首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Media for induction of somatic embryogenesis from immature cotyledonary tissues ofAzadirachta indica (Neem) were determined. Callus was initiated on Murashige and Skoog medium supplemented with 0.5 mg·liter−1 of indol-3 acetic acid, 1.0 mg·liter−1 of 6-benzyl amino purine, and 1000 mg·liter−1 of casein hydrolysate. Effect of kinetin was also studied for embryo induction. Carbohydrate source in the form of sucrose and glucose alone and in combination was tested for embryogenic efficiency. Seventy percent embryos showed germination. Healthy plants were potted in sand and soil. Histologic studies confirmed indirect somatic embryogenesis.  相似文献   

2.
Summary Embryogenic callus was induced from explanted pinnae of newly emerged leaves of mature plants ofCeratozamia mexicana var. Robusta (Gymnospermae, Cycadales) on a modified B5 formulation with 1 mg·liter−1 kinetin and 1 mg·liter−1 2,4-dichlorophenoxyacetic acid. Proembryos developed on induction medium, but they were more numerous after subculture onto phytohormone-free medium, which also enabled suspensors to elongate. For nearly 1.5 yr after explanting, subsequent development of somatic embryos was not observed as suspensors dedifferentiated to form embryogenic callus on phytohormone-free medium. After this time, cotyledonary somatic embryos developed at the distal end of the suspensors. Somatic embryos have germinated on phytohormone-free medium. This is the first report of regeneration by somatic embryogenesis of a gymnosperm species from a mature tree. This technique has great potential for preservation of the highly endangered cycads.  相似文献   

3.
Experiments were carried out with three-year-old embryogenic suspension culture of Gentiana pannonica Scop. The initial explant for the suspension determinated both the embryogenic character and embryo production. Cultures were initiated by culture of hypocotyl, cotyledon and root explants on MS (Murashige and Skoog 1962) medium supplemented with 1.0 mg·l−1 Kinetin and 0.5 mg·l−1 2,4-D, later transferred and maintained in liquid MS medium with 1.0 mg·l−1 Dicamba, 0.1 mg·l−1 NAA, 2.0 mg·l−1 BAP and 80.0 mg·l−1 AS. Regeneration medium included 0.0–1.0 mg·l−1 GA3+0.0−2.0 mg·l−1 Kin.+0.0−160 mg·l−1 AS. In these culture conditions, the effect of the explant was found to be the most important factor. The curve of growth, growth coefficient and % of participation of various size aggregates differed in the studied suspensions. Flow cytometry revealed various DNA content in nuclei from praembryogenic mass depending on the explant origin. To complete embryogenesis the medium was changed from liquid to solidified in the presence of the same plant growth regulators combination required. The most embryogenic culture appeared hypocotyl-derived and it yielded the highest number of somatic embryos. The suspension culture originating from root proliferated the highest number of embryogenic cell clusters but did not produce embryos for fraction 120–450 μm. One hundred mg of suspension of the fraction that was larger than 450 μm yielded 309, 175, 123 embryos for the following suspensions: root-, cotyledon-, hypocotyl-derived, respectively. Almost 50 % of non-deformed fully developed embryos from all studied suspensions passed conversion into germling stage and finally plants were regenerated.  相似文献   

4.
Direct somatic embryogenesis from axes of mature peanut embryos   总被引:2,自引:0,他引:2  
Summary Plant regeneration via somatic embryogenesis was obtained in peanut (Arachis hypogaea L.) from axes of mature zygotic embryos. The area of greatest embryogenic activity was a 2-mm region adjacent to and encircling the epicotyl. Somatic embryogenesis was evaluated on Murashige and Skoog media supplemented with a variety of auxin treatments. Maximum production occurred on medium supplemented with 3 mg · liter−1 4-amino-3,5,6-trichloropicolinic acid. Explant cultures were transferred to half-strength medium supplemented with 1 mg · liter−1 gibberellic acid for somatic embryo germination and early plantlet growth. Plantlets, transferred to soil, were placed in a greenhouse and grown to maturity.  相似文献   

