首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary A convenient system for the rapid simultaneous measurement of both chlorophyll fluorescence quenching using a modulated light system, and of CO2, and water vapour exchange by leaves is described. The system was used in a study of the effects of water deficits on the photosynthesis by apple leaves (Malus x domestica Borkh.). Apple leaves were found to have low values of steady-state variable fluorescence, and the existence of significant fluorescence with open traps (Fo) quenching necessitated the measurement and use of a corrected Fo in the calculation of quenching components. Long-term water stress had a marked effect on both gas-exchange and chlorophyll fluorescence quenching. Non-photochemical quenching (qn) in particular was increased in water-stressed leaves, and it was particularly sensitive to incident radiation in such leaves. In contrast, rapid dehydration only affected gas exchange. Relaxation of qn quenching in the dark was slow, taking approximately 10 min for a 50% recovery, in well-watered and in draughted plants, and whether or not the plants had been exposed to high light.  相似文献   

2.
Summary In order to study physiological strain caused by release cutting, suppressed Norway spruce on mesic and moist sites was completely released from overstory birch, or 500 birches per hectare were left as a shelter. The treatments were conducted in late June in 1988 and in 1989. The spruce's reaction to the environmental change was monitored by measurements of fast chlorophyll fluorescence kinetics and analysis of chlorophyll content. This was done before treatment, 1 week after treatment, 2 months after treatment, and twice during the following growth period. Complete release resulted in a more pronounced decrease in the ratio of variable fluorescence to maximal fluorescence (Fv/Fm) than partial release. There was also a tendency for the build-up of chlorophyll content in needles to be more affected when the spruce was completely released. Released spruces on moist sites tended to be more affected by the release than released spruces on mesic sites. The results suggest that in this kind of stand the risk of damage to the spruces is greatest when the spruces are completely released on moist sites. Furthermore, it is shown that the weather conditions prevailing shortly before and after the release have a large influence on the spruce's reaction to the release. The results also indicate some adjustment to the new environment in mature needles.  相似文献   

3.
The relationships between photoinhibition and photoprotection in high and low-light-grown Ulva were examined by a combination of chlorophyll-fluorescence-monitoring techniques. Tissues were exposed to a computer-controlled sequence of 5-min exposures to red light, followed by 5-min darkness, with stepwise increases in photon flux. Coefficients of chlorophyll fluorescence quenching (1?qP and NPQ) were calculated following a saturating pulse of white light near the end of each 5-min light treatment. Dark-adapted chlorophyll fluorescence parameters (F0 and FV/FM) were calculated from a saturating pulse at the end of each 5-min dark period. Low-light-grown Ulva showed consistently higher 1?qP, i.e. higher reduction status of Q (high primary acceptor of photosystem II), and lower capacity for nonphotochemical quenching (NPQ) at saturating light than did high-light-grown plants. Consequently, low-light plants rapidly displayed photoinhibitory damage (increased F0) at light saturation in seawater. Removal of dissolved inorganic carbon from seawater also led to photoinhibitory damage of high-light-grown Ulva at light saturation, and addition of saturating amounts of dissolved inorganic carbon protected low-light-grown plants against photoinhibitory damage. A large part of NPQ was abolished by treatment with 3 mM dithiothreitol and the processes so inhibited were evidently photoprotective, because dithiothreitol treatment accelerated photoinhibitory damage in both low- and high-light-grown Ulva. The extent of photoinhibitory damage in Ulva was exacerbated by treatment with chloramphenicol (1 mM) without much effect on chlorophyll-quenching parameters, evidently because this inhibitor of chloroplast protein synthesis reduced the rate of repair processes.  相似文献   

