首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
Kremen2 modulates Dickkopf2 activity during Wnt/LRP6 signaling   总被引:20,自引:0,他引:20  
Mao B  Niehrs C 《Gene》2003,302(1-2):179-183
Dickkopf1 (Dkk1) is a secreted antagonist of the Wnt/beta-catenin signaling pathway that acts by direct binding to and inhibiting the Wnt co-receptor LRP6. The related Dkk2, however, can function either as LRP6 agonist or antagonist, depending on the cellular context, suggesting that its activity is modulated by unknown co-factors. We have recently identified the transmembrane proteins Kremen1 and -2 as additional Dkk receptors, which bind to both Dkk1 and Dkk2 with high affinity. Here we show that Kremen2 (Krm2) regulates Dkk2 activity during Wnt signaling. In human 293 fibroblasts transfected dkk2 activates LRP6 signaling. However, co-transfection of krm2 blocks the ability of Dkk2 to activate LRP6 and enhances inhibition of Wnt/Frizzled signaling. Krm2 also co-operates with Dkk4 to inhibit Wnt signaling, but not with Dkk3, which has no effect on Wnt signaling. Likewise, in Xenopus embryos, Dkk2 and Krm2 co-operate in Wnt inhibition leading to anteriorized embryos. Finally, we show that interaction with Krm2 is mediated by the second cysteine-rich domain of Dkks. These results suggest that Krm2 can function as a switch that turns Dkk2 from an activator into an inhibitor of Wnt/lRP6 signaling.  相似文献   

2.

Background

The low density lipoprotein receptor-related protein-6 (LRP6) is an essential co-receptor for canonical Wnt signaling. Dickkopf 1 (Dkk1), a major secreted Wnt signaling antagonist, binds to LRP6 with high affinity and prevents the Frizzled-Wnt-LRP6 complex formation in response to Wnts. Previous studies have demonstrated that Dkk1 promotes LRP6 internalization and degradation when it forms a ternary complex with the cell surface receptor Kremen.

Methodology/Principal Findings

In the present study, we found that transfected Dkk1 induces LRP6 accumulation while inhibiting Wnt/LRP6 signaling. Treatment with Dkk1-conditioned medium or recombinant Dkk1 protein stabilized LRP6 with a prolonged half-life and induces LRP6 accumulation both at the cell surface and in endosomes. We also demonstrated that Kremen2 co-expression abrogated the effect of Dkk1 on LRP6 accumulation, indicating that the effect of Kremen2 is dominant over Dkk1 regulation of LRP6. Furthermore, we found that Wnt3A treatment induces LRP6 down-regulation, an effect paralleled with a Wnt/LRP6 signaling decay, and that Dkk1 treatment blocked Wnt3A-induced LRP6 down-regulation. Finally, we found that LRP6 turnover was blocked by an inhibitor of caveolae-mediated endocytosis.

Conclusions/Significance

Our results reveal a novel role for Dkk1 in preventing Wnt ligand-induced LRP6 down-regulation and contribute significantly to our understanding of Dkk1 function in Wnt/LRP6 signaling.  相似文献   

3.
Kremens are high-affinity receptors for Dickkopf 1 (Dkk1) and regulate the Wnt/β-catenin signaling pathway by down-regulating the low-density lipoprotein receptor-related protein 6 (LRP6). Dkk1 competes with Wnt for binding to LRP6; binding of Dkk1 inhibits canonical signaling through formation of a ternary complex with Kremen. The majority of down-regulated clathrin-mediated endocytic receptors contain short conserved regions that recognize tyrosine or dileucine sorting motifs. In this study, we found that Kremen1 is internalized from the cell surface in a clathrin-dependent manner. Kremen1 contains an atypical dileucine motif with the sequence DXXXLV. Mutation of LV to AA in this motif blocked Kremen1 internalization; as reported previously for other proteins, the aspartic acid residue in Kremen1 is not critical. Inhibition of expression of the adaptor protein 2 (AP-2) or inhibition of clathrin by pitstop 2 also blocked Kremen1 internalization. The novel amino acid sequence identified in Kremen1 is similar to the motif previously identified in hydra, yeast, and other organisms known to signal from the trans-Golgi network to the endosomal compartment.  相似文献   

