首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lectins are proteins capable of reversible binding to the carbohydrates in glycoconjugates that can regulate many physiological and pathological events. Galectin-1, a β-galactoside-binding lectin, is expressed in the central nervous system (CNS) and exhibits neuroprotective functions. Additionally, lectins isolated from plants have demonstrated beneficial action in the CNS. One example is a lectin with mannose-glucose affinity purified from Canavalia brasiliensis seeds, ConBr, which displays neuroprotective and antidepressant activity. On the other hand, the effects of the galactose-binding lectin isolated from Vatairea macrocarpa seeds (VML) on the CNS are largely unknown. The aim of this study was to verify if VML is able to alter neural function by evaluating signaling enzymes, glial and inflammatory proteins in adult mice hippocampus, as well as behavioral parameters. VML administered by intracerebroventricular (i.c.v) route increased the immobility time in the forced swimming test (FST) 60 min after its injection through a carbohydrate recognition domain-dependent mechanism. Furthermore, under the same conditions, VML caused an enhancement of COX-2, GFAP and S100B levels in mouse hippocampus. However, phosphorylation of Akt, GSK-3β and mitogen-activated protein kinases named ERK1/2, JNK1/2/3 and p38MAPK, was not changed by VML. The results reported here suggest that VML may trigger neuroinflammatory response in mouse hippocampus and exhibit a depressive-like activity. Taken together, our findings indicate a dual role for galactose binding lectins in the modulation of CNS function.  相似文献   

2.
3.
The present study investigated the role of the glutathione system in seizures induced by diphenyl diselenide (PhSe)2 (50 mg/kg) in rat pups (post natal day, 12–14). Reduced glutathione (GSH) (300 nmol/site; i.c.v.), administered 20 min before (PhSe)2, abolished the appearance of seizures, protected against the inhibition of catalase and δ-aminolevulinic dehydratase (δ-ALA-D) activities and increased glutathione peroxidase (GPx) activity induced by (PhSe)2. Administration of l-buthionine sulfoximine (BSO, a GSH-depleting compound) (3.2 μmol/site; i.c.v.) 24 h before (PhSe)2 increased the percentage (42–100%) of rat pups which had seizure episodes, reduced the onset for the first convulsive episode. In addition, BSO increased thiobarbituric acid reactive species (TBARS) levels and decreased GSH content, catalase, δ-ALA-D and Na+, K+-ATPase activities. Treatment with sub effective doses of GSH (10 nmol/site) and d-2-amino-7-phosphonoheptanoic acid (AP-7, an antagonist of the glutamate site at the NMDA receptor; 5 mg/kg, i.p.) abolished the appearance of seizures induced by (PhSe)2 in rat pups. Sub effective doses of GSH and kynurenic acid (an antagonist of strychnine-insensitive glycine site at the NMDA receptor; 40 mg/kg, i.p.) were also able in abolishing the appearance of seizures induced by (PhSe)2. In conclusion, administration of GSH protected against seizure episodes induced by (PhSe)2 in rat pups by reducing oxidative stress and, at least in part, by acting as an antagonist of glutamate and glycine modulatory sites in the NMDA receptor.  相似文献   

4.
The pharmacological profile of PD117302 was studied in three rat models of experimental seizures. It was determined that PD117302 is a potent and efficacious anticonvulsant against NMDA (ED50 = 0.27 mg/kg, i.v.) and MES (ED50 = 16.3 mg/kg, s.c.), but not flurothyl, convulsions. Its anticonvulsant profile was dose- and time-dependent, stereospecific and sensitive to naloxone and the selective kappa opioid antagonist nor-binaltorphimine. Given these findings, we suggest that PD117302 acts via the kappa receptor to modulate seizure protection. Furthermore, in view of its marked ability to block NMDA excitotoxicity (including lethality) it seems possible that this drug, or related compounds, may have potential therapeutic utility as a neuroprotective agent.  相似文献   

