growth of R. etli CE 3 in minimal medium (MM), a fermentation-like response was apparent: the O2 content was reduced and, simultaneously, organic acids and amino acids were excreted and poly-beta-hydroxybutyrate (PHB) was accumulated. Some of the organic acids excreted into the medium were tricarboxylic acid (TCA) cycle intermediates, and, concomitantly, the activities of several TCA cycle and auxiliary enzymes decreased substantially or became undetectable. Optimal and sustained growth and a low PHB content were found in R. etli CE 3 when it was grown in MM inoculated at a low cell density with O2 maintained at 20% or with the addition of supplements that have an effect on the supply of substrates for the TCA cycle. In the presence of supplements such as biotin or thiamine, no amino acids were excreted and the organic acids already excreted into the medium were later reutilized. Levels of enzyme activities in cells from supplemented cultures indicated that carbon flux through the TCA cycle was maintained, which did not happen in MM. It is proposed that the fermentative state in Rhizobium species is triggered by a cell density signal that results in the regulation of some of the enzymes responsible for the flux of carbon through the TCA cycle and that this in turn determines how much carbon is available for the synthesis and accumulation of PHB. The fermentative state of free-living Rhizobium species may be closely related to the metabolism that these bacteria express during symbiosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号