首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
In the long germ insect Drosophila, all body segments are determined almost simultaneously at the blastoderm stage under the control of the anterior, the posterior, and the terminal genetic system . Most other arthropods (and similarly also vertebrates) develop more slowly as short germ embryos, where only the anterior body segments are specified early in embryogenesis. The body axis extends later by the sequential addition of new segments from the growth zone or the tail bud . The mechanisms that initiate or maintain the elongation of the body axis (axial growth) are poorly understood . We functionally analyzed the terminal system in the short germ insect Tribolium. Unexpectedly, Torso signaling is required for setting up or maintaining a functional growth zone and at the anterior for the extraembryonic serosa. Thus, as in Drosophila, fates at both poles of the blastoderm embryo depend on terminal genes, but different tissues are patterned in Tribolium. Short germ development as seen in Tribolium likely represents the ancestral mode of how the primary body axis is set up during embryogenesis. We therefore conclude that the ancient function of the terminal system mainly was to define a growth zone and that in phylogenetically derived insects like Drosophila, Torso signaling became restricted to the determination of terminal body structures.  相似文献   

5.
Specification and determination (commitment) of positional identities precedes overt pattern formation during development. In the limb bud, it is clear that the anteroposterior axis is specified at a very early stage and is prepatterned by the mutually antagonistic interaction between Gli3 and Hand2. There is also evidence that the proximodistal axis is specified early and determined progressively. Little is known about upstream regulators of these processes or how epigenetic modifiers influence axis formation. Using conditional mutagenesis at different time points, we show that the histone methyltransferase Ezh2 is an upstream regulator of anteroposterior prepattern at an early stage. Mutants exhibit posteriorised limb bud identity. During later limb bud stages, Ezh2 is essential for cell survival and proximodistal segment elongation. Ezh2 maintains the late phase of Hox gene expression and cell transposition experiments suggest that it regulates the plasticity with which cells respond to instructive positional cues.  相似文献   

6.
7.
Mouse Cdx and Hox genes presumably evolved from genes on a common ancestor cluster involved in anteroposterior patterning. Drosophila caudal (cad) is involved in specifying the posterior end of the early embryo, and is essential for patterning tissues derived from the most caudal segment, the analia. Two of the three mouse Cdx paralogues, Cdx 1 and Cdx2, are expressed early in a Hox-like manner in the three germ layers. In the nascent paraxial mesoderm, both genes are expressed in cells contributing first to the most rostral, and then to progressively more caudal parts of the vertebral column. Later, expression regresses from the anterior sclerotomes, and is only maintained for Cdx1 in the dorsal part of the somites, and for both genes in the tail bud. Cdx1 null mutants show anterior homeosis of upper cervical and thoracic vertebrae. Cdx2-null embryos die before gastrulation, and Cdx2 heterozygotes display anterior transformations of lower cervical and thoracic vertebrae. We have analysed the genetic interactions between Cdx1 and Cdx2 in compound mutants. Combining mutant alleles for both genes gives rise to anterior homeotic transformations along a more extensive length of the vertebral column than do single mutations. The most severely affected Cdx1 null/Cdx2 heterozygous mice display a posterior shift of their cranio-cervical, cervico-thoracic, thoraco-lumbar, lumbo-sacral and sacro-caudal transitions. The effects of the mutations in Cdx1 and Cdx2 were co-operative in severity, and a more extensive posterior shift of the expression of three Hox genes was observed in double mutants. The alteration in Hox expression boundaries occurred early. We conclude that both Cdx genes cooperate at early stages in instructing the vertebral progenitors all along the axis, at least in part by setting the rostral expression boundaries of Hox genes. In addition, Cdx mutants transiently exhibit alterations in the extent of Hox expression domains in the spinal cord, reminding of the strong effects of overexpressing Cdx genes on Hox gene expression in the neurectoderm. Phenotypical alterations in the peripheral nervous system were observed at mid-gestation stages. Strikingly, the altered phenotype at caudal levels included a posterior truncation of the tail, mildly affecting Cdx2 heterozygotes, but more severely affecting Cdx1/Cdx2 double heterozygotes and Cdx1 null/Cdx2 heterozygotes. Mutations in Cdx1 and Cdx2 therefore also interfere with axis elongation in a cooperative way. The function of Cdx genes in morphogenetic processes during gastrulation and tail bud extension, and their relationship with the Hox genes are discussed in the light of available data in Amphioxus, C. elegans, Drosophila and mice.  相似文献   