5.
Glutamate, the main excitatory neurotransmitter in the mammalian central nervous system (CNS), plays important role in brain physiological and pathological events. Quinolinic acid (QA) is a glutamatergic agent that induces seizures and is involved in the etiology of epilepsy. Guanine-based purines (GBPs) (guanosine and GMP) have been shown to exert neuroprotective effects against glutamatergic excitotoxic events. In this study, the influence of QA and GBPs on synaptosomal glutamate release and uptake in rats was investigated. We had previously demonstrated that QA “in vitro” stimulates synaptosomal L-[3H]glutamate release. In this work, we show that i.c.v. QA administration induced seizures in rats and was able to stimulate synaptosomal L-[3H]glutamate release. This in vivo neurochemical effect was prevented by i.p. guanosine only when this nucleoside prevented QA-induced seizures. I.c.v. QA did not affect synaptosomal L-[3H]glutamate uptake. These data provided new evidence on the role of QA and GBPs on glutamatergic system in rat brain.  相似文献   

6.
The excitotoxicity induced by excessive activation of the glutamatergic neurotransmission pathway is involved in several neuropathologies. In this sense, molecules that prevent the release of glutamate or the excessive activation of its receptors can be useful in preventing the neuronal cell death observed in these diseases. Lectins are proteins capable of reversible binding to the carbohydrates in glycoconjugates, and some have been used in the study and purification of glutamate receptors. ConBr is a mannose/glucose-binding lectin purified from Canavalia brasiliensis seeds. In the present study, we aimed to evaluate the neuroprotective activity of ConBr against glutamate-induced excitotoxicity. Hippocampal slices were isolated from adult male mice and incubated for 6 h in Krebs saline/DMEM buffer alone (control), in the presence of glutamate or glutamate plus ConBr. The phosphorylation of Akt and mitogen activated protein kinases (MAPKs) such as ERK1/2, p38MAPK and JNK1/2/3 was evaluated with western blotting. The results indicate that glutamate provoked a reduction in the hippocampal slice viability (−25%), diminished the phosphorylation of Akt and augmented p38MAPK and ERK1 phosphorylation. No changes were observed in the phosphorylation of JNK1/2/3 or ERK2. Notably, ConBr, through a mechanism dependent on carbohydrate interaction, prevented the reduction of cell viability and Akt phosphorylation induced by glutamate. Furthermore, in the presence of the PI3K inhibitor LY294002, ConBr was unable to reverse glutamate neurotoxicity. Taken together, our data suggest that the neuroprotective effect of ConBr against glutamate neurotoxicity requires oligosaccharide interaction and is dependent on the PI3K/Akt pathway.  相似文献   

7.
Lectins constitute a class of glycoproteins, which are capable of selectively and reversibly binding to carbohydrates, distinguishing small structural differences in complex oligosaccharides. Studies have shown that the binding of lectins to cell-surface carbohydrates can lead to various effects such as cellular proliferation, histamine release and cytokine production. Canavalia brasiliensis lectin (ConBr) is a (D-mannose) D-glucose lectin. In this study, murine splenocytes were cultured to determine the effect of ConBr on cell proliferation, nitric oxide (NO) release and cytokine secretion. In addition, cellular viability assays were performed to evaluate any mitogenic activity induced by this lectin. ConBr significantly increased cell proliferation with minimal cell damage. This lectin was able to induce an increased production of cytokines such as IL-2, IL-6 and IFN-γ and a decreased production of IL- 10. The release of NO was also observed. The results of this study indicate that ConBr could potentially be used as an immunomodulator.  相似文献   

