首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In two previous quantitative trait locus (QTL) mapping studies conducted inLycopersicon esculentum x L. pimpinellifolium BC1 and BC2 populations we had localized a major QTL for fruit shape,fs8.1, to a ca. 20 cM interval on the short arm of chromosome 8, flanked by markers TG176 and CT92. At this QTL the allele from the wild species reduces the length of fruit, giving round-shaped fruit. In order to define more precisely the location offs8.1, near-isogenic lines (NILs) segregating for the region of interest were developed. The results from substitution mapping show that no recombination occurred betweenfs8.1 and the marker CD40 in 322 meioses. The gene action forfs8.1 was determined in a BC4F3 population to be partial dominance. The main effect offs8.1 is exerted on fruit length while fruit diameter is not significantly affected. A highly significant correlation (r=0.89;P<0.01) was found between fruit shape and ovary shape indicating that thefs8.1 gene product acts early in ovary development (preanthesis). Implications for the evolution of fruit shape and the feasibility of map-based cloning of this QTL are discussed.  相似文献   

2.
Cultivated tomatoes (Lycopersicon esculen- tum) encompass a wide range of fruit size and shape variants. This variation provides the basis for dissecting the genetic and molecular pathways of ovary and fruit development. One fruit shape variant is displayed by the cultivar Sun 1642 (TA491). TA491 has an elongated fruit phenotype, while the wild relative L. pimpinellifolium LA1589 produces fruit that are nearly perfect spheres, a shape typical of wild tomatoes. Developmental studies indicated that the differences in fruit shape between TA491 and LA1589 are determined by events occurring immediately after pollination and extending to 14 days post-pollination. Quantitative trait mapping revealed a single major locus on chromosome 7 (named sun) to be responsible for the differential development of TA491 and LA1589 fruit. Other fruit shape loci characterized in tomato (e.g. fs8.1 and ovate) exert their effects before anthesis and early in ovary development. sun is the first major locus identified in tomato controlling fruit shape through post-pollination events. Received: 17 November 2000 / Accepted: 24 November 2000  相似文献   

3.
Cultivated tomato (Lycopersicon esculentum) encompass a wide range of fruit shape and size variants. This variation can be used to genetically dissect the molecular basis of ovary and fruit morphology. The cultivar Long John displays an extremely elongated fruit phenotype, while the wild relative Lycopersicon pimpinellifolium LA1589 produces fruit that are nearly perfect spheres, typical of wild tomatoes. Quantitative trait mapping of an F2 population between Long John and LA1589 revealed four fruit shape QTLs, located on chromosomes 2, 3, 7 and 11. The primary role of the fruit shape QTL located on chromosome 7, ljfs7, is to control pericarp elongation. The primary role of the fruit shape QTLs on chromosome 2, 3 and 11 (ljfs2, ljfs3 and ljfs11, respectively) is to control pear shape, measured as the eccentricity index. QTL map position and the effect of the loci on fruit shape suggested that ljfs2 and ljfs7 are allelic to the well-studied fruit shape loci ovate and sun, respectively. ljfs3 and ljfs11 map near the previously identified, but less characterized, fruit shape loci fs3.2 and fs11.1, respectively. This result suggests that most of the variation in tomato fruit shape is controlled by a few major QTLs. Although eccentricity and pericarp elongation were largely controlled by independent growth processes, significant interactions were detected between all four fruit shape loci in the control of eccentricity. This indicates that the three eccentricity loci, ljfs2, ljfs3 and ljfs11, epistatically control the same developmental process, while ljfs7 had a pleiotropic effect on eccentricity. Received: 27 March 2001 / Accepted: 7 May 2001  相似文献   

4.
We previously identified fs10.1 as a major QTL controlling fruit shape (index of length to width) in an interspecific F2 cross of Capsicum annuum (round fruit) × C. chinense (elongated fruit) in pepper. To more precisely map and characterize the QTL, we constructed near-isogenic lines for fs10.1 and mapped it in a BC4F2 population. In this population, fs10.1 segregated as a Mendelian locus and mapped 0.3 cM away from the closest molecular marker. We further verified the effect of fs10.1 in an F2 population from an independent cross between elongated- and conical-fruited parents. To identify additional allelic variation at fruit shape loci, we screened an EMS-mutagenized population of the blocky-fruited cv. Maor and identified the mutant E-1654 with elongated fruit. This fruit shape mutation was mapped to the fs10.1 region and was determined to be allelic to the QTL. By measuring fruit shape of near-isogenic lines for fs10.1 during fruit development, we found that the shape of the fruit is determined primarily in the first 2 weeks after anthesis. Histological measurements of cell size and cell shape in pericarp sections of fruits of the isogenic lines throughout fruit development indicated that the shape of the fruit is determined primarily by cell shape and that the development of fruit shape is correlated with cell shape.  相似文献   

