首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Addition of millimolar sodium glyoxylate to spinach (Spinacia oleracea) chloroplasts was inhibitory to photosynthetic incorporation of 14CO2 under conditions of both low (0.2 millimolar or air levels) and high (9 millimolar) CO2 concentrations. Incorporation of 14C into most metabolites decreased. Labeling of 6-P-gluconate and fructose-1,6-bis-P increased. This suggested that glyoxylate inhibited photosynthetic carbon metabolism indirectly by decreasing the reducing potential of chloroplasts through reduction of glyoxylate to glycolate. This hypothesis was supported by measuring the reduction of [14C]glyoxylate by chloroplasts. Incubation of isolated mesophyll cells with glyoxylate had no effect on net photosynthetic CO2 uptake, but increased labeling was observed in 6-P-gluconate, a key indicator of decreased reducing potential. The possibility that glyoxylate was affecting photosynthetic metabolism by decreasing chloroplast pH cannot be excluded. Increased 14C-labeling of ribulose-1,5-bis-P and decreased 3-P-glyceric acid and glycolate labeling upon addition of glyoxylate to chloroplasts suggested that ribulose-bis-P carboxylase and oxygenase might be inhibited either indirectly or directly by glyoxylate. Glyoxylate addition decreased 14CO2 labeling into glycolate and glycine by isolated mesophyll cells but had no effect on net 14CO2 fixation. Glutamate had little effect on net photosynthetic metabolism in chloroplast preparations but did increase 14CO2 incorporation by 15% in isolated mesophyll cells under air levels of CO2.  相似文献   

2.
We present evidence strongly suggesting that a proton gradient (acid inside) is used to drive an electroneutral, substrate-specific, K+/H+ antiport in both tonoplast and plasma membrane-enriched vesicles obtained from oilseed rape (Brassica napus) hypocotyls. Proton fluxes into and out of the vesicles were monitored both by following the quenching and restoration of quinacrine fluorescence (indicating a transmembrane pH gradient) and of oxonol V fluorescence (indicating membrane potential.) Supply of K+ (with Cl or SCN) after a pH gradient had been established across the vesicle membrane by provision of ATP to the H+-ATPase dissipated the transmembrane pH gradient but did not depolarize the positive membrane potential. Evidence that the K+/H+ exchange thus indicated could not be accounted for by mere electric coupling included the findings that, first, no positive potential was generated when KSCN or KCl was supplied, even in the absence of 100 millimolar Cl and, second, efflux of K+ from K+-loaded vesicles drives intravesicular accumulation of H+ against the electrochemical potential gradient. Neither was the exchange due to competition between K+ and quinacrine for membrane sites, nor to inhibition of the H+-ATPase. Thus, it is likely that it was effected by a membrane component. The exchanger utilized primarily K+ (at micromolar concentrations); Na+/H+ antiport was detected only at concentrations two orders of magnitude higher. Rb+, Li+, or Cs+ were ineffective. Dependence of tonoplast K+/H+ antiport on K+ concentration was complex, showing saturation at 10 millimolar K+ and inhibition by concentrations higher than 25 millimolar. Antiport activity was associated both with tonoplast-enriched membrane vesicles (where the proton pump was inhibited by more than 80% by 50 millimolar NO3 and showed no sensitivity to vanadate or oligomycin) and with plasma membrane-enriched fractions prepared by phase separation followed by separation on a sucrose gradient (where the proton pump was vanadate and diethylstilbestrol-sensitive but showed no sensitivity to NO3 or oligomycin). The possible physiological role of such a K+/H+ exchange mechanism is discussed.  相似文献   

3.
Cells were isolated from spinach leaves on a large scale. Photosyntheticactivity and the effects of CO2, KCN, DNP and DCMU were examinedwith an oxygen electrode. The cells showed rapid response toCO2 and inhibitors in photosynthetic O2 evolution. (Received October 1, 1973; )  相似文献   