4.
Abstract. The kinetics of in vivo chlorophyll fluorescence of photosystem II (PS II) was measured at room temperature and 77 K during frost hardening of seedlings of Scots pine (Pinus sylvestris L.), and after exposure of frost-hardened shoots to sub-freezing temperatures. A more pronounced decrease in variable fluorescence yield for the upper exposed than for the lower shaded surface of the needles suggested that some photoinhibition occurred during prolonged frost hardening at 50 μmol photons m?2 s?1 and 4°C. Reversible inhibition of photosynthesis after exposure to sub-freezing temperatures was initially manifested as an increase of steady-state energy-dependent fluorescence quenching (qE) and a reduction in the rate of O2 evolution. Further inhibition after treatment at still lower temperatures caused a progressive decline of steady-state photochemical quenching (qQ) and the rate of O2 evolution, whereas qE remained high. This implies an inactivation of enzymes in the photosynthetic carbon reduction cycle decreasing the consumption of ATP and NADPH, which is likely to cause an increase of membrane energization and a reduction of the primary electron acceptor (QA) of PS II. Alternatively, the changes in qQ and qE might be attributed to an inhibition of photophosphorylation. Severe, irreversible damage to photosynthesis resulted in a suppression of qE and of variable fluorescence yield, probably because the photochemical efficiency of PS II was impaired. Changes in the fast fluorescence kinetics at room temperature after severe freezing damage were interpreted as an inhibition of the electron flow from QA to the plastoquinone pool. It is suggested that irreversible freezing injury to needles of frost-hardened P. sylvestris causes damage to the QB,-protein.  相似文献   

5.
6.
Robert T. Furbank 《Planta》1988,176(4):433-440
The relationship between the redox state of the primary electron acceptor of photosystem II (QA) and the rate of O2 evolution in isolated mesophyll chloroplasts from Zea mays L. is examined using pulse-modulated chlorophyll a fluorescence techniques. A linear relationship between photochemical quenching of chlorophyll fluorescence (qQ) and the rate of O2 evolution is evident under most conditions with either glycerate 3-phosphate or oxaloacetate as substrates. There appears to be no effect of the transthylakoid pH gradient on the rate of electron transfer from photosystem II into QA in these chloroplasts. However, the proportion of electron transport occurring through cyclic-pseudocyclic pathways relative to the non-cyclic pathway appears to be regulated by metabolic demand for ATP. The majority of non-photochemical quenching in these chloroplasts at moderate irradiances appeared to be energy-dependent quenching.Abbreviations and symbols PSII photosystem II - Fm maximum fluorescence obtained on application of a saturating light pulse - Fo basal fluorescence recorded in the absence of actinic light (i.e. all PSII traps are open) - Fv Fm-Fo - qQ photochemical quenching - qNP non-photochemical quenching - qE energy-dependent quenching of chlorophyll fluorescence  相似文献   

7.
Although aphids are among the most injurious of all agronomic insect pests, much remains unknown about how their feeding alters plant physiology. Two experiments were conducted to examine the physiological responses of wheat, Triticum aestivum L. and barley, Hordeum vulgare L. to injury by Diuraphis noxia (Mordvilko) and Rhopalosiphum padi (L.) (Hemiptera: Aphididae). Gas-exchange parameters, chlorophyll fluorescence, and chlorophyll content were examined at 3, 6, and 9 days post-infestation on control and aphid (D. noxia and R. padi) infested treatments. In general, chlorophyll content and chlorophyll fluorescence parameters (non-variable minimal fluorescence, maximal fluorescence, and variable fluorescence) were not significantly affected by either aphid species. Photochemical and non-photochemical quenching coefficients were significantly impacted by both aphid species, suggesting that aphid feeding may influence the photoprotective xanthophyll cycle altering the thylakoid membrane pH gradient. Feeding by both aphid species resulted in an increase in electron transport rate, but at different time periods. Wheat plants infested with D. noxia had accelerated declines in photosynthetic capacity when compared to R. padi-infested and control plants. These plants exhibited decreased values for Amax, which was accompanied by decreased values for Vcmax and Jmax Neither aphid species negatively affected the photosynthetic capacity of the barley plants until day 9. At this time, aphid-infested plants had decreased values for Amax which was accompanied by decreased values in Jmax. Although R. padi feeding does not typically result in visual damage symptoms as previously demonstrated, clearly this aphid does have an impact on the gas-exchange and chlorophyll fluorescence of its host plants. Handling editor: Heikki Hokkanen  相似文献   