5.
An efficient somatic embryogenesis system has been established in Catharanthus roseus (L.) G. Don in which primary and secondary embryogenic calluses were developed from hypocotyls and primary cotyledonary somatic embryos (PCSEs), respectively. Two types of calluses were different in morphology and growth behaviour. Hypocotyl-derived embryogenic callus (HEC) was friable and fast-growing, while secondary callus derived from PCSE was compact and slow-growing. HEC differentiated into somatic embryos which proliferated quickly on medium supplemented with NAA (1.0 mg l−1) and BA (1.5 mg l−1). Although differentiation and proliferation of somatic embryos were faster in primary HEC, maturation and germination efficiency were better in somatic embryos developed from primary cotyledonary somatic embryo-derived secondary embryogenic callus (PCSEC). At the biochemical level, two somatic embryogenesis systems were different. Both primary and secondary/adventive somatic embryogenesis and the role of plant growth regulators in two modes of somatic embryo formation have been discussed.  相似文献   

6.
Summary A protocol was developed for high frequency somatic embryogenesis and plant regeneration from cotyledon and hypocotyl explants of Eruca sativa. Explants grown on Murashige and Skoog (MS) medium supplemented with 4.52 μM 2,4-D formed embryogenic callus after 4 wk of culture. Secondary somatic embryos were also produced from primary somatic embryos on MS medium containing 0.56 μM 2,4-D. Somatic embryos developed into mature embryos on MS medium in the presence of 45 gl−1 polyethylene glycol. After desiccation, somatic embryos developed into plantlets by culturing the mature somatic embryos on 1/2 x MS medium containing 0.24 μM indole-3-butyric acid.  相似文献   

7.
We describe culture conditions for a high-efficiency in vitro regeneration system of Papaver nudicaule through somatic embryogenesis and secondary somatic embryogenesis. The embryogenic callus induction rate was highest when petiole explants were cultured on Murashige and Skoog (MS) medium containing 1.0 mg l−1 α-naphthaleneacetic acid (NAA) and 0.1 mg l−1 6-benzyladenine (BA) (36.7%). When transferred to plant growth regulator (PGR)-free medium, 430 somatic embryos formed asynchronously from 90 mg of embryogenic callus in each 100-ml flask. Early-stage somatic embryos were transferred to MS medium containing 1.0 mg l−1 BA and 1.0 mg l−1 NAA to germinate at high frequency (97.6%). One-third-strength MS medium with 1.0% sucrose and 1.0 mg l−1 GA3 had the highest frequency of plantlet conversion from somatic embryos (91.2%). Over 90% of regenerated plantlets were successfully acclimated in the greenhouse. Secondary somatic embryos were frequently induced directly when the excised hypocotyls of the primary somatic embryos were cultured on MS medium without PGRs. Sucrose concentration significantly affected the induction of secondary embryos. The highest induction rate (89.5) and number of secondary somatic embryos per explant (9.3) were obtained by 1% sucrose. Most secondary embryos (87.2–94.3%) developed into the cotyledonary stage on induction medium. All cotyledonary secondary embryos were converted into plantlets both in liquid and on semisolid 1/3-strength MS medium with 1.0% sucrose.  相似文献   

8.
Summary Despite high commercial interest, the success of biotechnological applications in cotton (Gossypium hirsutum) has been limited due to difficulties in genetic transformation. Major problems have been genotype dependence and low frequency of somatic embryogenesis, making it difficult to regenerate plants from transgenic tissue. This study reports an increase in somatic embryogenesis efficiency and the induction of developmental synchrony in embryogenic callus cultures of cotton by a single cycle of myo-inositol depletion in liquid culture. Calluses were initiated on hypocotyl or cotyledon explants of cultivar Coker 312 by culturing these explants on callus-inducing solid medium [Murashige and Skoog salts plus vitamins of Gamborg's B5 medium, 30 g l−1 glucose, 100 mg l−1 myo-inositol, 2.2 μM 2,4-dichlorophenoxyacetic acid, and 0.88 μM 6-benzyladenine]. The calluses were transferred to an identical liquid basal medium devoid of plant growth regulators. This induced the development of embryogenic cells. Friable clumps of cells formed after 20 d in the medium were selectively collected over filter mesh 40 subjected to one cycle of myo-inositol starvation. This induced a highly synchronized embryogenesis in the culture. The optimized protocol gave 100% embryos at the globular stage, out of which more than 80% developed into bipolar torpedo-stage embryos. About 68% of these were converted to plantlets by subculturing onto a simplified solid medium, and finally grown into healthy, fertile plants.  相似文献   