4.
The possibility of HCO3 transport into isolated leaf mesophyll cells of Asparagus sprengeri Regel has been investigated. Measurement of the inorganic carbon pool in these cells over an external pH range 6.2 to 8.0, using the silicone-fluid filtration technique, indicated that the pool was larger than predicted by passive 14CO2 distribution, suggesting that HCO3 as well as CO2 crosses the plasmalemma. Intracellular pH values, calculated from the distribution of 14CO2 between the cells and the medium, were found to be higher (except at pH 8.0) than those previously determined by 5,5-dimethyl[2-14C]oxazolidine-2,4-dione distribution. It is suggested that the inorganic carbon accumulated above predicted concentrations may be bound to proteins and membranes and thus may not represent inorganic carbon actively accumulated by the cells, inasmuch as in a closed system at constant CO2 concentration, the photosynthetic rates at pH 7.0 and 8.0 were 5 to 8 times lower than the maximum rate which could be supported by CO2 arising from the spontaneous dehydration of HCO3. Furthermore, CO2 compensation points of the cells in liquid media at 21% O2 at pH 7.0 and 8.0, and the K½ CO2 (CO2 concentration supporting the half maximal rate of O2 evolution) at 2% O2 at pH 7.0 and 8.0 are not consistent with HCO3 transport. These results indicate that the principal inorganic carbon species crossing the plasmalemma in these cells is CO2.  相似文献   

5.
The G-protein activator mastoparan (MP) was found to elicit the hypersensitive response (HR) in isolated Asparagus sprengeri mesophyll cells at micromolar concentrations. The HR was characterized by cell death, extracellular alkalinization, and an oxidative burst, indicated by the reduction of molecular O2 to O2. To our knowledge, this study was the first to monitor photosynthesis during the HR. MP had rapid and dramatic effects on photosynthetic electron transport and excitation energy transfer as determined by variable chlorophyll a fluorescence measurements. A large increase in nonphotochemical quenching of chlorophyll a fluorescence accompanied the initial stages of the oxidative burst. The minimal level of fluorescence was also quenched, which suggests the origin of this nonphotochemical quenching to be a decrease in the antenna size of photosystem II. In contrast, photochemical quenching of fluorescence decreased dramatically during the latter stages of the oxidative burst, indicating a somewhat slower inhibition of photosystem II electron transport. The net consumption of O2 and the initial rate of O2 uptake, elicited by MP, were higher in the light than in the dark. These data indicate that light enhances the oxidative burst and suggest a complex relationship between photosynthesis and the HR.  相似文献   

6.
The pathway of 4-aminobutyric acid (GABA) production and efflux was investigated in suspensions of mesophyll cells isolated from asparagus (Asparagus sprengeri Regel) cladophylls. Analysis of free amino acids demonstrated that, on a molar basis, GABA represented 11.4, 19, and 6.5% of the xylem sap, intact cladophyll tissue, and isolated mesophyll cells, respectively. l-Glu, a GABA precursor, was abundant in intact cladophylls and isolated cells but not in xylem sap. When cells were incubated with l-[U-14C]Glu, intracellular GABA contained less than 10% of the radioactivity found in intracellular Glu. However, GABA in the medium contained 78% of the radioactivity found in extracellular l-Glu metabolites. Incubation with l-[1-14C]Glu resulted in the appearance of unlabeled GABA, demonstrating its production through decarboxylation at carbon 1. GABA released to the medium from cells incubated with l-[U-14C]Glu had a specific activity of 18 nanocuries per nanomole, whereas GABA remaining in the cell had a specific activity of 2.25 × 10−1 nanocuries per nanomole. In the presence of exogenous l-Glu, amino acid analysis and cell volume measurements indicated intracellular Ala and GABA concentrations of 4.2 and 1.4 millimolar, respectively. In the medium, however, the corresponding concentrations were 2 and 57 micromolar. The data indicate that l-Glu entering the cell is decarboxylated to GABA, and that specific and passive efflux is from this pool of recently synthesized GABA and not from a previously synthesized unlabeled pool of GABA.  相似文献   