8.
Henrik Laasch 《Planta》1987,171(2):220-226
Non-photochemical quenching of chlorophyll a fluorescence after short-time light, heat and osmotic stress was investigated with intact chloroplasts from Spinacia oleracea L. The proportions of non-photochemical fluorescence quenching (q N ) which are related (q E ) and unrelated (q I ) to the transthylakoid proton gradient (pH) were determined. Light stress resulted in an increasing contribution of q Ito total q N.The linear dependence of q. Eand pH, as seen in controls, was maintained. The mechanisms underlying this type of quenching are obviously unaffected by photoin-hibition. In constrast, q Ewas severely affected by heat and osmotic stress. In low light, the response of q Eto changes in pH was enhanced, whereas it was reduced in high light. The data are discussed with reference to the hypothesis that q Eis related to thermal dissipation of excitation energy from photosystem II. It is shown that q Eis not only controlled by pH, but also by external factors.Abbreviations and symbols 9-AA 9-aminoacridine - F o basic chlorophyll fluorescence - F o variable chlorophyll fluorescence - L 2 saturating light pulse - PS photosystem - q E pH-dependent, non-photochemical quenching of fluorescence - q I pH-independent, non-photochemical quenching - q N entire non-photochemical quenching - q Q photochemical quenching  相似文献   

9.
Winter-induced inhibition of photosynthesis in Scots pine (Pinus sylvestris L.) needles is accompanied by a 65% reduction of the maximum photochemical efficiency of photosystem II (PSII), measured as F v/F m, but relatively stable photosystem I (PSI) activity. In contrast, the photochemical efficiency of PSII in bark chlorenchyma of Scots pine twigs was shown to be well preserved, while PSI capacity was severely decreased. Low-temperature (77 K) chlorophyll fluorescence measurements also revealed lower relative fluorescence intensity emitted from PSI in bark chlorenchyma compared to needles regardless of the growing season. Nondenaturating SDS-PAGE analysis of the chlorophyll–protein complexes also revealed much lower abundance of LHCI and the CPI band related to light harvesting and the core complex of PSI, respectively, in bark chlorenchyma. These changes were associated with a 38% reduction in the total amount of chlorophyll in the bark chlorenchyma relative to winter needles, but the Chl a/b ratio and carotenoid composition were similar in the two tissues. As distinct from winter pine needles exhibiting ATP/ADP ratio of 11.3, the total adenylate content in winter bark chlorenchyma was 2.5-fold higher and the estimated ATP/ADP ratio was 20.7. The photochemical efficiency of PSII in needles attached to the twig recovered significantly faster (28–30 h) then in detached needles. Fluorescence quenching analysis revealed a high reduction state of Q A and the PQ-pool in the green bark tissue. The role of bark chlorenchyma and its photochemical performance during the recovery of photosynthesis from winter stress in Scots pine is discussed.  相似文献   

10.
The function of photosystem (PS)II during desiccation and exposure to high photon flux density (PFD) was investigated via analysis of chlorophyll fluorescence in the desert resurrection plant Selaginella lepidophylla (Hook. and Grev.) Spring. Exposure of hydrated, physiologically competent stems to 2000 mol · m–2 · s–1 PFD caused significant reductions in both intrinsic fluorescence yield (FO) and photochemical efficiency of PSII (FV/FM) but recovery to pre-exposure values was rapid under low PFD. Desiccation under low PFD also affected fluorescence characteristics. Both FV/FM and photochemical fluorescence quenching remained high until about 40% relative water content and both then decreased rapidly as plants approached 0% relative water content. In contrast, the maximum fluorescence yield (FM) decreased and non-photochemical fluorescence quenching increased early during desiccation. In plants dried at high PFD, the decrease in FV/FM was accentuated and FO was reduced, however, fluorescence characteristics returned to near pre-exposure values after 24-h of rehydration and recovery at low PFD. Pretreatment of stems with dithiothreitol, an inhibitor of zeaxanthin synthesis, accelerated the decline in FV/FM and significantly increased FO relative to controls at 925 mol · m–2 · s–1 PFD, and the differences persisted over a 3-h low-PFD recovery period. Pretreatment with dithiothreitol also significantly decreased non-photochemical fluorescence quenching, increased the reduction state of QA, the primary electron acceptor of PSII, and prevented the synthesis of zeaxanthin relative to controls when stems were exposed to PFDs in excess of 250 mol · m–2 · s–1. These results indicate that a zeaxanthin-associated mechanism of photoprotection exists in this desert pteridophyte that may help to prevent photoinhibitory damage in the fully hydrated state and which may play an additional role in protecting PSII as thylakoid membranes undergo water loss.Abbreviations and Symbols DTT dithiothreitol - EPS epoxidation state - FO yield of instantaneous fluorescence at open PSII centers - FM maximum yield of fluorescence at closed PSII centers induced by saturating light - FM FM determined during actinic illumination - FV yield of variable fluorescence (FM-FO) - FV/FM photochemical efficiency of PSII - qP photochemical fluorescence quenching - qNP non-photochemical fluorescence quenching of Schreiber et al. (1986) - NPQ non-photochemical fluorescence quenching from the Stern-Volmer equation - PFD photon flux density - RWC relative water content This paper is based on research done while W.G.E. was on leave of absence at Duke University during the fall of 1990. We would like to thank Dan Yakir, John Skillman, Steve Grace, and Suchandra Balachandran and many others at Duke University for their help and input with this research. Dr. Barbara Demmig-Adams provided zeaxanthin for standard-curve purposes.  相似文献   

