首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A method of Agrobacterium-mediated genetic transformation of sugarbeet (Beta vulgaris L.) with vacuum infiltration has been developed. Aseptic 3-weeks old etiolated seedlings of two diploid O-type sugarbeet lines (KS3 and KS7) have been used for genetic transformation. Transgenic sugarbeet plants carrying the reporter beta-glucuronidase gene have been selected for their resistance to glufosinate ammonium herbicide. Integration of transgenes into sugarbeet genome was confirmed with GUS assay and PCR using primers for bar and gusA genes.  相似文献   

2.
3.
4.
A method has been developed for the regeneration of transformedplants of the commercially important crop sugarbeet (Beta vulgarisL.), using Agrobacterium tumefaciens. Binary vectors were used,carrying both screenable and selectable genes. Plant regenerationfrom shoot-base tissues was found to be relatively rapid andfrequent compared with petioles or leaf tissue. Inoculationof cultured shoot-base tissues resulted in the production oftransformed plants, as determined by (1) introduced resistanceto kanamycin, (2) introduced CAT or GUS activity, and (3) Southernblot analysis to show the integration of foreign DNA. The transformationfrequency was found to be dependent upon explant source, plantgenotype and selection conditions used. Key words: Agrobacterium tumefaciens, sugarbeet (Beta vulgaris L.), transformation.  相似文献   

5.
Sugarbeets carrying superoxide dismutase transgenes were developed in order to investigate the possibility of enhancing their resistance to oxidative stress. Binary T-DNA vectors carrying the chloroplastic and cytosolic superoxide dismutase genes from tomato, were used for Agrobacterium-mediated transformation of sugarbeet petioles. The transgenic plants were subjected to treatments known to cause oxidative stress, such as the herbicide methyl viologen and a natural photosensitizer toxin produced by the fungus Cercospora beticola, namely cercosporin. The transgenic plants exhibited increased tolerance to methyl viologen, to pure cercosporin, as well as to leaf infection with the fungus C. beticola.  相似文献   

6.
A method of Agrobacterium-mediated genetic transformation of sugarbeet (Beta vulgaris L.) by vacuum infiltration has been developed. Transgenic sugarbeet plants of Ukraine breeding were selected for their resistance either to the antibiotic kanamycin or to the herbicide glufosinate ammonium. Integration of transgenes was confirmed by PCR and GUS-assay.  相似文献   

7.
Treatment of sugarbeet, Beta vulgaris L., with aldicarb, aldicarb sulfoxide, or aldicarb sulfone 10 days after plants were inoculated with Heterodera schachtii prevented development of the nematode, but second-stage larvae penetrated the roots. These chemicals had no measurable effects on nematodes in plants treated 15 days after inoculation. The tests established that soil treatments of aldicarb are directly or indirectly lethal to larvae developing within roots of sugarbeet. Heterodera schachtii failed to develop on root slices of red table beet grown in soil treated with aldicarb or aldicarb sulfoxide. Similar treatment of plants with aldicarb sulfone or oxamyl did not affect subsequent development of H. schachtii on root slices of treated plants.  相似文献   

8.
9.
Heterodera schachtii developed to maturity and reproduced on the lateral roots of defoliated sugarbeet which were buried to a depth of 2.5 cm in sterilized soil and inoculated with cysts. Nematodes did not develop on detached lateral roots or on roots of young defoliated beets which did not have a large tap root. The storage roots of large rooted plants were sliced, placed in small jars, inoculated with cysts, covered with moist granulated agar or soil and incubated at 24°C 12-62 days. The sugarbeet nematode developed in root slices of sugarbeet, red table beet, icicle and globe radish, turnip and rutabaga. Only a few males developed on slices of potato tubers. Neither males nor females developed on root slices of carrot, salsify or parsnip. H. schachtii also developed on the cut surfaces of growing sugarbeet and radish.  相似文献   

10.
The nature of pollen sterility in sugarbeet regenerated plants obtained from callus cultures of inbred lines has been investigated. It has been shown that detected male sterility of plants can be caused both by epigenetic and mutation factors. The forms with cytoplasmic and nuclear sterility have been selected.  相似文献   