4.
Dkk1 is a secreted antagonist of the LRP5‐mediated Wnt signaling pathway that plays a pivotal role in bone biology. Because there are no well‐documented LRP5‐based assays of Dkk1 binding, we developed a cell‐based assay of Dkk1/LRP5 binding using radioactive 125I‐Dkk1. In contrast to LRP6, transfection of LRP5 alone into 293A cells resulted in a low level of specific binding that was unsuitable for routine assay. However, co‐transfection of LRP5 with the chaperone protein MesD (which itself does not bind Dkk1) or Kremen‐2 (a known Dkk1 receptor), or both, resulted in a marked enhancement of specific binding that was sufficient for evaluation of Dkk1 antagonists. LRP5 fragments comprising the third and fourth β‐propellers plus the ligand binding domain, or the first β‐propeller, each inhibited Dkk1 binding, with mean IC50s of 10 and 196 nM, respectively. The extracellular domain of Kremen‐2 (“soluble Kremen”) was a weaker antagonist (mean IC50 806 nM). We also found that cells transfected with a high bone mass mutation LRP5(G171V) had a subtly reduced level of Dkk1 binding, compared to wild type LRP5‐transfected cells, and no enhancement of binding by MesD. We conclude that (1) LRP5‐transfected cells do not offer a suitable cell‐based Dkk1 binding assay, unless co‐transfected with either MesD, Kremen‐2, or both; (2) soluble fragments of LRP5 containing either the third and fourth β‐propellers plus the ligand binding domain, or the first β‐propeller, antagonize Dkk1 binding; and (3) a high bone mass mutant LRP5(G171V), has subtly reduced Dkk1 binding, and, in contrast to LRP5, no enhancement of binding with MesD. J. Cell. Biochem. 108: 1066–1075, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

5.
A gradient of Wnt/beta-catenin signalling formed by posteriorising Wnts and anteriorising Wnt antagonists regulates anteroposterior (AP) patterning of the central nervous system (CNS) during Xenopus gastrulation. In this process, the secreted Wnt antagonist Dkk1 functions in the Spemann organiser and its anterior derivatives by blocking Wnt receptors of the lipoprotein receptor-related protein (LRP) 5 and 6 class. In addition to LRP6, Dkk1 interacts with another recently identified receptor class, the transmembrane proteins Kremen1 (Krm1) and Kremen2 (Krm2) to synergistically inhibit LRP6. We have investigated the role of Krm1 and Krm2 during early Xenopus embryogenesis. Consistent with a role in zygotic Wnt inhibition, overexpressed Krm anteriorises embryos and rescues embryos posteriorised by Wnt8. Antisense morpholino oligonucleotide (Mo) knockdown of Krm1 and Krm2 leads to deficiency of anterior neural development. In this process, Krm proteins functionally interact with Dkk1: (1) in axis duplication assays krm2 synergises with dkk1 in inhibiting Wnt/LRP6 signalling; (2) krm2 rescues microcephalic embryos induced by injection of inhibitory anti-Dkk1 antibodies; and (3) injection of krm1/2 antisense Mo enhances microcephaly induced by inhibitory anti-Dkk1 antibodies. The results indicate that Krm proteins function in a Wnt inhibition pathway regulating early AP patterning of the CNS.  相似文献   

6.
Wnt/β-catenin signaling is fundamental in embryogenesis and tissue homeostasis in metazoans. Upon Wnt stimulation, cognate coreceptors LRP5 and LRP6 ([LRP5/6] low-density lipoprotein receptor-related proteins 5 and 6) are activated via phosphorylation at key residues. Although several kinases have been implicated, the LRP5/6 activation mechanism remains unclear. Here, we report that transmembrane protein 198 (TMEM198), a previously uncharacterized seven-transmembrane protein, is able to specifically activate LRP6 in transducing Wnt signaling. TMEM198 associates with LRP6 and recruits casein kinase family proteins, via the cytoplasmic domain, to phosphorylate key residues important for LRP6 activation. In mammalian cells, TMEM198 is required for Wnt signaling and casein kinase 1-induced LRP6 phosphorylation. During Xenopus embryogenesis, maternal and zygotic tmem198 mRNAs are widely distributed in the ectoderm and mesoderm. TMEM198 is required for Wnt-mediated neural crest formation, antero-posterior patterning, and particularly engrailed-2 expression in Xenopus embryos. Thus, our results identified TMEM198 as a membrane scaffold protein that promotes LRP6 phosphorylation and Wnt signaling activation.  相似文献   