7.
Potassium ferricyanide (K3Fe[CN]6) was added to aerated and stirred nonbuffered suspensions of mechanically isolated photosynthetically competent Asparagus sprengeri Regel mesophyll cells. Rates of Fe(CN)63− reduction and H+ efflux were measured with or without illumination. On the addition of 1 millimolar Fe(CN)63− to nonilluminated cell suspensions acidification of the medium indicated an H+ efflux of 1.54 nanomoles H+/106 cells per minute. Simultaneous Fe(CN)63− reduction occurred at a rate of 1.55 nanomoles Fe(CN)63−/106 cells per minute. Illumination stimulated these rates 14 to 17 times and corresponding values were 26.1 nanomoles H+/106 cells per minute and 22.9 nanomoles Fe(CN)63−/106 cells per minute. These two processes appeared to be tightly coupled and were rapidly inhibited when illuminated suspensions were transferred to darkness or treated with 1 micromolar 3-(3,4-dichlorophenyl)-1,1 dimethylurea. Addition of 0.1 millimolar diethylstilbestrol eliminated ATP dependent H+ efflux in illuminated or nonilluminated cells but had no influence on Fe(CN)63− dependent H+ efflux. Recent reports indicate that a transmembrane redox system spans the plasma membrane of root cells and is coupled to the efflux of H+. The present report extends these observations to photosynthetically competent mesophyll cells. The results indicate a transport process independent of ATP driven H+ efflux which operates with a H+/e stoichiometry of one.  相似文献   

8.
Mesophyll cells from leaves of cowpea (Vigna unquiculata [L.] Walp.) plants grown under saline conditions were isolated and used for the determination of photosynthetic CO2 fixation. Maximal CO2 fixation rate was obtained when the osmotic potential of both cell isolation and CO2 fixation assay media were close to leaf osmotic potential, yielding a zero turgor pressure. Hypotonic and hypertonic media decreased the rate of photosynthesis regardless of the salinity level during plant growth. No decrease in photosynthesis was obtained for NaCl concentrations up to 87 moles per cubic meter in the plant growing media and only a 30% decrease was found at 130 moles per cubic meter when the osmotic potential of cell isolation and CO2 fixation media were optimal. The inhibition was reversible when stress was relieved. At 173 moles per cubic meter NaCl, photosynthesis was severely and irreversibly inhibited. This inhibition was attributed to toxic effects caused by high Cl and Na+ accumulation in the leaves. Uptake of sorbitol by intact cells was insignificant, and therefore not associated with cell volume changes. The light response curve of cells from low salinity grown plants was similar to the controls. Cells from plants grown at 173 moles per cubic meter NaCl were light saturated at a lower radiant flux density than were cells from lower salinity levels.  相似文献   

9.
During germination and early growth of the castor-bean (Ricinus communis L.), protein in the endosperm is hydrolyzed and the amino acids are transferred into the cotyledons and then via the translocation stream to the axis of the growing seedling. The cotyledons retain the ability to absorb amino acids after removal of the endosperm and hypocotyl, exhibiting rates of transport up to 70 mol g-1 h-1. The transport of L-glutamine was not altered by KCl or NaCl in low concentrations (0–20 mM). High concentrations of KCl (100 mM) inhibited transport, presumably by decreasing the membrane potential. An increase in the pH of the medium bathing the cotyledons was observed for 10 min following addition of L-glutamine but not with D-glutamine, which is not transported. The rate of proton uptake was dependent on the concentration of L-glutamine in the external solution. Inhibitors and uncouplers of respiration (azide, 2, 4-dinitrophenol, carbonyl cyanide phenylhydrazone and N-ethylmaleimide) inhibited both L-glutamine uptake and L-glutamine-induced proton uptake. Amino acids other than L-glutamine also caused a transient pH rise and the rate of proton uptake was proportional to the rate of amino-acid uptake. The stoichiometry was 0.3 protons per amino acid transported. Addition of sucrose also caused proton uptake but the alkalisation by sucrose and by amino acids were not additive. Nevertheless, when sucrose was added 60 min after providing L-glutamine at levels saturating its uptake system, a rise in pH was again observed. The results were consistent with amino-acid transport and sucrose transport in castor-bean cotyledons both occurring by a proton cotransport in the same membrane system but involving separate carriers.  相似文献   

10.
Summary The effects of poly-l-ornithine on the surface membrane of isolated tobacco protoplasts have been examined in the electron microscope using a colloidal metal oxide and a spherical virus as marker substances. No evidence was found to suggest that isolated protoplasts take up either of these markers by a pinocytotic process. Poly-l-ornithine increased the degree of damage observed in fixed preparations, and specifically caused lesions of the plasmalemma which were favoured sites for the binding of both external marker substances. It is suggested that the function of poly-l-ornithine and other treatments used to obtain virus infection of protoplasts is to stress the cell membrane to allow a non-physiological entry of high molecular weight materials. Pinocytosis appears not to occur nor to be necessary for uptake of these materials under conditions of membrane stress.  相似文献   