8.
9.
The zebrafish has become an ideal vertebrate animal system for investigating cardiac development due to its genetic tractability, external fertilization, early optical clarity and ability to survive without a functional cardiovascular system during development. In particular, recent advances in imaging techniques and the creation of zebrafish transgenics now permit the in vivo analysis of the dynamic cellular events that transpire during cardiac morphogenesis. As a result, the combination of these salient features provides detailed insight as to how specific genes may influence cardiac development at the cellular level. In this review, we will highlight how the zebrafish has been utilized to elucidate not only the underlying mechanisms of cardiac development and human congenital heart diseases (CHDs), but also potential pathways that may modulate cardiac regeneration. Thus, we have organized this review based on the major categories of CHDs-structural heart, functional heart, and vascular/great vessel defects, and will conclude with how the zebrafish may be further used to contribute to our understanding of specific human CHDs in the future.  相似文献   

10.

Background  

Norrin is a potent Wnt pathway ligand. Aberrant activation of this signaling pathway can result in colon tumors but the role of norrin-based signaling in the genesis of colon cancer, and its relationship to activation of the pathway by traditional Wnt ligands, is not defined.  相似文献   

11.
Regulation of Wnt signaling is essential for embryonic patterning. Sfrps are secreted Wnt antagonists that directly interact with the Wnt ligand to inhibit signaling. Here, we show that Sfrp1 and Sfrp2 are required for anteroposterior (AP) axis elongation and somitogenesis in the thoracic region during mouse embryogenesis. Double homozygous mutations in Sfrp1 and Sfrp2 lead to severe shortening of the thoracic region. By contrast, a homozygous mutation in one or the other exerts no effect on embryogenesis, indicating that Sfrp1 and Sfrp2 are functionally redundant. The defect of a shortened thoracic region appears to be the consequence of AP axis reduction and incomplete somite segmentation. The reduction in the AP axis is partially due to abnormalities in cell migration of pre-somitic mesoderm from the end of gastrulation. Aberrant somite segmentation is associated with altered oscillations of Notch signaling, as evidenced by abnormal Lfng and Hes7 expression during somitogenesis in the thoracic region. This study suggests that Wnt regulation by Sfrp1 and Sfrp2 is required for embryonic patterning.  相似文献   

12.
Chordin is the prototype of a group of cysteine-rich domain-containing proteins that bind and modulate signaling of various TGFβ-like ligands. Chordin-like 1 and 2 (CHL1 and 2) are two members of this group that have been described in human, mouse, and chick. However, in vivo roles for CHL1 and 2 in early development are unknown due to lack of loss-of-function analysis. Here we identify and characterize zebrafish, Danio rerio, CHL (Chl). The chl gene is on a region of chromosome 21 syntenic with the area of murine chromosome 7 bearing the CHL2 gene. Inability to identify a separate zebrafish gene corresponding to the mammalian CHL1 gene suggests that Chl may serve roles in zebrafish distributed between CHL1 and CHL2 in other species. Chl is a maternal factor that is also zygotically expressed later in development and has spatiotemporal expression patterns that differ from but overlap those of zebrafish chordin (Chd), suggesting differences but also possible overlap in developmental roles of the two proteins. Chl, like Chd, dorsalizes embryos upon overexpression and is cleaved by BMP1, which antagonizes this activity. Loss-of-function experiments demonstrate that Chl serves as a BMP antagonist with functions that overlap and are redundant with those of Chd in forming the dorsoventral axis.  相似文献   

13.
Background

Dysfunction of the gastrointestinal tract (GIT) is one of the most common non-motor symptom of Parkinson’s Disease (PD). Pathological processes causing PD were suggested to initiate in the enteric nervous system (ENS) and proceed to the central nervous system (CNS). There are studies showing that low-carbohydrate ketogenic diets can improve motor symptoms of PD. Caprylic acid (C8) is the principal fatty acid component of the medium-chain triglycerides in the ketogenic diets. In this study, we aimed to evaluate the effects of caprylic acid, in neurotoxin exposed zebrafish focusing on the relationship between intestinal and brain oxidative stress and inflammation.