5.
Fruit shape is a quantitatively inherited character. In tomato, two major loci, sun and ovate, control fruit shape index, which is the ratio of fruit height over width. In this study, we measured many additional fruit shape features in three inter-specific F2 populations using the software application Tomato Analyzer. These populations were derived from varieties carrying elongated fruit but for which the major shape loci differed. We compared the effect of the major fruit shape loci with overall shape, as well as with the distal and proximal end shape features in each population. sun and ovate represented the largest effect on fruit shape in the Howard German and Sausage F2 populations, respectively. The largest effect QTL in the Rio Grande population carrying neither sun nor ovate, were fs8.1 on chromosome 8 and tri2.1/dblk2.1 on chromosome 2. These latter loci were also segregating in the other two populations, thus indicating common regions that control shape across the three populations. The phenotypic analyses showed that sun and ovate contributed to almost all aspects of shape such as the distal and proximal end features. In Rio Grande however, the largest effect QTL did not control all aspects of shape and the distal and proximal features were distinctly controlled in that population. Combined, our results implied that within the cultivated tomato germplasm pool the largest effect on elongated fruit shape was controlled by a combination of the loci sun, ovate, fs8.1 and tri2.1/dblk2.1. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

6.
The Beta (B) locus in tomato (Lycopersicon esculentum) increases fruit β-carotene content at the expense of lycopene, resulting in orange-pigmented fruit. Expression of B is influenced by the beta-modifier (Mo B ) gene which segregates independently of B. RAPD and AFLP analyses were performed using near isogenic lines (NILs) unique for B and bulked segregant analysis (BSA) of a L. esculentum×L. cheesmanii-derived F2 population segregating for B. Using 1018 random primers for RAPD analysis and 64 primer pairs for AFLP analysis, we identified polymorphic products which distinguished the NILs and the two bulked DNA samples constructed for BSA. A single 100 bp AFLP amplification product (E-ACA/M-CTG100) which distinguished the NILs cosegregated with Mo B and was demonstrated to be tightly linked to the locus. E-ACA/M-CTG100 exhibited a recombination frequency of 1.7% in the F2 progeny derived from an initial cross between the isolines. The Mo B locus was mapped to the long arm of chromosome 6. Two RAPD products (OPAR181100 and UBC792830) of 1100 bp and 830 bp, respectively, were polymorphic between orange- and red-fruited bulks constructed from F2 individuals in the L. esculentum and L. cheesmanii mating series. OPAR181100 and UBC792830 displayed recombination frequencies of 4.2% and 7.6%, respectively, in F2 progeny. The B-linked OPAR181100 marker was also mapped to the long arm of chromosome 6, proximal to Mo B , and revealed linkage between B and Mo B . Received: 9 April 1999 / Accepted: 27 April 1999  相似文献   

7.
In this study, the advanced backcross QTL (AB-QTL) mapping strategy was used to identify loci for yield, processing and fruit quality traits in a population derived from the interspecific cross Lycopersicon esculentum E6203 × Lycopersicon pennellii accession LA1657. A total of 175 BC2 plants were genotyped with 150 molecular markers and BC2F1 plots were grown and phenotyped for 25 traits in three locations in Israel and California, U.S.A. A total of 84 different QTLs were identified, 45% of which have been possibly identified in other wild-species-derived populations of tomato. Moreover, three fruit-weight/size and shape QTLs (fsz2b.1, fw3.1/fsz3.1 and fs8.1) appear to have putative orthologs in the related solanaceous species, pepper and eggplant. For the 23 traits for which allelic effects could be deemed as favorable or unfavorable, 26% of the identified loci had L. pennellii alleles that enhanced the performance of the elite parent. Alleles that could be targeted for further introgression into cultivated tomato were also identified.Communicated by G. Wenzel  相似文献   