11.
The effect of NaCl in the culture medium on growth, photosynthesis and cell content of chlorophyll, K+, Na+, Ca2+ and Mg2+ in Euglena gracilis was studied. O2 production, quantum yield of photosystem II (PSII), the non-photochemical quenching of chlorophyll fluorescence (qN) and the chlorophyll alb ratio all diminished by 0.2 M NaCl. Respiration and chlorophyll a and b increased, whereas the photochemical quenching (qp) of chlorophyll fluorescence was not affected by 0.2 M NaCl. Salt stress also induced an increase in cell volume and in K+ and Na+ concentrations, but decreased the concentrations of Ca2+ and Mg2+. Except for a protective effect on O2 production, additional Ca2+ in the culture medium did not attenuate the salt effect on the parameters measured. The addition of HCO3? restored the PSII quantum yield of O2 production in cells grown in high salt. Salt stress promoted a decrease in the apparent rate of quinone A (QA) reduction and an apparent obstruction of QB reduction, which were not prevented by excess HCO3?; the addition of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) did not increase chlorophyll fluorescence in salt-grown cells. These results indicate that photosynthesis in Euglena grown under salt stress exhibits: (1) diminution of the HCO3? dependent water-splitting activity of PSII; (2) inhibition of the electron transfer at the quinone pool level; (3) probable increase in thylakoid stacking (as indicated by the effect on the chlorophyll alb ratio); and (4) dissipation of the H+ gradient across the thylakoid membranes (as indicated by the decrease of qN).  相似文献   

12.
Summary Diurnal measurements of chlorophyll a fluorescence from cacti (Nopalea cochenillifera, Opuntia ficus-indica, and Opuntia wentiana) growing in northern Venezuela were used to determine photochemical fluorescence quenching related to the reduction state of the primary electron acceptor of PS II as well as non-photochemical fluorescence quenching which reflects the fraction of energy going primarily into radiationless deexcitation. The cladodes used in this study were oriented such that one surface received direct sunlight in the morning and the other one during the afternoon. Both surfaces exhibited large increases in radiationless energy dissipation from the photochemical system accompanied by decreases in PS II photochemical efficiency during direct exposure to natural sunlight. During exposure to sunlight in the morning, dissipation of absorbed light energy through photosynthesis and radiationless energy dissipation was sufficient to maintain Q, the primary electron acceptor for PS II, in a low reduction state. During exposure to sunlight in the afternoon, however, the reduction state of Q rose to levels greater than 50%, presumably due to a decrease in photosynthetic electron transport as the decarboxylation of the nocturnally accumulated malic acid was completed. Exposure to direct sunlight in the afternoon also led to more sustained increases in radiationless energy dissipation. Furthermore, the increases in radiationless energy dissipation during exposure of a water-stressed cladode of O. wentiana to direct sunlight were much greater than those from other well-watered cacti, presumably due to sustained stomatal closure and decreased rates of photosynthetic electron transport. These results indicate that the radiationless dissipation of absorbed light is an important process in these CAM plants under natural conditions, and may reflect a protective mechanism against the potentially damaging effects of the accumulation of excessive energy, particularly under conditions where CO2 availability is restricted.Abbreviations CAM crassulacean acid metabolism - F o instantaneous fluorescence emission - F M maximum fluorescence emission - F v variable fluorescence emission - K D rate constant for radiationless energy dissipation in the antenna chlorophyll - PFD photon flux density - PS I photosystem I - PS II photosystem II - Q primary electron acceptor of photosystem II - q NP non-photochemical fluorescence quenching - q P photochemical fluorescence quenching - T C cladode temperature  相似文献   