Methods

Adult zebrafish were exposed to rotenone (5 μg/L) (R group) and caprylic acid (20 and 60 mg/mL) (L?+?HDCA and R?+?HDCA groups) for 30 days. At the end of 30 days locomotor activities were determined. Levels of lipid peroxidation (LPO), nitric oxide, glutathione and superoxide dismutase and glutathione S-transferase activities were determined by spectrophotometric methods and gene expressions of tnf?, il1, il6, il21, ifn? and bdnf were evaluated by RT-PCR in the brain and intestinal tissues of zebrafish.

Results

Caprylic acid ameliorated LPO, NO, SOD and the expressions of tnf?, il1, il6, il21, ifn? and bdnf in brain and intestines. Locomotor activities were only ameliorated in high dose R?+?HDCA group.

Conclusions

Caprylic acid ameliorated the neurotoxin-induced oxidative stress and inflammation both in the brain and intestines and enhanced locomotor activity in zebrafish.

Graphical abstract
  相似文献   

14.
15.
Employing an integrative approach to investigate the evolution of morphology can yield novel perspectives not attainable from a single field of study. Studies of limb loss and body elongation in squamates (snakes and lizards) present a good example in which integrating studies of systematics and ecology with genetics and development can provide considerable new insight. In this comment we address several misunderstandings of the developmental genetic literature presented in a paper by Wiens and Slingluff (2001) to counter their criticism of previous work in these disciplines and to clarify the apparently contradictory data from different fields of study. Specifically, we comment on (1) the developmental mechanisms underlying axial regionalization, body elongation, and limb loss; (2) the utility of presacral vertebral counts versus more specific partitioning of the primary body axis; (3) the independent, modular nature of limbs and limb girdles and their utility in diagnosing genetic changes in development; and (4) the causal bases of hind limb reduction in ophidian and nonophidian squamates.  相似文献   

16.
Wnts are secreted signaling molecules implicated in a large number of developmental processes. Frizzled proteins have been identified as likely receptors for Wnt ligands in vertebrates and invertebrates. To assess the endogenous role of frizzled proteins during the development of Xenopus laevis, we have identified several frizzled homologs. Here we report the cloning and expression of Xenopus frizzled-2 (xfz2). Xfz2 shows high sequence homology to rat and human frizzleds-2. It is expressed in the developing embryo from late gastrula stages onward. Xfz2 has a wide domain of expression but is concentrated in the eye anlage, otic vesicle, and developing somites.  相似文献   

17.
We studied the effect of elevated boron (B) concentrations on the growth and development of Arabidopsis thaliana in vitro with respect to different light conditions. Two basic responses were observed. At high concentrations (above 5 mM) a clear toxicity effect of B on plant growth was apparent. Seedlings were short, stunted and pale. However at concentrations between 1 and 3 mM H3BO3, hypocotyl elongation was stimulated in all Arabidopsis ecotypes tested relative to plants grown at 0.1 mM H3BO3. The stimulation of hypocotyl elongation by elevated B was proportionally greater with increasing irradiance. We also showed that blue light (BL) and red light (RL) did not alter the sensitivity of Arabidopsis hypocotyls to boron, but, dependent on genotype, BL and RL increased or reduced capacity of boron-induced hypocotyl elongation. Analysis of photomorphogenic mutants indicated the existence of an interaction between boron and light signalling pathways during plant growth and development. This interaction was supported by the observation that the expression of the BOR1 gene in Arabidopsis hypocotyls was stimulated by BL and RL. Our results suggest that in etiolated or light-grown seedlings the stimulation of hypocotyl growth by boron can be mediated by cryptochromes and phytochromes.  相似文献   