11.
Sulfate uptake into duckweed (Lemna gibba G1) was studied by means of [35S]sulfate influx and measurements of electrical membrane potential. Uptake was strongly regulated by the intracellular content of soluble sulfate. At the onset of sulfate uptake the membrane potential was transiently depolarized. Fusicoccin stimulated uptake up to 165% of the control even at pH 8. It is suggested that sulfate uptake is energized in the whole pH range by a 3H+/sulfate cotransport mechanism. Kinetics of sulfate uptake and sulfate-induced membrane depolarization in the concentration range of 5 M to 1 mM sulfate at pH 5.7 was best described by two Michaelis-Menten terms without any linear component. The second system had a lower affinity for sulfate and was fully active only at sufficiently high proton concentrations.Abbreviations c o extracellular sulfate concentration - c i intracellular sulfate concentration - E m electrical membrane potential difference - E m sulfate-induced, maximal membrane depolarization - electrochemical proton gradient - FW fresh weight  相似文献   

12.
Mesophyll cells have been isolated from Psoralea bituminosa plant by gentle homogenization in a liquid nutrient medium. Between 60 and 70% of the cells can be isolated from leaves using this method, of which 50 to 60% can be recovered morphologically intact. Under light the separated cells have rates of oxygen evolution under light of 3500 μl O2 mg?1 chlorophyll h?1 (measured with a Clark-type electrode). During growth, this rate decreases rapidly, as does cell pigments (chlorophylls and carotenoids). As a first step in obtaining a photoautotrophic cell suspension, growth factors affecting cell division in free sugar medium were investigated. The starting culture contained between 1 and 2 × 106 cells ml?1. The best increase in cell number was obtained on a medium composed of Joshi and Ball's elements and vitamins and containing 1 mg l?1 of naphthalene acetic acid, 0.1 mg l?1 of benzylaminopurine and the grinding juice. The optimum culture pH was between 5 and 5.3.  相似文献   

13.
Cold-hardened rye leaves have been shown to be more resistant to low temperature photoinhibition than non-hardened rye leaves. Isolated mesophyll cells from winter rye (Secale cereale L. cv. Musketeer) were exposed to photoinhibitory light conditions to estimate the importance of leaf morphology and leaf optical properties in the resistance of cold-hardened rye leaves to photoinhibition. Cold-hardened rye cells showed more resistance to photoinhibition than non-hardened rye cells when monitored with chlorophyll a variable to maximal fluorescence ratio (Fv/Fm). Thus, leaf morphology does not contribute to the resistance of cold-hardened rye leaves to low temperature photoinhibition. However, cold-hardened and non-hardened rye cells showed a similar extent of photoinhibition when photsynthetic CO2 fixation rates were measured. They also showed the same capacity to recover from photoinhibition. During both photoinhibition and recovery, Fv/Fm and light limited CO2 fixation rates showed different kinetics. We propose that inactivation and subsequent reactivation during recovery of some light activated Calvin cycle enzymes explain the greater extent of photoinhibition of light limited CO2 fixation and its faster recovery compared to Fv/Fm kinetics during photoinhibition.  相似文献   

14.
We have investigated the presence of Na-K-Cl cotransport in alveolar type II cells using uptake of 86Rb. Several data support the presence of a Na-K-Cl cotransport in these cells. First, a large fraction of ouabain-resistant 86Rb uptake was inhibited by bumetanide and furosemide. Second, bumetanide-sensitive 86Rb up-take required the presence of Na+ and Cl in the incubation medium; dependency on extracellular Na+ and K+ was hyperbolic, with a Km of 14.6 m and 8.3 m, respectively, while dependency on extracellular Cl was sigmoidal, which suggests a 112 stoichiometry. Third, a fraction of amiloride-insensitive 22Na influx was deeply inhibited by bumetanide. 22Na influx was dependent on the presence of extracellular K+ and Cl. Since Na-K-Cl activity dramatically decreased with time in culture, further characterization of the cotransport on polarized cells could not be performed. The phorbol ester PMA inhibited Na-K-Cl cotransport in a time-and concentration-dependent manner. This inhibition was mimicked by oleoylacetylglycerol, dioctanoylglycerol, and the diacylglycerol kinase inhibitor R59022, and was reversed by an antagonist of PKC, staurosporine. Since the Na-K-Cl cotransport has been reported to be involved in cell volume regulation, we investigated its modulation by changes in extracellular osmolarity. Na-K-Cl activity was increased after a two-step procedure: swelling in hypotonic medium followed by shrinking in hypertonic medium. Under these conditions, cotransport activity increased whenever PKC activity was up-or downregulated, which suggests that the cell volume-induced modulation of the cotransport is independent from the PKC activity. Though we were not able to determine the polarity of the cotransport, it may also be involved in the absorptive function of alveolar type II cells, and would provide an alternate pathway for sodium entry.This work was supported by grants from INSERM, CNRS, Université Denis Diderot Paris 7, Faculté Xavier Bichat, Fondation pour la Recherche Médicale, and Laboratoire de Recherches Physiologiques.  相似文献   