8.
Pyrenophora graminea is the seed-borne pathogen causal agent of barley leaf stripe disease. Near-isogenic lines (NILs) carrying resistance of the cv ”Thibaut” against the highly virulent isolate Dg2 were obtained by introgressing the resistance into the genetic background of the susceptible cv ”Mirco”. The segregation of the resistance gene was followed in a F2 population of 128 plants as well as on the F3 lines derived from the F2 plants; the segregation fitted the 1:2:1 ratio for a single gene. By using NILs, a RAPD marker associated with the resistance gene was identified; sequence-specific (STS) primers were designed on the basis of the amplicon sequence and a RILs mapping population with an AFLP-based map were used to position this molecular marker to barley chromosome 1 S (7HS). STS and CAPS markers were developed from RFLPs mapped to the telomeric region of barley chromosome 7HS and three polymorphic PCR-based markers were developed. The segregation of these markers was followed in the F2 population and their map position with respect to the resistance gene was determined. Our results indicate that the Thibaut resistance gene, which we designated as Rdg2a, maps to the telomeric region of barley chromosome 7HS and is flanked by the markers OPQ-9700 and MWG 2018 at distances of 3.1 and 2.5 cM respectively. The suitability of the PCR-based marker MWG2018 in selection- assisted barley breeding programs is discussed. Received: 22 June 2000 / Accepted: 16 October 2000  相似文献   

9.
The genetic basis of pear-shaped tomato fruit   总被引:1,自引:0,他引:1  
Molecular-marker analysis of a cross between yellow pear, a tomato variety bearing small, pear-shaped fruit, and the round-fruited, wild species, Lycopersicon pimpinellifolium LA1589, revealed that pear-shaped fruit is determined largely by a major QTL on chromosome 2 and, to a lesser extent, a minor QTL on chromosome 10. The locus on chromosome 2 was also detected in a cross between yellow pear and the round-fruited introgression line (IL2–5) which carried the distal portion of chromosome 2 from the Lycopersicon pennellii genome. Based on its map position, we propose that the locus detected on chromosome 2 is the same as a locus referred to as ovate in the early tomato literature (Linstrom 1926, 1927). The fruit-shape index (length/diameter) and neck constriction were highly correlated in both populations suggesting that ovate exerts control over both traits or that the genes for these traits are tightly linked on chromosome 2. Using two-way ANOVA test, the minor QTL on chromosome 10 showed no significant interaction with the ovate locus on chromosome 2 with respect to the fruit-shape index. For ovate round fruit was dominant to elongated fruit in the L. pimpinellifolium populations, but additive in the IL2–5 population. Thus far, no genes controlling fruit shape have been cloned. The molecular mapping of the ovate locus may ultimately lead to its isolation via map-based cloning. Received: 8 January 1999 / Accepted: 30 January 1999  相似文献   

10.
A quantitative trait locus (QTL) for grain weight (GW) was detected near SSR marker RM210 on chromosome 8 in backcross populations derived from a cross between the Korean japonica cultivar Hwaseongbyeo and Oryza rufipogon (IRGC 105491). The O. rufipogon allele increased GW in the Hwaseongbyeo background despite the fact that O. rufipogon was the small-seeded parent. Using sister BC3F3 near-isogenic lines (NILs), gw8.1 was validated and mapped to a 6.1 cM region in the interval between RM42 and RM210 (P≤0.0001). Substitution mapping with eight BC3F4 sub-NILs further narrowed the interval containing gw8.1 to about 306.4 kb between markers RM23201.CNR151 and RM30000.CNR99. A yield trial using homozygous BC3F4 sister sub-NILs and the Hwaseongbyeo recurrent parent indicated that the NIL carrying an O. rufipogon chromosome segment across the entire gw8.1 target region out-yielded its sister NIL (containing Hwaseongbyeo chromosome in the RM42–RM210 interval) by 9% (P=0.029). The higher-yielding NIL produced 19.3% more grain than the Hwaseongbyeo recurrent parent (P=0.018). Analysis of a BC3F4 NIL indicated that the variation for GW is associated with variation in grain shape, specifically grain length. The locus, gw8.1 is of particular interest because of its independence from undesirable height and grain quality traits. SSR markers tightly linked to the GW QTL will facilitate cloning of the gene underlying this QTL as well as marker-assisted selection for variation in GW in an applied breeding program.  相似文献   