9.
Summary Structure and ultrastructure changes that occurred during tissue culture of upper explants of hypocotyl (adjacent to cotyledons) of 10-d-old seedlings of Gentiana cruciata were studied. The explants were cultured on Murashige and Skoog induction medium supplemented with 1.0 mg l−1 dicamba +0.1 mg l−1 naphthaleneacetic acid +2.0 mg l−1 benzyladenine +80.0 mg l−1 adenine sulfate. The initial response of the explant and callus formation were ultrastructurally analyzed during the first 11 d of culture. After 6–8 wk, various methods were employed to collect evidence of indirect somatic embryogenesis. After 48 h of culture, the earliest cell response was cell division of epidermis and primary cortex. There were numerous disturbances of karyo- and cytokinesis, leading to formation of multinuclear cells. With time, the divisions ceased, and cortex cells underwent strong expansion, vacuolization and degradation. About the 6th day of culture, callus tissue proliferated and the initial divisions of vascular cylinder cells were observed. Their division appeared normal. Cells originating from that tissue were small, weakly vacuolated, with dense cytoplasm containing active-looking cell organelles. Numerous divisions occurred in the vascular cylinder, which led to its expansion and the formation of embryogenic callus tissue. During the 6–8th wk of culture, in the proximal end of the explant, masses of somatic embryos were formed from outer parts of intensively proliferating tissue.  相似文献   

10.
In order to develop a more efficient genetic transformation system for cacao somatic embryos, the effects of polyamines and β-lactam antibiotics on somatic embryogenesis, hygromycin as selective agent, and different factors affecting uidA gene transfer have been evaluated. The polyamines putrescine, spermidine, and spermine significantly improved secondary somatic embryogenesis in cacao. Spermine at 1,000 μM provided the best responses, increasing 6.7× the percentage of embryogenic callus and 2.5× the average number of embryos per embryogenic callus. The β-lactam antibiotics timentin and meropenem, used for Agrobacterium tumefaciens counter-selection, had a non-detrimental effect on secondary somatic embryogenesis, depending on their concentration, whereas the commonly used β-lactam cefotaxime inhibited it, irrespective of the tested concentration. Hygromycin showed a strong inhibitory effect on secondary somatic embryogenesis of cacao, impairing completely the embryo production at 20 mg l−1. Following the criterion of GUS activity, the best conditions for T-DNA transfer into cotyledon explants from primary somatic embryos of cacao were a sonication of the explants for 100 s, a 20-min incubation period in Agrobacterium solution, an Agrobacterium concentration of 1.0 (OD600), and cocultivation of the explants on tobacco feeder layers. These findings will have important implications for studies on functional genomics of cacao.  相似文献   

11.
In the present study an efficient somatic embryogenesis method has been developed in Catharanthus roseus. Friable embryogenic callus was induced from hypocotyl of in vitro germinated seeds on Murashige and Skoog basal nutrient media supplemented with various auxins particularly 2,4-D (1.0 mg l−1). However, only NAA (1.0 mg l−1) produced somatic embryos in cultures. Embryo proliferation was even high on the same medium added with BAP. Cotyledonary somatic embryo germinated and converted into plantlets in BAP (0.5 mg l−1) added medium following a treatment with gibberellic acid (1.0 mg l−1) for maturation. Carbon sources and concentrations had a marked influence on maturation process. Plantlet conversion was better achieved when embryos were matured on 3% fructose or 3–6% maltose. The result discussed in this paper indicates that somatic embryos were produced in numbers and converted plantlets can be used as raw material, genetic modification to embryo precursor cell may improve alkaloid yield further.  相似文献   