8.
The measurement of step-down latency in passive avoidance has been used to study memory in laboratory animals. The pre-training injection of 5 mg/kg morphine impaired memory, which was restored when 24 h later the same dose of the drug was administered. To explore the possible involvement of NMDA modulators on morphine-induced memory impairment, we have investigated the effects of intracerebroventricular (i.c.v.) administration of NMDA and the competitive NMDA antagonist, DL-AP5, on morphine-induced memory impairment or recall, on the test day. Morphine (5 mg/kg, s.c.) was administered 30 min before training to induce impairment of memory and 24 h later, 30 min before test to improve it. Pre-test administration of NMDA (0.00001, 0.0001 and 0.001 microg/mouse, i.c.v.) did not alter the retention latency compared to the saline-treated animals. But restored the memory impairment induced by pre-training morphine (5 mg/kg, s.c.). Pre-test administration of DL-AP5 (1, 3.2 and 10 microg/mouse, i.c.v.) by itself decreased the retention latencies. The same doses of DL-AP5 increased pre-training morphine-induced memory impairment. Co-administration of NMDA (0.0001 and 0.001 microg/mouse, i.c.v.) and morphine (5 mg/kg, s.c.) on the test day increased morphine memory improvement. Conversely, DL-AP5 (1, 3.2 and 10 microg/mouse, i.c.v.) inhibited morphine-induced memory recall. It is concluded that NMDA receptors may be involved, at least in part, in morphine state-dependent learning in mice.  相似文献   

9.
Venoms of spiders and wasps are well recognized to present high affinity to the central nervous tissue of many mammalian species. Here we describe the effects of direct exposure of rat (Rattus norvegicus) brains to the crude and denatured venom of the Brazilian social wasp Polybia ignobilis. Lower doses of crude venom injected via intracerebroventricular (i.c.v.) inhibited the exploratory activity of animals, while higher doses provoked severe generalized tonic-clonic seizures, with hind limb extension. The status epilepticus lasted for few minutes leading the animals to respiratory depression and death. In contrast, the denatured venom was anticonvulsant against acute seizures induced by the i.c.v. injection of bicuculline, picrotoxin and kainic acid, but it was ineffective against seizures caused by systemic pentylenetetrazole. Moreover, the [3H]-glutamate binding in membranes from rat brain cortex was inhibited by the denatured venom in lower concentrations than the [3H]-GABA binding. The denatured venom contains free GABA and glutamate (34 and 802 pg/microg of venom, respectively), but they are not the major binding inhibitors. These interactions of venom components with GABA and glutamate receptors could be responsible for the anticonvulsant effects introducing the venom from P. ignobilis as a potential pharmacological source of anticonvulsant drugs.  相似文献   

10.
The search for novel, less invasive therapeutic strategies to treat neurodegenerative diseases has stimulated scientists to investigate the mechanisms involved in preconditioning. Preconditioning has been report to occur in many organs and tissues. In the brain, the modulation of glutamatergic transmission is an important and promising target to the use of effective neuroprotective agents. The glutamatergic excitotoxicity is a factor common to neurodegenerative diseases and acute events such as cerebral ischemia, traumatic brain injury and epilepsy. In this review we focus on the neuroprotection and preconditioning by chemical agents. Specially, chemical preconditioning models using N-methyl-d-aspartate (NMDA) pre-treatment, which has demonstrated to lead to neuroprotection against seizures and damage to neuronal tissue induced by quinolinic acid (QA). Here we attempted to gather important results obtained in the study of cellular and molecular mechanisms involved in NMDA preconditioning and neuroprotection.  相似文献   

11.
Based on radioligand binding and electrophysiological studies, quinoxalinediones such as 6,7-dinitroquinoxaline-2,3-dione (DNQX) have been shown to be potent competitive antagonists at the quisqualate and kainate subtypes of the glutamate receptor. In this report we have examined the effects of DNQX on excitatory amino acid neurotoxicity and evoked neurotransmitter release. DNQX was found to be a potent neuroprotective agent against glutamate and N-methyl-D-aspartate (NMDA) neurotoxicity. The data suggest that this neuroprotective activity of DNQX is due to its antagonism of the coagonist activity of glycine at the NMDA receptor-channel complex. The specificity of DNQX for the glycine site associated with the NMDA receptor-channel complex was confirmed in radioligand binding and neurotransmitter release studies. DNQX also prevented kainate neurotoxicity and kainate-evoked neurotransmitter release, presumably by direct competition for the kainate receptor. DNQX, however, did not prevent quisqualate neurotoxicity, suggesting that a novel quisqualate-preferring receptor insensitive to DNQX may mediate quisqualate toxicity.  相似文献   