7.
Wnt signaling has been demonstrated to have extensive roles during embryogenesis. The Wnt family is highly conserved. In mice, there are 19 Wnt genes. Dickkopf (Dkk), through its interactions with Wnt co-receptors, low-density lipoprotein receptor-related protein (LRP), Frizzled and Kremen, can act as a negative regulator to block the Wnt-signaling pathway. There are four Dkk genes in the human genome, and three in that of the mouse. Dkk1 is involved in a variety of craniofacial developmental processes and behaves as a strong head inducer and limb regulator. Dkk1 mutant mice are embryonic-lethal. Here, we investigated the effects of Dkk1 on the differentiation of murine ESCs in both the ESC and embryoid body (EB) states. The results demonstrate that Dkk1 overexpression can initiate the differentiation program of ESCs toward neuroectoderm. We believe this finding can augment our understanding of mouse ESC differentiation.  相似文献   

8.
Wnt and Dickkopf (Dkk) regulate the stabilization of beta-catenin antagonistically in the Wnt signaling pathway; however, the molecular mechanism is not clear. In this study, we found that Wnt3a acts in parallel to induce the caveolin-dependent internalization of low-density-lipoprotein receptor-related protein 6 (LRP6), as well as the phosphorylation of LRP6 and the recruitment of Axin to LRP6 on the cell surface membrane. The phosphorylation and internalization of LRP6 occurred independently of one another, and both were necessary for the accumulation of beta-catenin. In contrast, Dkk1, which inhibits Wnt3a-dependent stabilization of beta-catenin, induced the internalization of LRP6 with clathrin. Knockdown of clathrin suppressed the Dkk1-dependent inhibition of the Wnt3a response. Furthermore, Dkk1 reduced the distribution of LRP6 in the lipid raft fraction where caveolin is associated. These results indicate that Wnt3a and Dkk1 shunt LRP6 to distinct internalization pathways in order to activate and inhibit the beta-catenin signaling, respectively.  相似文献   

9.
Ahn VE  Chu ML  Choi HJ  Tran D  Abo A  Weis WI 《Developmental cell》2011,21(5):862-873
LDL receptor-related proteins 5 and 6 (LRP5/6) are coreceptors for Wnt growth factors, and also bind Dkk proteins, secreted inhibitors of Wnt signaling. The LRP5/6 ectodomain contains four β-propeller/EGF-like domain repeats. The first two repeats, LRP6(1-2), bind to several Wnt variants, whereas LRP6(3-4) binds other Wnts. We present the crystal structure of the Dkk1 C-terminal domain bound to LRP6(3-4), and show that the Dkk1 N-terminal domain binds to LRP6(1-2), demonstrating that a single Dkk1 molecule can bind to both portions of the LRP6 ectodomain and thereby inhibit different Wnts. Small-angle X-ray scattering analysis of LRP6(1-4) bound to a noninhibitory antibody fragment or to full-length Dkk1 shows that in both cases the ectodomain adopts a curved conformation that places the first three repeats at a similar height relative to the membrane. Thus, Wnts bound to either portion of the LRP6 ectodomain likely bear a similar spatial relationship to Frizzled coreceptors.  相似文献   

10.
Kremen 1 and 2 (Krm1/2) are transmembrane receptors for Wnt antagonists of the Dickkopf (Dkk) family and function by inhibiting the Wnt co-receptors LRP5/6. Here we show that Krm2 functions independently from Dkks during neural crest (NC) induction in Xenopus. Krm2 is co-expressed with, and regulated by, canonical Wnts. Krm2 is differentially expressed in the NC, and morpholino-mediated Krm2 knockdown inhibits NC induction, which is mimicked by LRP6 depletion. Conversely, krm2 overexpression induces ectopic NC. Kremens bind to LRP6, promote its cell-surface localization and stimulate LRP6 signaling. Furthermore, Krm2 knockdown specifically reduces LRP6 protein levels in NC explants. The results indicate that in the absence of Dkks, Kremens activate Wnt/beta-catenin signaling through LRP6.  相似文献   

11.
Kremen1 and Kremen2 (Krm1 and Krm2) are transmembrane coreceptors for Dickkopf1 (Dkk1), an antagonist of Wnt/β-catenin signaling. The physiological relevance of Kremen proteins in mammals as Wnt modulators is unresolved. We generated and characterized Krm mutant mice and found that double mutants show enhanced Wnt signaling accompanied by ectopic postaxial forelimb digits and expanded apical ectodermal ridges. Triple mutant Krm1−/ Krm2−/ Dkk1+/ mice show enhanced growth of ectopic digits, indicating that Dkk1 and Krm genes genetically interact during limb development. Wnt/β-catenin signaling also plays a critical role in bone formation. Single Krm mutants show normal bone formation and bone mass, while double mutants show increased bone volume and bone formation parameters. Our study provides the first genetic evidence for a functional interaction of Kremen proteins with Dkk1 as negative regulators of Wnt/β-catenin signaling and reveals that Kremen proteins are not universally required for Dkk1 function.  相似文献   