12.
The factors affecting the induction and development of somatic embryos and plantlet acclimatization of peach palm (Bactris gasipaes Kunth) were evaluated to establish an efficient regenerative protocol based on somatic embryogenesis. Mature zygotic embryos were cultured in Murashige and Skoog (MS) medium supplemented with 0–40 μM of picloram (4-amino-3,5,6-trichloropicolinic acid) and 0 or 5 μM of 2-isopentyladenine (6-dimethylaminopurine) (2-iP). After 5 mo. in culture embryogenic callus arose from primary calli. Picloram (10 μM) was effective in inducing embryogenic calli in 9.8% of the explants. The use of 1 μM of AgNO3 enhanced embryogenic competence. Embryogenic calli showed an organized structure, a globular aspect, and were white to yellowish in color. Histological analyses showed that cell proliferation arose from subepidermal cells adjacent to vascular bundles, resulting in primary callus formed by a meristematic zone from which somatic embryos arose. Protein profile analyses revealed two high molecular mass bands in these embryogenic calli, but not in other tissues. Embryogenic calli were transferred to a culture medium containing 40 μM of 2,4-dichlorophenoxyacetic acid, 10 μM of 2-iP, plus 1 g l−1 of glutamine, hydrolyzed 0.5 g l−1 casein, and activated 1.5 g l−1 of charcoal. Morphogenetic responses achieved in this medium were the development of somatic embryos, rooting, and loss of embryogenic capacity. Somatic embryos were converted to plantlets on MS medium plus 24.6 μM of 2-iP and 0.44 μM of naphthalene acetic acid. Plantlets were maintained in MS medium with activated charcoal (1.5 g l−1) until they were 6 cm tall, and then acclimatized. After 16 wk, 84.2 ± 6.4% survival was observed. M. P. Guerra and C. R. Clement are Fellows of the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brasília, DF.  相似文献   

13.
Summary A characteristic phenotype of highly embryogenic explants along with the location of embryogenesis- and transformation-competent cells/tissues on immature cotyledons of soybean [Glycine max (L.) Merrill.] under hygromycin selection was identified. This highly embryogenic immature cotyledon was characterized with emergence of somatic embryos and incidence of browning/necrotic tissues along the margins and collapsed tissues in the mid-region of an explant incubated upwards on the selection medium. The influences of various parameters on induction of somatic embryogenesis on immature cotyledons following Agrobacterium tumefaciens-mediated transformation and selection were investigated. Using cotyledon explants derived from immature embryos of 5–8 mm in length, a 1∶1 (v/v; bacterial cells to liquid D40 medium) concentration of bacterial suspension and 4-wk cocultivation period significantly increased the frequency of transgenic somatic embryos. Whereas, increasing the infection period of explants or subjecting explants to either wounding or acetosyringone treatments did not increase the frequency of transformation. An optimal selection regime was identified when inoculated immature cotyledons were incubated on either 10 or 25 mgl−1 hygromycin for a 2-wk period, and then maintained on selection media containing 25 mgl−1 hygromycin in subsequent selection periods. However, somatic embryogenesis was completely inhibited when inoculated immature cotyledons were incubated on a kanamycin selection medium. These findings clearly demonstrated that the tissue culture protocols for transformation of soybean should be established under both Agrobacterium and selection conditions.  相似文献   

14.
Embryogenic cultures were induced from immature avocado zygotic embryos representing different botanical races and complex hybrids. The optimum induction medium consisted of B5 major salts, MS minor salts, 0.4 mg l−1 thiamine HCl, 100 mg l−1 myo-inositol, 30 g l−1 sucrose, 0.41 μM picloram and 8 g l−1 TC agar. Somatic embryogenesis occurred directly from the explants on induction medium, and secondary embryos and proembryonic masses proliferated in liquid and on semisolid maintenance medium. Embryogenic culture maintainance was optimized in liquid, filter-sterilized MS medium, supplemented with 30–50 mg l−1 sucrose, 4 mg l−1 thiamine HCl and 0.41 μM picloram. Two types of embryogenic cultures were recognized: –genotypes that proliferated as proembryonic masses in the presence of auxin (PEM-type) and; –genotypes in which the heart stage and later stages of somatic embryos developed in the presence of auxin(SE-type). Embryogenic suspension cultures became increasingly disorganized over time, and this was associated with progressive loss of embryogenic potential. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