12.
Single neuron firing rate was recorded from dorsal raphe nucleus of anesthetized rats. The firing rate of raphe neurons varied from 4 to 8 discharge per second before drug administration and this neuronal activity was decreased by L-701,324 (2 mg/kg i.v. injection), a competitive antagonist of glycineB binding site of N-methyl-D-aspartate (NMDA) receptors. The glycine transporter type-1 (GlyT1) antagonists Org-24461 (10 mg/kg i.v.) and NFPS (3 mg/kg i.v.) reversed the inhibitory effect of L-701,324 on single neuron activity recorded from dorsal raphe nucleus of the rat. Org-24461 and NFPS both tended to increase the raphe neuronal firing rate also when given alone but their effect was not significant. This finding serves further evidence that glutamate released from axon terminals of the cortico-striatal projection neurons stimulates serotonergic neurons in the raphe nuclei and this effect is mediated at least in part by postsynaptic NMDA receptors. Thus, GlyT1 inhibitors are able to reverse the hypofunctional state of NMDA receptors, suggesting that these drugs may have beneficial therapeutic effects in neurological and psychiatric disorders characterized with impaired NMDA receptor-mediated transmission.  相似文献   

13.
Cho J  Kong JY  Jeong DY  Lee KD  Lee DU  Kang BS 《Life sciences》2001,68(13):1567-1573
Acori graminei Rhizoma (AGR) is shown to exhibit a number of pharmacological actions including sedation and anticonvulsive action. To further characterize its actions in the CNS, the present study evaluated the effects of essential oils (EO) from AGR on the excitotoxic neuronal cell death induced in primary rat cortical cell cultures. EO inhibited the glutamate-induced excitotoxicity in a concentration-dependent manner, with the IC50 of 0.241 mg/ml. EO exerted more potent neuroprotection against the toxicity induced by NMDA (IC50 = 0.139 mg/ml). In contrast, the AMPA-induced toxicity was not inhibited by EO. Receptor-ligand binding studies were performed to investigate the neuroprotective action mechanism. EO dramatically inhibited the specific bindings of a use-dependent NMDA receptorion channel blocker [3H]MK-801, indicating an NMDA receptor antagonist-like action. However, the bindings of [3H]MDL 105,519, a ligand selective for the glycine binding site of NMDA receptor, were not considerably inhibited. These results demonstrated that EO extracted from AGR exhibited neuroprotective effects on cultured cortical neurons through the blockade of NMDA receptor activity, and that the glycine binding site appeared not to be the major site of action.  相似文献   

14.
Statins have been shown to promote neuroprotection in a wide range of neurological disorders. However, the mechanisms involved in such effects of statins are not fully understood. Quinolinic acid (QA) is a neurotoxin that induces seizures when infused in vivo and promotes glutamatergic excitotoxicity in the central nervous system. The aim of this study was to evaluate the putative glutamatergic mechanisms and the intracellular signaling pathways involved in the atorvastatin neuroprotective effects against QA toxicity. Atorvastatin (10 mg/kg) treatment for 7 days prevented the QA-induced decrease in glutamate uptake, but had no effect on increased glutamate release induced by QA. Moreover, atorvastatin treatment increased the phosphorylation of ERK1 and prevented the decrease in Akt phosphorylation induced by QA. Neither atorvastatin treatment nor QA infusion altered glutamine synthetase activity or the levels of phosphorylation of p38MAPK or JNK1/2 during the evaluation. Inhibition of MEK/ERK signaling pathway, but not PI3K/Akt signaling, abolished the neuroprotective effect of atorvastatin against QA-induced decrease in glutamate uptake. Our data suggest that atorvastatin protective effects against QA toxicity are related to modulation of glutamate transporters via MAPK/ERK signaling pathway.  相似文献   