11.
Lycopersicon peruvianum LA2157 originates from 1650 m above sea level and harbours several beneficial traits for cultivated tomatoes such as cold tolerance, nematode resistance and resistance to bacterial canker (Clavibacter michiganensis ssp. michiganensis). In order to identify quantitative trait loci (QTLs) for bacterial canker resistance, a QTL mapping approach was carried out in an F2 population derived from the interspecific F1 between Lycopersicon esculentum cv Solentos and L. peruvianum LA2157. Three QTLs for resistance mapped to chromosomes 5, 7 and 9 respectively. The resistance loci were additive and co-dominant with the QTL on chromosome 7 explaining the largest part of the variation for resistance in the F2 population. The combination of this QTL with either of the other two QTLs conferred a resistance similar to the level in the resistant parent L. peruvianum. Some RFLP markers flanking this QTL on chromosome 7 were converted into SCAR markers allowing efficient marker-assisted selection of plants with high resistance to bacterial canker. Received: 26 February 1999 / Accepted: 12 March 1999  相似文献   

12.
Using RAPD marker analysis, two quantitative trait loci (QTLs) associated with earliness due to reduced fruit-ripening time (days from anthesis to ripening = DTR) were identified and mapped in an F2 population derived from a cross between Lycopersicon esculentum’E6203’ (normal ripening) and Lycopersicon esculentum’Early Cherry’ (early ripening). One QTL, on chromosome 5, was associated with a reduction in both ripening time (5 days) and fruit weight (29.3%) and explained 15.8 and 13% of the total phenotypic variation for DTR and fruit weight, respectively. The other QTL, on chromosome 12, was primarily associated with a reduction only in ripening time (7 days) and explained 12.3% of the total phenotypic variation for DTR. The gene action at this QTL was found to be partially dominant (d/a=0.41). Together, these two QTLs explained 25.1% of the total phenotypic variation for DTR. Additionally, two QTLs associated with fruit weight were identified in the same F2 population and mapped to chromosomes 4 and 6, respectively. Together, these two QTLs explained 30.9% of the total phenotypc variation for fruit weight. For all QTLs, the ’Early Cherry’ alleles caused reductions in both ripening time and fruit weight. The polymorphic band for the most significant RAPD marker (OPAB-06), linked to the reduced ripening time QTL on chromosome 12, was converted to a cleaved amplified polymorphism (CAP) assay for marker-aided selection and further introgression of early ripening time (DTR) into cultivated tomato. Received: 15 March 1999 / Accepted: 29 April 1999  相似文献   

13.
Quantitative Trait Locus (QTL) allelic variation was studied by analyzing near-isogenic lines (NILs) carrying homologous introgressions on chromosome 4 from three green-fruited wild tomato species. The NILs affect agronomic (yield, brix, fruit weight) and fruit (fruit shape, color, epidermal reticulation) traits in a similar manner. However, significant differences were detected in the magnitudes of the effects, the dominance deviations and epistatic interactions, indicating that those species carry different alleles for the QTL. As the QTL did not show any interaction across environments, gene-tic backgrounds or other QTLs, it can be used to introduce novel genetic variation into a broad range of cultivars. Analysis of new recombinant NILs showed that fruit traits are controlled by several linked genetic loci, whereas multiple genetic loci control the agronomic traits within the original introgression. The hypothesis that QTLs may be composed of multiple linked genes can not be rejected prior to implement projects for QTL isolation and cloning. Loci involved in color enhancement could not be related to any known gene involved in the carotenoid biosynthesis pathway, therefore it is hypothesized that the function of those loci must be related to the genetic regulation of the carotenoid biosynthetic pathway. Received: 14 April 2000 / Accepted: 12 May 2000  相似文献   

14.
 Improved-processing tomato lines were produced by the molecular breeding strategy of advanced backcross QTL (AB-QTL) analysis. These near-isogenic lines (NILs) contained unique introgressions of wild alleles originating from two donor wild species, Lycopersicon hirsutum (LA1777) and L. pimpinellifolium (LA1589). Wild alleles targeted for trait improvement were selected on the basis of previously published replicated QTL data obtained from advanced backcross populations for a battery of important agronomic traits. Twenty three NILs were developed for 15 genomic regions which were predicted to contain 25 quantitative trait factors for the improvement of seven agronomic traits: total yield, red yield, soluble solids, brix×red yield, viscosity, fruit color, and fruit firmness. An evaluation of the agronomic performance of the NILs in five locations worldwide revealed that 22 out of the 25 (88%) quantitative factors showed the phenotypic improvement predicted by QTL analysis of the BC3 populations, as NILs in at least one location. Per-location gains over the elite control ranged from 9% to 59% for brix×red yield; 14% to 33% for fruit color; 17% to 34% for fruit firmness; 6% to 22% for soluble-solids content; 7% to 22% for viscosity; 15% to 48% for red yield, and 20% to 28% for total yield. The inheritance of QTLs, the implementation of the AB-QTL methodology for characterizing unadapted germplasm and the applicability of this method to other crops are discussed. Theor Appl Genet (1998) 97 : 170–180 Received: 27 October 1997 / Accepted: 25 November 1997  相似文献   