13.
Effects of mild and severe soil drought on the water status of needles, chlorophyll a fluorescence, shoot electrical admittance, and concentrations of photosynthetic pigments in needles of seedlings of Picea abies (L.) Karst. were examined under controlled greenhouse conditions. Drought stress reduced shoot admittance linearly with a decrease in shoot water potential (w) and increase in water deficit (WD) and led to a decrease in concentrations of chlorophyll a, b and carotenoids. Severe water stress (shoot w=–2.4 MPa) had a negative effect on chlorophyll a fluorescence parameters including PSII activity (Fv/Fm), and the vitality index (Rfd). Variations in these parameters suggest an inhibition of the photosynthetic electron transport in spruce needles. Water stress led to a decrease in the mobility of electrolytes in tissues, which was reflected by decreased shoot electrical admittance. After re-watering for 21 days the WD in needles decreased and the shoot water potential increased. In the re-watered plants, the chloroplast function was restored and chlorophyll a fluorescence returned to a similar level as in the control plants. This improved hydraulic adjustment in the seedlings triggered a positive effect on ion flow in the tissues and increased shoot electrical admittance. We conclude that the shoot electrical admittance and photosynthetic electron transport in leaves are closely linked to changes in water status and their decrease is among the initial responses of seedlings to water stress.  相似文献   

14.
Inhibition of photosynthesis was followed during autumn and early winter in current-year sun and shade needles of unfertilized and fertilized Norway spruce [Picea abies (L.) Karst.] by simultaneous measurements of photosynthetic O2 evolution and chlorophyll a fluorescence at 20 °C. The CO2-saturated rate of O2 evolution was generally higher in sun needles of fertilized trees than in those of unfertilized trees over a wide range of incident photon flux densities (PFDs). Furthermore, the maximum photo-chemical efficiency of photosystem (PS) II, as indicated by the ratio of variable to maximum fluorescence (FV/FM) was generally higher for sun needles of fertilized trees. The depression of fv/fm during frost periods was more pronounced in sun needles than in shade needles, indicating that winter inhibition in Norway spruce is strongly light-dependent. However, the inhibition of the rate of O2 evolution at high PFDs in needles of fertilized trees during early winter was partly independent of the light regime experienced by those needles in the field, which appeared to result in a pronounced decrease in the proportion of oxidized PS II reaction centres in shade needles. A nearly identical linear relationship between the quantum yield of PS II electron transport determined by chlorophyll fluorescence and the quantum yield of O2 evolution (gross rate of O2 evolution/PFD) was obtained for the investigated types of needles during autumn and early winter. Except for shade needles of fertilized trees, this appeared to be largely achieved by adjustments in thermal energy dissipation within PS II.  相似文献   

15.
Photosynthetic control describes the processes that serve to modify chloroplast membrane reactions in order to co-ordinate the synthesis of ATP and NADPH with the rate at which these metabolites can be used in carbon metabolism. At low irradiance, optimisation of the use of excitation energy is required, while at high irradiance photosynthetic control serves to dissipate excess excitation energy when the potential rate of ATP and NADPH synthesis exceed demand. The balance between pH, ATP synthesis and redox state adjusts supply to demand such that the [ATP]/[ADP] and [NADPH]/[NADP+] ratios are remarkably constant in steady-state conditions and modulation of electron transport occurs without extreme fluctuations in these pools.Abbreviations FBPase Fructose-1,6-bisphosphatase - PS I Photosystem I - PS II Photosystem II - Pi inorganic phosphate - PGA glycerate 3-phosphate - PQ plastoquinone - QA the bound quinone electron acceptor of PS II - qP Photochemical quenching of chlorophyll fluorescence associated with the oxidation of QA - qN non-photochemical quenching of chlorophyll fluorescence - qE non-photochemical quenching associated with the high energy state of the membrane - RuBP ribulose-1,5-bisphosphate - TP triose phosphate - intrinsic quantum yield of PS II - quantum yield of electron transport - quantum yield of CO2 assimilation  相似文献   