15.
Excitotoxicity due to glutamate receptors (GluRs) overactivation is a leading mechanism of oxidative damage and neuronal death in various diseases. We have shown that dapsone (DDS) was able to reduce both neurotoxicity and seizures associated to the administration of kainic acid (KA), an agonist acting on AMPA/KA receptors (GluK1–GluK5). Recently, it has been shown that phenobarbital (PB) is also able to reduce epileptic activity evoked by that receptor. In the present study, we tested the antioxidative, anticonvulsive and neuroprotective effects of DDS and PB administered alone or in combination upon KA toxicity to rats. Results showed that KA increased lipid peroxidation and diminished reduced glutathione (GSH), 24 h after KA administration and both drugs in combination or individually inhibited these events. Likewise, KA promotes mortality and this event was antagonized by effect of both treatments. Additionally, the behavioral evaluation showed that DDS and PB administered alone or in combination decreased the number of limbic seizures and reduced the percentage of animals showing tonic–clonic seizures versus the control group, which was administered only with KA. Finally, our study demonstrated that all of the treatments prevented the neuronal death of the pyramidal cell layer of hippocampal CA-3. In conclusion, the treatment with DDS and PB administrated alone or in combination exerted antioxidant, anticonvulsive and neuroprotective effects against the neurotoxicity induced by KA in rats, but their effects were not additive. Thus, it may be good options of treatment in diseases such as epilepsy and status epilepicus, administered separately.  相似文献   

16.
Wang YA  Zhou WX  Li JX  Liu YQ  Yue YJ  Zheng JQ  Liu KL  Ruan JX 《Life sciences》2005,78(2):210-223
Previous studies have paid little attention to the anticonvulsant effect of anticholinergic drugs that act on both muscarinic (M) and nicotinic (N) receptors during soman-induced seizures. Therefore, with the establishment of a soman-induced seizures model in rats, this study evaluated the efficacy in preventing soman-induced convulsions of two antagonists of both the M and N receptors, phencynonate hydrochloride (PCH) and penehyclidine hydrochloride (8018), which were synthesized by our institute, and of other anticholinergic drugs, and investigated the mechanisms of their antiseizures responses. Male rats, previously prepared with electrodes to record electroencephalographic (EEG) activity, were pretreated with the oxime HI-6 (125 mg kg-1, i.p.) 30 min before they were administered soman (180 microg kg-1, s.c.). All animals developed seizures subsequent to this treatment. Different drugs were given at different times (5, 20 and 40 min after seizures onset) and their anticonvulsant effects were monitored and compared using the two variables, i.e. the dose that could totally control the ongoing seizures, as well as the speed of seizures control. The anticonvulsant effects of atropine, scopolamine and 8018 decreased with the progression of the seizures, and they eventually lost their anticonvulsant activity when the seizures had progressed for 40 min. In contrast, PCH showed good anticonvulsant effectiveness at 5 and 20 min, and especially at 40 min after seizures onset. Of the anticholinergic drugs tested, atropine, scopolamine, and 8018 showed no obvious protection against pentylenetetrazol (PTZ)-induced convulsions or N-methyl-D-aspartate (NMDA)-induced lethality in mice. However, PCH antagonized the PTZ-induced convulsions in a dose-dependant manner with an ED50 of 10.8 mg kg-1, i.p. (range of 7.1-15.2 mg kg-1) and partly blocked the lethal effects of NMDA in mice. PCH also dose-dependently inhibited NMDA-induced injury in rat primary hippocampal neuronal cultures, suggesting a possible neuroprotective action in vivo. In conclusion, our study suggests that the mechanisms of PCH action against soman-induced seizures might differ from those of the M receptor antagonists atropine and scopolamine, and that of the antagonist of both the M and N receptors, 8018. The pharmacological profile of PCH might include anticholinergic and anti-NMDA properties. Compared with the currently recommended anticonvulsant drug diazepam, with known NMDA receptor antagonists such as MK-801 and with conventional anticholinergics such as scopolamine and atropine, the potent anticonvulsant effects of PCH during the entire initial 40 min period of soman poisoning, and its fewer adverse effects, all suggest that PCH might serve as a new type of anticonvulsant for the treatment of seizures induced by soman.  相似文献   