11.
12.
Aqueous solutions of 5-500 μg/ml aldicarb inhibited hatching of Heterodera schachtii. Addition of hatching agents, zinc chloride, or sugarbeet root diffusate, to the aldicarb solutions did not decrease the inhibition of hatching. When cysts were removed from the aldicarb solufions and then treated for 4 wk in sugarbeet root diffusate, larvae hatched and emerged. Treatments of newly hatched larvae of H. schachtii with 5-100 μg/ml aldicarb depressed later development of larvae on sugarbeet (Beta vulgaris). Similar treatments with aldicarb sulfoxide had less effect on larval development, and aldicarb sulfone had no effect. Numbers of treated larvae that survived and developed were inversely proportional to concentration (0.1-5.0 μg/ml) and duration (0-14 days) of aldicarb treatments. Development of H. schachtii on sugarbeet grown in aldicarb-treated soil was inversely proportional to the concentration of aldicarb in the tested range of 0.75 - 3.0 μg aldicarb/g of soil. Transfer of nematode-infected plants to soil with aldicarb retarded nematode development, whereas transfer of plants first grownin treated soil to nematode-infested soil only slightly suppressed nematode development. Development of H. schachtii was inhibited in slices of storage roots of table beet (B. vulgaris), sugarbeet and turnip, (Brassica rapa), that had grown in soil treated with aldicarb.  相似文献   

13.
Abstract A fungus of the genus Phytophthora , frequently isolated from diseased spinach roots and also from field-grown wheat plants in an area in the south of Sweden, was identified as P. cryptogea on the basis of morphology, growth characters and cardinal temperatures. Mycelium or zoospores applied as inoculum in a series of pathogenicity tests induced symptoms in spinach, sugarbeet, wheat, cucumber, oil-seed rape, pea and oats. These ranged from death of all (spinach) or some inoculated plants (sugarbeet and wheat), to only slight root symptoms (oats). Successful re-isolations from all plants tested, confirmed infectivity in all cases. This is the first report of the occurrence of P. cryptogea in Sweden and, as far as we know, of pathogenicity of this fungus to wheat, oil-seed rape and oats.  相似文献   

14.
Dovzhenko A  Koop HU 《Planta》2003,217(3):374-381
The successful application of recombinant DNA technology for crop plants requires efficient regeneration systems. A detailed study on the regeneration potential of callus and callus-derived protoplasts of a recalcitrant species, sugarbeet, was performed. A reproducible and highly efficient method for induction of regenerable friable callus was established from etiolated hypocotyl explants. A reduced sucrose concentration proved beneficial. Successful shoot regeneration could be demonstrated in 10 out of 12 tested lines. Seed germination, followed by callus induction and shoot regeneration required only a single culture medium. Additionally, the regeneration capacity of roots and root-derived callus was demonstrated. Highly efficient plant regeneration was also achieved when using protoplasts isolated from regenerable friable callus induced on etiolated hypocotyls explants. To our knowledge this represents the first report on callus protoplast to plant regeneration in sugarbeet.  相似文献   

15.
Soil moisture and the nematode population density in aldicarb-treated soil influenced control of the sugarbeet nematode, Heterodera schachtii. Greater numbers of nematode larvae infected 14-day-old sugarbeet seedlings growing in aldicarb-treated soil at 20-30% than at 80-100% field capacity (F. C.), and plant growth was inversely related to nematode infection and the nematode population density. Compared with that of control plants, plant growth increase also was greater at 80-100% F. C. when the nematode population was above 1.8 larvae/gm soil. A nematode population of 1.8 larvae/gm soil did not significantly affect sugarbeet yields. Aldicarb gave less control when soil moisture levels dropped to 20 and 50% F. C. at nematode populations of 3.5 and 6.2 larvae/gm soil. More effective control was obtained wth soil moisture levels at or above 80% F. C. This difference was attributed to continued activity of the toxicant in the rhizosphere at the high moisture level.  相似文献   

16.
Summary Despite intensive efforts, a reproducible and reliable method for transformation of sugarbeet plants is still lacking. Having examined several explants, we found that cells around the main vein of leaves of plantlets reared from tissue-cultured apical meristems are sufficiently competent for transformation and subsequent regeneration. A transformation protocol was designed by evaluating alterations in several parameters such as plant genotype, Agrobacterium strain, antibiotics, darkness and duration of co-culture period. An average transformation rate of 6.2% transformed shoots per explant was achieved as judged by Southern blotting. Consistent inactivation of reporter genes was correlated to multiple copies of transgenes present in some transformants. The necessary steps for rooting and planting of transformed shoots were also established.  相似文献   

17.
Summary Haploid plantlets from male fertile and male sterile sugarbeet plants could be induced at frequencies up to 2.2% using ovule culture. Ovary culture on media without charcoal resulted in a similar induction frequency. Plant development was inhibited by callus development originating from the mother tissue. When the callus parts were removed and the ovule transferred to a new medium without 2,4 D, callus formation could be inhibited by adding 0.5% charcoal to the medium. Up to 6.1% haploids were induced. Chromosome counts in leaf tips, chloroplast counts and isozyme patterns revealed that all plants were haploid and originated from the haploid cells of the embryo sac. Root tips showed spontaneous polyploidisation.  相似文献   