15.
A high-resolution physical map targeting a cluster of yield-related QTLs on the long arm of rice chromosome 9 has been constructed across a 37.4 kb region containing seven predicted genes. Using a series of BC3F4 nearly isogenic lines (NILs) derived from a cross between the Korean japonica cultivar Hwaseongbyeo and Oryza rufipogon (IRGC 105491), a total of seven QTLs for 1,000-grain weight, spikelets per panicle, grains per panicle, panicle length, spikelet density, heading date and plant height were identified in the cluster (P ≤ 0.0001). All seven QTLs were additive, and alleles from the low-yielding O. rufipogon parent were beneficial in the Hwaseongbyeo background. Yield trials with BC3F4 NILs showed that lines containing a homozygous O. rufipogon introgression in the target region out-yielded sibling NILs containing Hwaseongbyeo DNA by 14.2–17.7%, and out-yielded the Hwaseongbyeo parent by 16.2–23.7%. While higher yielding plants containing the O. rufipogon introgression were also taller and later than controls, the fact that all seven of the QTLs were co-localized in the same 37.4 kb interval suggests the possibility that a single, pleiotropic gene acting as a major regulator of plant development may control this suite of agronomically important plant phenotypes. Xiaobo Xie and Fengxue Jin have contributed equally to this study.  相似文献   

16.
Pm6 in bread wheat (Triticum aestivum L.), which was transferred from Triticum. timopheevii L., is a gene conferring resistance to the powdery mildew disease caused by Erysiphe graminis f. sp. tritici. Six near-isogenic lines ( NILs ) of Pm6 in a cultivar ’Prins’ background were analyzed to map this gene using restriction fragment length polymorphism (RFLP). Each of the six NILs possessed a T. timopheevii-derived segment, varying in length, and associated with powdery mildew resistance. Lines IGV1–465 (FAO163b/ 7*Prins) and IGV1–467 (Idaed 59B/7*Prins) had the shortest introgressed segments, which were detected only by DNA probes BCD135 and PSR934, respectively. The polymorphic loci detected by both probes were mapped to the long arm of chromosome 2B. Lines IGV1–458 (CI13250/7*Prins) and IGV1–456 (CI12559/8*Prins) contained the longest T. timopheevii segments involving both arms of donor chromosome 2G across the centromere. All these introgressed segments had an overlapping region flanked by the loci xpsr934 and xbcd135 on 2BL. Thus, Pm6 was located in this region since the powdery mildew resistance in all the NILs resulted from the introgressed fragments. Using the F2 mapping population from a cross of IGV1–463 (PI170914/7*Prins)×Prins, Pm6 was shown to be closely linked to the loci xbcd135 and xbcd266 at a genetic distance of 1.6 cM and 4.8 cM, respectively. BCD135 was successfully used in detecting the presence of Pm6 in different genetic backgrounds. Received: 29 June 1999 / Accepted: 6 July 1999  相似文献   

17.
Fusarium head blight (FHB) is a major disease of barley (Hordeum vulgare L.) that results in reduced grain yield and quality through the accumulation of the mycotoxin deoxynivalenol (DON). Coincident QTL for FHB severity, DON concentration, and heading date (HD) map to a region of chromosome 2(2H) designated Qrgz-2H-8. It is unclear whether disease resistance at this locus is due to a pleiotropic effect of late HD by delaying the host exposure to the pathogen or a tightly linked resistance gene. The objectives of this study were to develop a set of near isogenic lines (NILs) for the Qrgz-2H-8 region and to genetically dissect the QTL region containing the coincident traits. Two NIL populations were developed consisting of F2- and F4-derived recombinants from a cross between a BC5 line carrying the donor parent (Chevron) alleles in the Qrgz-2H-8 region and the recurrent parent M69. Analysis of field and marker data from these NILs revealed that the Chevron alleles conditioning FHB resistance, late HD, and low DON concentration were successfully introgressed into the BC5 parent line and were segregating among NILs. QTL analysis of the F4-derived population showed that the HD QTL is adjacent to the FHB QTL. Furthermore, a single NIL was identified that was similar to the resistant BC5 parent for FHB severity and the early flowering parent M69 for HD. These results indicate that the relationship between FHB and HD at the Qrgz-2H-8 region is likely due to tight linkage rather than pleiotropy.  相似文献   