12.
The secreted Dickkopf-1 (Dkk1) protein mediates numerous cell fate decisions and morphogenetic processes. Its carboxyl terminal cysteine-rich region (termed C1) binds LRP5/6 and inhibits canonical Wnt signaling. Paradoxically, the isolated C1 domain of Dkk1 as well as Wnt antagonists that act by sequestering Wnts, such as Frz-B, WIF-1 and Crescent, are poor mimics of the inductive and patterning activities of Dkk1 critical for heart and axial development. To understand the basis for the unique properties of Dkk1, we investigated the function of its amino terminal cysteine-rich region (N1). N1 does not bind LRP or Kremen nor inhibit Wnt signaling and has had no known function. We show that it can synergize with BMP antagonism to induce prechordal and axial mesoderm when expressed as an independent protein in Xenopus embryos. Moreover, we show that it can function in trans to complement the activity of C1 protein to mediate two embryologic functions of Dkk1: induction of chordal and prechordal mesoderm and specification of heart tissue from non-cardiogenic mesoderm. Remarkably, N1 also synergizes with WIF-1 and Crescent, indicating that N1 signals independently of C1 and its interactions with LRP. Since cleavage of Dkk1 is not detected, these results define N1 as a novel signaling domain within the intact protein that is responsible for the potent effects of Dkk1 on the induction and patterning of the body axis and heart. We conclude that this new activity is also likely to synergize with canonical Wnt inhibitory in the numerous developmental and disease processes that involve Dkk1.  相似文献   

13.
The R-Spondin (RSpo) family of secreted proteins is implicated in the activation of the Wnt signaling pathway. Despite the high structural homology between the four members, expression patterns and phenotypes in knockout mice have demonstrated striking differences. Here we dissected and compared the molecular and cellular function of all RSpo family members. Although all four RSpo proteins activate the canonical Wnt pathway, RSpo2 and 3 are more potent than RSpo1, whereas RSpo4 is relatively inactive. All RSpo members require Wnt ligands and LRP6 for activity and amplify signaling of Wnt3A, Wnt1, and Wnt7A, suggesting that RSpo proteins are general regulators of canonical Wnt signaling. Like RSpo1, RSpo2-4 antagonize DKK1 activity by interfering with DKK1 mediated LRP6 and Kremen association. Analysis of RSpo deletion mutants indicates that the cysteine-rich furin domains are sufficient and essential for the amplification of Wnt signaling and inhibition of DKK1, suggesting that Wnt amplification by RSpo proteins may be a direct consequence of DKK1 inhibition. Together, these findings indicate that RSpo proteins modulate the Wnt pathway by a common mechanism and suggest that coexpression with specific Wnt ligands and DKK1 may determine their biological specificity in vivo.  相似文献   

14.
An XWnt8-Fz5 fusion protein synergizes with LRP6 to potently activate beta-catenin-dependent signaling. Here, we generated a fusion in which XWnt8 was fused to the N-terminus of LRP6 and show it synergizes with both Fz4 and Fz5 to potently transactivate beta-catenin-dependent Wnt signaling. Based on this, we hypothesized that the main function of Wnt is to nucleate the formation of a physical complex between LRP6 and a Frizzled. Dkk1, but not the related Dkk3, binds LRP6 and inhibits canonical Wnt signaling by blocking the interaction of Wnt and LRP6. Therefore, we reasoned that a covalent fusion of Dkk1 to Fz5 (Dkk1-Fz5) would mimic Wnt ligand by nucleating the formation of a complex containing Fz5 and LRP6, while Dkk3 (Dkk3-Fz5) would not. We found that Dkk1-Fz5, but not Dkk3-Fz5, potently synergized with LRP6 to activate signaling in a dishevelled-dependent manner.  相似文献   

15.
Structural insight into the mechanisms of Wnt signaling antagonism by Dkk   总被引:2,自引:0,他引:2  
Dickkopf (Dkk) proteins are antagonists of the canonical Wnt signaling pathway and are crucial for embryonic cell fate and bone formation. Wnt antagonism of Dkk requires the binding of the C-terminal cysteine-rich domain of Dkk to the Wnt coreceptor, LRP5/6. However, the structural basis of the interaction between Dkk and low density lipoprotein receptor-related protein (LRP) 5/6 is unknown. In this study, we examined the structure of the Dkk functional domain and elucidated its interactions with LRP5/6. Using NMR spectroscopy, we determined the solution structure of the C-terminal cysteine-rich domain of mouse Dkk2 (Dkk2C). Then, guided by mutagenesis studies, we docked Dkk2C to the YWTD beta-propeller domains of LRP5/6 and showed that the ligand binding site of the third LRP5/6 beta-propeller domain matches Dkk2C best, suggesting that this domain binds to Dkk2C with higher affinity. Such differential binding affinity is likely to play an essential role in Dkk function in the canonical Wnt pathway.  相似文献   