18.
β-Glucuronidase (EC 3.2.1.31) activity, initially thought absent from plants, has been found in a number of plant families. During an analysis of Agrobacterium -mediated transformation of sugarbeet ( Beta vulgaris L.), significant glucuronidase activity was observed in control (non-transformed) tissues when the fluorogenic substrates 4-methylumbelliferyl-β- d -glucuronic acid, resorufin glucuronic acid and 3-carboxyum-belliferyl-β- d -glucuronic acid were used to quantify β-glucuronidase activity under standard protocol conditions. Similarly, the colorigenic substrate p -nitrophenyl-β- d -glucuronide was hydrolyzed by this sugarbeet-derived glucuronidase. Biochemical and immunological data are presented to indicate significant differences between sugarbeet-derived glucuronidase and that from Escherichia coli (EC 3.2.1.31) encoded by gusA . These differences provide means of distinguishing between the two activities in extracts that contain a mixture of both. Use of X-glue, the substrate utilized in histochemical localizations of glucuronidase activity, gave no reaction product (i.e., indigo precipitate) at pH 7.0. However, at pH 3.0, 4.0 and 5.0 formation of the indigo precipitate was evident within 1 h at 37°C in sugarbeet callus and by 4 h in leaves and petioles. The specific activity of sugarbeet glucuronidase was observed to be strongly pH dependent, with an optimum near pH 4.0. The use of various β-glucuronidase assay techniques as applied to transformation of sugarbeet is discussed.  相似文献   

19.
A direct relationship exists between soil temperature and Heterodera schachtii development. The average developmental period of two nematode populations from Lewiston, Utah, and Rupert, Idaho, from J2 to J3, J4, adult, and the next generation J2 at soil temperatures of 18-28 C were 100, 140,225, and 399 degree-days (base 8 C), respectively. There was a positive relationship (P < 0.05) between nematode Pi, nematode generations, and sugarbeet yields. The greatest sugarbeet growth inhibition (87%) occurred when sugarbeets were exposed to a Pi of 12 eggs/cm³ soil for five generations (1,995 degree-days), compared with a 47% inhibition when plants were exposed to the same Pi for two generations. There was a negative correlation (P < 0.05) between the Pi, Pf, and sugarbeet yield for each population threshold. The smaller the Pi, the greater the sugarbeet yields and the greater the Pf. Root yields were 80 and 29 t /ha and Pf were 8.4 and 3.6 eggs/cm³ soil when sugarbeet seeds were planted at Pi of 0.4 and 7.9 eggs/cm³. respectively, at a soil temperature of 8 C. The number of years rotation with a nonhost crop required to reduce the nematode population density below a damage threshold level of 2 eggs/cm³ depends on the Pi. A Pi of 33.8 eggs/cm³ soil required a 5-year crop rotation, whereas a Pi of 8.4 eggs/cm³ soil required a 2-year crop rotation.  相似文献   

20.
Beet curly top Iran virus (BCTIRV) is a geminivirus with unusual genomic organisation, recently reported in Iran, infecting sugarbeet and a few other plant species. Although three BCTIRV sequences have been reported, demonstration that BCTIRV DNA is the causal agent of the disease was missing. A full‐length genomic DNA was obtained from symptomatic leaves of sugarbeet collected in the Sivand area of Iran, and its nucleotide sequence was determined (BCTIRV‐Siv, 2845 nt). To satisfy Koch's postulates, an infectivity assay was developed by inserting a 1.4‐mer of BCTIRV‐Siv DNA in Agrobacterium tumefaciens and using it in agroinoculation experiments. The cloned viral DNA was capable of infecting sugarbeets, reproducing the leaf curling and vein enations observed in the field. These results demonstrate that the single DNA component of BCTIRV is sufficient for infectivity. Host range studies indicated that some economically important crops can be affected, such as spinach, tomato and sweet pepper, as well as important laboratory plants including Nicotiana benthamiana, Arabidopsis thaliana and Jimson weed. Circulifer haematoceps, the dominant leafhopper species present in sugarbeet fields in Iran, was successfully used to transmit the disease. The availability of an infectious clone will facilitate extended host range studies, to determine the potential risks to other crops, as well as genetic studies on this unusual member of the family Geminiviridae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号