17.
Diocleinae lectins are highly homologous in their primary structure which features metal binding sites and a carbohydrate recognition domain (CRD). Differences in the biological activity of legume lectins have been widely investigated using hemagglutination inhibition assays, isothermal titration microcalorimetry and co-crystallization with mono- and oligosaccharides. Here we report a new lectin crystal structure (ConBr) extracted from seeds of Canavalia brasiliensis, predict dimannoside binding by docking, identify the α-aminobutyric acid (Abu) binding pocket and compare the CRD of ConBr to that of homologous lectins. Based on the hypothesis that the carbohydrate affinity of lectins depends on CRD configuration, the relationship between tridimensional structure and endothelial NO synthase activation was used to clarify differences in biological activity. Our study established a correlation between the position of CRD amino acid side chains and the stimulation of NO release from endothelium.  相似文献   

18.
ConBr, a D-glucose/D-mannose-specific lectin from Canavalia brasiliensis seeds, was produced in Escherichia coli from a (c)DNA clone subcloned to pET15b expression vector. The recombinant lectin (rConBr) was purified by one-step immobilized metal-affinity chromatography using an amino-terminal hexahistidine tag. By SDS-PAGE and Western blot, rConBr was highly pure with an apparent molecular mass of 37 kDa. N-terminal sequence analysis revealed a single sequence, confirming the identity of the expressed protein as the pre-pro-ConBr.  相似文献   

19.
Acute and chronic administration of the nucleoside guanosine have been shown to prevent quinolinic acid (QA) and -dendrotoxin-induced seizures, as well as to impair memory and anxiety in rats and mice. In this study, we investigated the effect of i.c.v. administration of guanine-based purines (GTP, GDP, GMP, and guanosine) against seizures induced by the NMDA agonist and glutamate releaser quinolinic acid in mice. We also aimed to study the effects of the poorly hydrolysable analogs of GTP (GppNHp and GTPS) and GDP (GDPS) in this seizure model. QA produced seizures in 100% of mice, an effect partially prevented by guanine-based purines. In contrast to GTP (480 nmol), GDP (320–640 nmol), GMP (320–480 nmol) and guanosine (300–400 nmol), the poorly hydrolysable analogs of GTP and GDP did not affect QA-induced seizures. Thus, the protective effects of guanine nucleotides seem to be due to their conversion to guanosine. Altogether, these findings suggest a potential role of guanine-based purines for treating diseases involving glutamatergic excitotoxicity.  相似文献   

20.
The cardiovascular actions of centrally administered neuropeptide Y   总被引:1,自引:1,他引:0  
The cardiovascular actions of intracerebroventricular (i.c.v.) administration of neuropeptide Y (NPY) were examined in conscious, unrestrained rats. A prolonged decrease in heart rate (HR) and a fall in mean arterial pressure (MAP) were obtained following i.c.v. administration of NPY (1 and 10 micrograms). Passive immunization with an antiserum directed against NPY confirmed that the slowing of HR following i.c.v. administration of NPY was mediated via a central nervous mechanism and not from leakage of NPY out of the brain. Administration of NPY into different brain parenchymal regions identified a putative site of action in the rostral region of the solitary tract. The mechanism of the decrease in HR caused by centrally administered NPY was investigated by i.c.v. administration of NPY to animals that were pretreated with agents that altered autonomic tone. Administration of NPY to atropine-treated animals produced a reversal of the atropine-induced tachycardia, suggesting that the NPY-induced decrease in HR was not due to augmented vagal tone. However, administration of NPY to animals pretreated with propranolol did not significantly lower HR below that obtained with propranolol alone. These data suggest that i.c.v. administration of NPY may cause a decrease in cardiac sympathetic outflow. The effects of centrally administered NPY on baroreflex function were studied. The changes in HR caused by NPY did not significantly alter baroreflex set-point or gain. These studies provide evidence that NPY acted within a brainstem region to decrease sympathetic nervous outflow, resulting in a decrease in HR and MAP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号