16.
Doris Godde  Heidrun Dannehl 《Planta》1994,195(2):291-300
To test wether chlorosis is induced by photoinhibitory damage to photosystem II (PSII), onset of chlorosis and loss of PSII function were compared in young spinach (Spinaciae oleracea L.) plants suffering under a combined magnesium and sulphur deficiency. Loss of chlorophyll already occurred after the first week of deficiency and preceded any permanent functional inhibition of the photosynthetic apparatus. Permanent disturbancies of photosynthetic electron transport measured in isolated thylakoids and of PSII function, determined via the ratio of variable fluorescence to maximal fluorescence, Fv/Fm, could be detected only after the second week of deficiency. After the third week, the plants had lost about 60% of their chlorophyll; even so, fluorescence data indicated that 85% of the existing PSII was still capable of initiating photosynthetic electron transport. However, quenching analysis of steady-state fluorescence showed an early increase in non-photochemical quenching and in down-regulated PSII centres with low steady-state quantum efficiency. Together with the down-regulation of PSII centres, a 1.4-fold increase in D1-protein synthesis, measured as incorporation of [14C]leucine, could be observed at the end of the first week before any loss of D1 protein, chlorophyll or photosynthetic activity could be detected. Immunological determiation by Western-blotting did not show a change in D1-protein content; thus, at this time, D1 protein was not only faster synthesised but was also faster degraded than before the imposition of mineral deficiency. The increased turnover was high enough to prevent any loss or functional inhibition of PSII. After 3 weeks, D1-protein synthesis on a chlorophyll basis was further stimulated by a factor of 2. However, this was not enough to prevent a net loss of D1 protein of about 70%, showing that the D1-protein was now degraded faster than it was synthesised. Immunological determination and electron-transport measurements showed that together with the loss of D1 protein the other polypetides of PSII were also degraded, resulting in a specific loss of PSII centres. The degradation of PSII centres prevented a large accumulation of damaged PSII centres. We assume that the decrease in PSII centres initiates the breakdown of the other thylakoid proteins.Abbreviations Fo yield of intrinsic fluorescence when all PSII centres are open in the dark - Fm yield of maximal fluorescence when all reaction centres are closed - Fm fluorescence yield when all reaction centres are closed under steady-state conditions - Fv yield of variable fluorescence, (difference between Fo and Fm) - F yield of variable fluorescence under steady-state conditions, difference between Fm and Ft, the fluorescence yield under steady-state conditions - PFD photon flux density - QA primary quinone acceptor of PSII - QB secondary quinone acceptor of PSII - qp photochemical quenching - qn non-photochemical quenching This work was supported by grants from the Bundesminister für Forschung und Technologie and the German Israeli Foundation. The authors thank Prof. I. Ohad (Department of Biological Chemistry, Hebrew University, Jerusalem, Israel) for fruitful discussions.  相似文献   

17.
CO2 assimilation, transpiration and modulated chlorophyll fluorescence of leaves of Chenopodium bonus-henricus (L.) were measured in the laboratory and, at a high altitude location, in the field. Direct calibration of chlorophyll fluorescence parameters against carbon assimilation in the presence of 1 or 0.5% oxygen (plus CO2) proved necessary to calculate electron transport under photorespiratory conditions in individual experiments. Even when stomata were open in the field, total electron transport was two to three times higher in sunlight than indicated by net carbon gain. It decreased when stomata were blocked by submerging leaves under water or by forcing them to close in air by cutting the petiole. Even under these conditions, electron transport behind closed stomata approached 10 nmol electrons m?2 leaf area s?1 at temperatures between 25 and 30 °C. No photoinactivation of photosystem II was indicated by fluorescence analysis after a day's exposure to full sunlight. Only when leaves were submerged in ice was appreciable photoinactivation noticeable after 4 h exposure to sunlight. Even then almost full recovery occurred overnight. Electron transport behind blocked stomata was much decreased when leaves were darkened for 70 min (in order to deactivate light-regulated enzymes of the Calvin cycle) before exposure to full sunlight. Brief exposure of leaves to HCN (to inhibit photoassimilation and photorespiration) also decreased electron transport drastically compared to electron transport in unpoisoned leaves with blocked stomata. Non-photochemical fluorescence quenching and reduction of QA, the primary electron acceptor of photosystem II was increased by HCN-poisoning. Very similar observations were made when glyceraldehyde was used instead of HCN to inhibit photosynthesis and photorespiration. In HCN-poisoned leaves, residual electron transport increased linearly with temperature and showed early light saturation revealing characteristics of the Mehler reaction. During short exposure of these leaves to photon flux densities equivalent to 25% of sunlight, no or only little photoinactivation of photosystem II was observed. However, prolonged exposure to sunlight caused inactivation even though non-photochemical quenching of chlorophyll fluorescence was extensive. Simultaneously, oxidation of cellular ascorbate and glutathione increased. Inactivation of photosystem II was reversible in dim light and in the dark only after short times of exposure to sunlight. Glyceraldehyde was very similar to HCN in increasing the sensitivity of photosystem II in leaves to sunlight. We conclude from the observations that the electron transport permitted by the interplay of photoassimilatory and photorespiratory electron transport is essential to prevent the photoinactivation of photosynthetic electron transport. The Mehler and Asada reactions, which give rise to strong nonphotochemical fluorescence quenching, are insufficient to protect the chloroplast electron transport chain against photoinactivation.  相似文献   