18.
Classical genetic studies have determined that the yellow fruit color in pepper is recessive to red in the locus y. We studied the relation of the y locus with the gene coding for capsanthin-capsorubin synthase (CCS) that synthesizes the red carotenoid pigments in the mature fruit. Cosegregation of y and CCS in populations derived from crosses between plants bearing red×white and red×yellow fruits indicated the correspondence of the two genes. We obtained indications for the occurrence of a deletion in the CCS gene in plants containing the recessive y allele. This deletion did not contain the distal 220 bp of the 3′ end of the gene. We used the CCS gene to determine the genotype of peppers with different fruit colors at the y locus. In BC1 segregants from a red×white cross, the red and peach-fruited progenies had the wild-type allele at the CCS locus, while the orange, yellow and white-fruited progenies had the mutant allele. Screening orange-fruited cultivars with CCS as well as segregation analysis of CCS in an additional red×white cross indicated two possible genotypes of the orange fruit color in this locus. Received: 25 January 1999 / Accepted: 16 August 1999  相似文献   

19.
 Improved-processing tomato lines were produced by the molecular breeding strategy of advanced backcross QTL (AB-QTL) analysis. These near-isogenic lines (NILs) contained unique introgressions of wild alleles originating from two donor wild species, Lycopersicon hirsutum (LA1777) and L. pimpinellifolium (LA1589). Wild alleles targeted for trait improvement were selected on the basis of previously published replicated QTL data obtained from advanced backcross populations for a battery of important agronomic traits. Twenty three NILs were developed for 15 genomic regions which were predicted to contain 25 quantitative trait factors for the improvement of seven agronomic traits: total yield, red yield, soluble solids, brix×red yield, viscosity, fruit color, and fruit firmness. An evaluation of the agronomic performance of the NILs in five locations worldwide revealed that 22 out of the 25 (88%) quantitative factors showed the phenotypic improvement predicted by QTL analysis of the BC3 populations, as NILs in at least one location. Per-location gains over the elite control ranged from 9% to 59% for brix×red yield; 14% to 33% for fruit color; 17% to 34% for fruit firmness; 6% to 22% for soluble-solids content; 7% to 22% for viscosity; 15% to 48% for red yield, and 20% to 28% for total yield. The inheritance of QTLs, the implementation of the AB-QTL methodology for characterizing unadapted germplasm and the applicability of this method to other crops are discussed. Received: 27 October 1997 / Accepted: 25 November 1997  相似文献   

20.
QTL mapping of fruit-related traits in pepper (Capsicum annuum)   总被引:11,自引:0,他引:11  
QTL analysis of pepper fruit characters was performed in an F3 population derived from a cross between two Capsicum annuum genotypes, the bell-type cultivar Maor and the Indian small-fruited line Perennial. RFLP, AFLP®1, RAPD and morphological markers (a total of 177) were used to construct a comparative pepper-tomato genetic map for this cross, and 14 quantitatively inherited traits were evaluated in 180 F3 families. A total of 55 QTL were identified by interval analysis using LOD 3.0 as the threshold for QTL detection. QTL for several traits including fruit diameter and weight, pericarp thickness and pedicel diameter were often located in similar chromosomal regions, thus reflecting high genetic correlations among these traits. A major QTL that accounts for more than 60% of the phenotypic variation for fruit shape (ratio of fruit length to fruit diameter) was detected in chromosome 3. This chromosome also contained QTL for most of the traits scored in the population. Markers in linkage groups 2, 3, 8 and 10 were associated with QTL for multiple traits, thereby suggesting their importance as loci that control developmental processes in pepper. Several QTL in pepper appeared to correspond to positions in tomato for loci controlling the same traits, suggesting the hypothesis that these QTL may be orthologous in the two species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号