18.
PD Ross  L Polson  MH Grosbras 《PloS one》2012,7(9):e44815
To date, research on the development of emotion recognition has been dominated by studies on facial expression interpretation; very little is known about children's ability to recognize affective meaning from body movements. In the present study, we acquired simultaneous video and motion capture recordings of two actors portraying four basic emotions (Happiness Sadness, Fear and Anger). One hundred and seven primary and secondary school children (aged 4-17) and 14 adult volunteers participated in the study. Each participant viewed the full-light and point-light video clips and was asked to make a forced-choice as to which emotion was being portrayed. As a group, children performed worse than adults for both point-light and full-light conditions. Linear regression showed that both age and lighting condition were significant predictors of performance in children. Using piecewise regression, we found that a bilinear model with a steep improvement in performance until 8.5 years of age, followed by a much slower improvement rate through late childhood and adolescence best explained the data. These findings confirm that, like for facial expression, adolescents' recognition of basic emotions from body language is not fully mature and seems to follow a non-linear development. This is in line with observations of non-linear developmental trajectories for different aspects of human stimuli processing (voices and faces), perhaps suggesting a shift from one perceptual or cognitive strategy to another during adolescence. These results have important implications to understanding the maturation of social cognition.  相似文献   

19.
1. The effect of elongation factor 2 (EF 2) and of adenosine diphosphate-ribosylated elongation factor 2 (ADP-ribosyl-EF 2) on the shift of endogenous peptidyl-tRNA from the A to the P site of rat liver ribosomes (measured by the peptidyl-puromycin reaction) and on the release of deacylated tRNA (measured by aminoacylation) was investigated. 2. Limiting amounts of EF2, pre-bound or added to ribosomes, catalyse the shift of peptidyl-tRNA in the presence of GPT; when the enzyme is added in substrate amounts GMP-P(CH2)P [guanosine (beta, gamma-methylene)triphosphate] can partially replace GTP. ADP-ribosyl-EF 2 has no effect on the shift of peptidyl-tRNA when present in catalytic amounts, but becomes almost as effective as EF 2 when added in substrate amounts together with GTP; GMP-P(CH2)P cannot replace GTP. 3. The release of deacylated tRNA is induced only by substrate amounts of added EF 2 and also occurs in the absence of guanine nucleotides. In this reaction ADP-ribosyl-EF 2 is only 25% as effective as EF 2 in the absence of added nucleotide, but becomes 60-80% as effective in the presence of GTP or GMP-P(CH2)P. 4.The results obtained on protein-synthesizing systems are consistent with the hypothesis that ADP-ribosyl-EF 2 can operate a single round of translocation followed by binding of aminoacyl-tRNA and peptide-bond formation. 5. From the data obtained with the native enzyme it is concluded that the two moments of translocation require different conditions of interaction of EF 2 with ribosomes; it is suggested that the shift of peptidyl-tRNA is catalysed by EF 2 pre-bound to ribosomes, and that the release of tRNA is induced by a second molecule of interacting EF 2. The hydrolysis of GTP would be required for the release of pre-bound EF 2 from ribosomes. 5. The inhibition of the utilization of limiting amounts of EF 2 on ADP-ribosylation is very likely the consequence of a concomitant decrease in the rate of association and dissociation of the enzyme from ribosomes.  相似文献   

20.
Regulation at the level of translation in eukaryotes is feasible because of the longer lifetime of eukaryotic mRNAs in the cell. The elongation stage of mRNA translation requires a substantial amount of energy and also eukaryotic elongation factors (eEFs). The important component of eEFs, i.e. eEF2 promotes the GTP-dependent translocation of the nascent protein chain from the A-site to the P-site of the ribosome. Mostly the eEF2 is regulated by phosphorylation and dephosphorylation by a specific kinase known as eEF2 kinase, which itself is up-regulated by various mechanisms in the eukaryotic cell. The activity of this kinase is dependent on calcium ions and calmodulin. Recently it has been shown that the activity of eEF2 kinase is regulated by MAP kinase signalling and mTOR signalling pathway. There are also various stimuli that control the peptide chain elongation in eukaryotic cell; some stimuli inhibit and some activate eEF2. These reports provide the mechanisms by which cells likely serve to slow down protein synthesis and conserve energy under nutrient deprived conditions via regulation of eEF2. The regulation via eEF2 has also been seen in mammary tissue of lactating cows, suggesting that eEF2 may be a limiting factor in milk protein synthesis. Regulation at this level provides the molecular understanding about the control of protein translocation reactions in eukaryotes, which is critical for numerous biological phenomenons. Further the elongation factors could be potential targets for regulation of protein synthesis like milk protein synthesis and hence probably its foreseeable application to synthetic biology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号