18.
A comparison of the effects of a rapidly imposed water deficit with different leaf ages on chlorophyll a fluorescence and gas exchange was performed in maize (Zea mays L.) plants. The relationships between photosynthesis and leaf relative turgidity (RT) and ion leakage were further investigated. Leaf dehydration substantially decreased net photosynthetic rate (A) and stomatal conductance (G s), particularly for older leaves. With dehydration time, F v /F m maintained a relatively stable level for youngest leaves but significantly decreased for the older leaves. The electron transport rate (ETR) sharply decreased with intensifying dehydration and remained at lower levels during continuous dehydration. The photochemical quenching of variable chlorophyll fluorescence (q P) gradually decreased with dehydration intensity for the older leaves but increased for the youngest leaves, whereas dehydration did not affect the nonphotochemical chlorophyll fluorescence quenching (NPQ) for the youngest leaves but remarkably decreased it for the older leaves. The leaf RT was significantly and positively correlated with its F v /F m, ETR, and q P, and the leaf ion leakage was significantly and negatively correlated with F v /F m and NPQ. Our results suggest that the photosynthetic systems of young and old leaves decline at different rates when exposed to rapid dehydration.  相似文献   

19.
M. N. Sivak  U. Heber  D. A. Walker 《Planta》1985,163(3):419-423
Light-scattering, which can be taken as an indicator of the transthylakoid proton-gradient, and chlorophyll a fluorescence, have been followed simultaneously during re-illumination of spinach leaves at different energy fluence rates and carbon dioxide concentrations. The slow fluorescence transient (M peak), which has been associated with photosynthetic induction, was observed in air only at the lower fluence rates used. Data are presented that indicate that M peaks in chlorophyll fluorescence kinetics can only be observed if there is also a simultaneous transient in light-scattering and that these transients are observed when the dark period is relatively long, fluence rate relatively low, and CO2 concentration relatively high.The results are discussed in relation to the varying demands on ATP by carbon assimilation during induction of photosynthesis at different carbon dioxide concentrations and the manner in which these variations influence the quenching of chlorophyll a fluorescence.Abbreviation Chl chlorophyll  相似文献   

20.
Chlorophyll fluorescence imaging has been used to analyse the response elicited in Phaseolus vulgaris after inoculation with Pseudomonas syringae pv. phaseolicola 1448A (compatible interaction) and P. syringae pv. tomato DC3000 (incompatible interaction). With the aim of modulating timing of symptom development, different cell densities were used to inoculate bean plants and the population dynamics of both bacterial strains was followed within the leaf tissue. Fluorescence quenching analysis was carried out and images of the different chlorophyll fluorescence parameters were obtained for infected as well as control plants at different timepoints post-infection. Among the different parameters analysed, we observed that non-photochemical quenching maximised the differences between the compatible and the incompatible interaction before the appearance of visual symptom. A decrease in non-photochemical quenching, evident in both infiltrated and non-infiltrated leaf areas, was observed in P. syringae pv. phaseolicola-infected plants as compared with corresponding values from controls and P. syringae pv. tomato-infected plants. No photoinhibitory damage was detected, as the maximum photosystem II quantum yield remained stable during the infection period analysed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号