15.
Secondary somatic embryogenesis of cassava on picloram supplemented media   总被引:2,自引:0,他引:2  
The object of this study was to evaluate different strategies for the production of secondary somatic embryos of cassava on picloram-supplemented media. Embryogenically competent calli maintained on double-strength Murashige and Skoog (1962) (MS) medium supplemented with 1 mg l−1 picloram were used as starting material. Secondary embryogenesis from this callus was tested using various basal salt media in either the solid or the liquid state and containing two different concentrations of picloram. Some of the factors effecting the conversion of the embryos into plantlets were also studied. A liquid Schenck and Hildebrand (1972) medium containing 60 g l−1 sucrose and 12 mg l−1 picloram favoured the continual production of a highly embryogenic nodular callus. The normal development of somatic embryos from this tissue was dependant on the use of a picloram-free MS basal salt medium. The embryos were desiccated over a saturated salt solution of K2SO4 (RH 97.5% at 25 °C) and allowed to develop into plantlets on a MS medium containing 0.1 mg l−1 BA. This procedure allowed for the normal elongation of the embryonic hypocotyl and formation of vigorous and viable shoots and roots. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

16.
Nishiwaki M  Fujino K  Koda Y  Masuda K  Kikuta Y 《Planta》2000,211(5):756-759
Seedlings of carrot (Daucus carota L. cv. Red Cored Chantenay) formed somatic embryos when cultured on medium containing abscisic acid (ABA) as the sole source of growth regulator. The number of embryos per number of seedlings changed depending on the concentration of ABA added to the medium, with a maximum embryo number at 1 × 10−4 M ABA. Seedling age was critical for response to exogenous ABA; no seedling with a hypocotyl longer than 3.0 cm was able to form an embryo. Removal of shoot apices from seedlings completely inhibited the embryogenesis induced by application of exogenous ABA, suggesting that the action of ABA requires some substance(s) that is translocated basipetally from shoot apices through hypocotyls. Histologically, somatic embryos shared common epidermal cells and differentiated not through the formation of embryogenic cell clumps, but directly from epidermal cells. These morphological traits are distinct from those of embryogenesis via formation of embryogenic cell clumps, which has been found in embryogenic carrot cultures established using 2,4-dichlorophenoxyacetic acid or other auxins. These results suggest that ABA acts as a signal substance in stress-induced carrot seedling somatic embryogenesis. Received: 22 April 2000 / Accepted: 8 June 2000  相似文献   

17.
An efficient protocol for secondary somatic embryogenesis in camphor tree is reported. Secondary somatic embryos (SSEs), initially obtained from the primary embryos of a nascent embryogenic culture in 2002, were proliferated and maintained for more than 4 yr via cyclic secondary somatic embryogenesis. Throughout this period, the embryo populations retained a high level of competence for plant regeneration. SSEs were produced on the surfaces of the cotyledons and radicular ends of maternal somatic embryos (MSEs). Histological observations of the various stages of secondary embryo development revealed four typical stages, namely, globular, heart-shaped, torpedo, and cotyledonary. The process of secondary embryogenesis continued in a cyclic way, with each newly formed embryo producing a subsequent generation of secondary embryos. In order to progress developmentally beyond proliferation cycles, cotyledonary embryos from one of embryogenic lines (L14) were cultured on Murashige and Skoog (MS) medium with 0.1–3.0 mg l−1 abscisic acid (ABA) or 0.05–1.0 mg l−1 thidiazuron (TDZ) in darkness for 2 mo to achieve maturation. Matured embryos were then transferred to MS-based germination medium containing either 0.1 mg l−1 TDZ, 0.2 mg l−1 indole-3-butyric acid (IBA), and 0.5 mg l−1 6-benzylaminopurine (BA) or 0.1 mg l−1 TDZ and 0.2 mg l−1 IBA and were cultured in light for germination. Over 50% of embryos matured in the presence of 0.5 mg l−1 ABA were able to germinate with shoots and poor root system. Frequencies of embryos germinating normal shoots among different genotypes did not change significantly. A total of 93% of the shoots from the germinated embryos converted to plantlets on half strength MS medium with 0.5 mg l−1 IBA by 3 wk. Plantlets acclimatized successfully to ex vitro conditions and developed as field-grown plants with normal appearance.  相似文献   