15.
George S. Espie  Brian Colman 《Planta》1981,153(3):210-216
The intracellular pH of isolated, photosynthetically active mesophyll cells of Asparagus sprengeri Regel has been determined, in the light and dark, by the distribution of the weak acid 5,5-dimethyl-[2-14C]oxazolidine-2,4-dione ([14C]DMO) between the cells and the liquid medium. [14C]DMO was taken up rapidly, reaching equilibrium in 7–10 min of incubation, but was not metabolized by the cells, and intracellular binding of the compound was minimal. The intracellular pH, measured at saturating light fluence and 1.5 mM sodium bicarbonate, was found to remain relatively constant at 6.95–7.21 over the external pH range of 5.5–7.2. Illumination of the cells increased the intracellular pH compared to dark controls. The pH of the cytoplasm, excluding and including the chloroplasts (cytoplasmic and bulk cytoplasmic, respectively) was calculated from the experimentally derived intracellular [14C]DMO concentration and estimates of the vacuolar, chloroplastic and cytoplasmic volumes. The calculated cytoplasmic pH was similar in the light and dark, being 7.75 and 7.74, respectively, while the calculated pH of bulk cytoplasm was 7.85 in the light and 7.49 in the dark. Theoretical analysis indicated that intracellular pH is a good indicator of changes in the bulk cytoplasmic pH but insensitive to changes in vacuolar pH. The external pH optimum for photosynthesis (O2 evolution) of isolated Asparagus cells was pH 7.2. At pH 8.0 photosynthesis was inhibited by 30% and at pH 5.25 by 45%. Inhibition at alkaline pH may be the result of a decrease in the pH gradient between the cells and the medium, causing CO2 limitation in the cell. At acid pH, decrease in internal pH caused by substantial accumulation of inorganic carbon may account for the loss in photosynthetic activity.Abbreviations [14C]DMO 5,5-dimethyl[2-14C]oxazolidine-2,4-dione - pHi overall intracellular pH - pHe pH of external medium  相似文献   

16.
Isolated thyroid cells prepared from hog thyroid glands by tryptic dispersion were incubated with 131I for 1–6 h. Free [131I]thyroxine was identified in the incubation medium by three chromatographic methods. Neither [131I]iodotyurosines nor [131I]triiodothyronine were detected. The [131I]thyroxine released in the medium by 100 μl of cells (packed cell volume) after a 6-h incubation period amounted to 1.16% (S.E. = ± 0.39) of the total radioactivity. The medium [131I]thyroxine represented 15–25% of the total [131I]thyroxine synthesized during the 6 h of incubation. Thyrotropin, 1–60 munits/ml, increased the medium [131I]thyroxine content 2–4 fold. Dibutyryl cyclic AMP mimicked the effect of thyrotropin. The amount of medium [131I]thyroxine was strictly related to the amount of incubated cells but was independent of the volume of the incubation medium. When prelabeled cells were incubated in the presence of methimazole the increase in medium [131I]thyroxine was quantitatively related to a decrease in the intracellular [131I]thyroxine. Addition of dinitrotyrosine, an inhibitor of the deiodinase activity, induced the release of iodotyrosines in the incubation medium. That the incubation supernatant of isolated thyroid cells did contain free thyroxine but no iodotyrosines suggests that the normal mechanisms of proteolysis of thyroglobulin and deiodination of iodotyrosines inside the cells are preserved. From these data, it was concluded that the thyroxine release by isolated cells represents a real secretion.  相似文献   