18.
橡胶树的花药愈伤组织在长期继代过程中,胚性易下降甚至丧失;而AgNO3作为乙烯活性抑制剂,被广泛应用于植物组织培养中.该研究以继代培养4 a以上的热研7-33-97花药愈伤组织为材料,在继代培养基中添加2.5 mg·L-1 AgNO3预培养35 d后,观察预培养前后愈伤组织表形及其细胞形态的变化,并设计不同浓度AgNO3及不同处理时间对其进行体胚诱导,90 d后分别统计胚状体总数和正常胚数.结果表明:浅黄色质地柔软的愈伤组织在含AgNO3的培养基上预培养后能转变成鲜黄色易碎愈伤组织,在倒置显微镜下前者大多表现为不规则多边形,细胞内含物较稀薄;而后者则呈圆形或椭圆形,细胞内含物丰富,属于典型的胚性细胞.在体胚诱导的第1个月添加5 mg·L-1 AgNO3能显著促进体胚的发生,AgNO3浓度升至10 mg·L-1时体胚发生受到抑制,且畸形胚的形成率显著增加;在含5 mg·L-1 AgNO3的培养基中培养2个月以上,体胚发育明显受阻,大部分形成畸形胚.该研究结果在一定程度上恢复了橡胶树长期继代花药愈伤组织的胚性能力,并提高了其体胚发生频率,为橡胶树花药胚性愈伤组织长期继代培养过程中胚性的保持提供了参考.  相似文献   

19.
A system for rapid plant regeneration through somatic embryogenesis from shoot tip explants of sorghum [Sorghum bicolor (L.) Moench] is described. Somatic embryogenesis was observed after incubation of explants in dark for 6–7 weeks through a friable embryogenic callus phase. Linsmaier and Skoog medium supplemented with 2,4-dichlorophenoxyacetic acid (2 mg l−1) and kinetin (0.1 mg l −1) was used for induction of friable embryogenic calli and somatic embryos. Germination of somatic embryos was achieved about 5 weeks after transfer onto Murashige and Skoog (MS) medium supplemented with 6-benzylaminopurine (2 mg l−1) and indole-3-acetic acid (0.5 mg l −1) under light. Seeds from in vitro-regenerated plants produced a normal crop in a field trial, and were comparable to the crop grown with the seeds of the mother plant used to initiate tissue culture. The simplicity of the protocol and possible advantages of the system for transformation over other protocols using different explants are discussed. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
We have tested plantlet formation by somatic embryogenesis using immature seeds of Magnolia obovata. Seed collection date appeared to be critical for embryogenic cell induction. The optimal collection date was 3–4 weeks postanthesis. The embryogenic cells proliferated, formed somatic embryos, and were subsequently converted into normal plantlets under optimized culture conditions. Somatic embryo formation from the embryogenic calli was better on sucrose medium than on glucose medium. The optimum level of sucrose appeared to be 3% with an average of 28 somatic embryos per plate. About 25% of somatic embryos were converted into normal plantlets in 1/2 MS medium containing gibberellic acid (GA3). During somatic embryo germination, secondary embryogenesis was frequently observed in the lower part of the hypocotyl or radicle ends of germinating somatic embryos. Finally, about 85% of converted plantlets survived in an artificial soil mixture, were transferred to a nursery, and have grown normally.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号