17.
Tetraethylthiuram disulfide (disulfiram) stimulated medium acidification when added at a concentration of 0.4 millimolar to illuminated or nonilluminated suspensions of Asparagus sprengeri Regel mesophyll cells. Similar concentrations inhibited photosynthesis and cyanide-resistant respiration. The reduction product of disulfiram, diethyldithiocarbamic acid, accumulated in concentrations sufficient to account for the observed acidification.  相似文献   

18.
The kainate (KA) and the quisqualate (QUIS) receptors that activate cation channels in the central nervous system have previously been defined as two of the major glutamate receptor types. In amphibian brain, an exceptionally rich source of these sites, they can be coextracted by octylglucoside and shown to behave as one entity in all analyses made in solution. When partly purified by lectin affinity, ion-exchange chromatography or by sucrose gradient centrifugation, the two activities comigrate in a 1:1 ratio. When the QUIS component is bound to an immobilized specific QUIS agonist, the KA component is extracted in parallel with it. There are equivalent numbers of the QUIS and KA sites and the two sites show a single affinity series for the binding of glutamatergic agonists. We deduce that KA or QUIS select different conformations of a single KA/QUIS receptor binding site, leading thus to the different channel-opening events that have been reported for these two agonists.  相似文献   

19.
M. J. Hills 《Planta》1986,169(1):38-45
Intact mesophyll cells can be rapidly isolated from the cladophylls ofAsparagus officinalis by gentle scraping with a plastic card, the yield being higher than 80% on a chlorophyll basis. The cells can be stored for at least 24h without loss of photosynthetic capacity and were found to be stable under a variety of conditions. In contrast to cell preparations from other plant species, photosynthetic activity was little affected by the presence of sorbitol as an osmoticum up to a concentration of 1.5 M. Similarly, the pH value of the medium influenced photosynthesis to only a small extent at a constant [CO2] of 200 M. The response of the cells' photosynthetic capacity to light, temperature and CO2 concentration was similar to those reported for isolated cells from other plant species. Isolated cells ofA. officinalis can be used under a large range of conditions which gives them a measure of flexibility not possible with most plant cells which have sharply defined optimal conditions for photosynthesis. The isolated cells have a photosynthetic capacity of 40–60% of that of the intact cladophyll. The loss of photosynthetic activity observed upon isolation could not be accounted for by breakage of the cells. Virtually all of the cells were shown to be intact on the basis of Evans Blue exclusion and more than 80% of the cells contained intact chloroplasts and vacuoles. The entire loss of photosynthetic activity could be accounted for by a decrease in sucrose synthesis rather than by an equal decrease in the synthesis in all products. A six- to seven fold increase in the level of14C in hexose phosphates in the isolated cells supports the notion of inhibition of the sucrose-synthesis pathway.  相似文献   

20.
Isolated thyroid cells prepared from hog thyroid glands by tryptic dispersion were incubated with 131I- for 1--6 h. Free [131I]thyroxine was identified in the incubation medium by three chromatographic methods. Neither [131I]iodotyrosines nor [131I]triiodothyronine were detected. The [131I]thyroxine released in the medium by 100 mul of cells (packed cell volume) after a 6-h incubation period amounted to 1.16% (S.E. = +/- 0.39) of the total radioactivity. The medium [131I]thyroxine represented 15--25% of the total [131I]thyroxine synthesized during the 6 h of incubation. Thyrotropin, 1--60 munits/ml, increased the medium [131I]thyroxine content 2-4 fold. Dibutyryl cyclic AMP mimicked the effect of thyrotropin. The amount of medium [131]thyroxine was strictly related to the amount of incubated cells but was independent of the volume of the incubation medium. When prelabeled cells were incubated in the presence of methimazole the increase in medium [131I]thyroxine was quantitatively related to a decrease in the intracellular [131I]thyroxine. Addition of dinitrotyrosine, an inhibitor of the deiodinase activity, induced the release of iodotyrosines in the incubation medium. That the incubation supernatant of isolated thyroid cells did contain free thyroxine but not iodotyrosines suggests that the normal mechanisms of proteolysis of thyroglobulin and deiodination of iodotyrosines inside the cells are preserved. From these data, it was concluded that the thyroxine release by isolated cells represents a real secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号