16.
Wnt/β-catenin signaling is initiated at the cell surface by association of secreted Wnt with its receptors Frizzled (Fz) and low density lipoprotein receptor-related protein 5/6 (LRP5/6). The study of these molecular interactions has been a significant technical challenge because the proteins have been inaccessible in sufficient purity and quantity. In this report we describe insect cell expression and purification of soluble mouse Fz8 cysteine-rich domain and human LRP6 extracellular domain and show that they inhibit Wnt/β-catenin signaling in cellular assays. We determine the binding affinities of Wnts and Dickkopf 1 (Dkk1) to the relevant co-receptors and reconstitute in vitro the Fz8 CRD·Wnt3a·LRP6 signaling complex. Using purified fragments of LRP6, we further show that Wnt3a binds to a region including only the third and fourth β-propeller domains of LRP6 (E3E4). Surprisingly, we find that Wnt9b binds to a different part of the LRP6 extracellular domain, E1E2, and we demonstrate that Wnt3a and Wnt9b can bind to LRP6 simultaneously. Dkk1 binds to both E1E2 and E3E4 fragments and competes with both Wnt3a and Wnt9b for binding to LRP6. The existence of multiple, independent Wnt binding sites on the LRP6 co-receptor suggests new possibilities for the architecture of Wnt signaling complexes and a model for broad-spectrum inhibition of Wnt/β-catenin signaling by Dkk1.  相似文献   

17.
Recombinant Wnt-3a stimulated the rapid formation of elongated processes in Ewing sarcoma family tumor (ESFT) cells that were identified as neurites. The processes stained positively for polymerized actin and microtubules as well as synapsin I and growth-associated protein 43. Inhibition of the Wnt receptor, Frizzled3 (Fzd3), with antiserum or by short interfering RNA (siRNA) markedly reduced neurite extension. Knockdown of Dishevelled-2 (Dvl-2) and Dvl-3 also suppressed neurite outgrowth. Surprisingly, disruption of the Wnt/Fzd/lipoprotein receptor-related protein (LRP) complex and the associated beta-catenin signaling by treating cells either with the Wnt antagonist Dickkopf-1 (Dkk1) or LRP5/LRP6 siRNA enhanced neuritogenesis. Neurite outgrowth induced by Dkk1 or with LRP5/LRP6 siRNA was inhibited by secreted Fzd-related protein 1, a Wnt antagonist that binds directly to Wnt. Moreover, Dkk1 stimulation of neurite outgrowth was blocked by Fzd3 siRNA. These results suggested that Dkk1 shifted endogenous Wnt activity from the beta-catenin pathway to Fzd3-mediated, noncanonical signaling that is responsible for neurite formation. In particular, c-Jun amino-terminal kinase (JNK) was important for neurite outgrowth stimulated by both Wnt-3a and Dkk1. Our data demonstrate that Fzd3, Dvl, and JNK activity mediate Wnt-dependent neurite outgrowth and that ESFT cell lines will be useful experimental models for the study of Wnt-dependent neurite extension.  相似文献   

18.
Zhang Y  Mao B 《遗传学报》2010,37(9):637-645
The secreted Wnt signaling inhibitor Dickkopf1(Dkk1)plays key role in vertebrate head induction.Its receptor Kremen synergizes with Dkkl in Wnt inhibition.Here we have carried out expression and functional studies of the Dkk and Kremen genes in amphioxus(Branchiostoma belcheri).During embryonic and larval development,BbDkk1/2/4 is expressed in the posterior mesoendoderm,anterior somatic mesoderm and the pharyngeal regions.Its expression becomes restricted to the pharyngeal region on the left side at larval stages.In 45 h larvae,BbDkk1/2/4 is expressed specifically in the cerebral vesicle.BbDkk3 was only detected at larval stages in the mid-intestine region.Seven Kremen related genes were identified in the genome of the Florida amphioxus(Branchiostoma floridae),clustered in 4scaffolds,and are designated Kremen1-4 and Kremen-like 1-3,respectively.In B.belcheri,Kremenl is strongly expressed in the mesoendoderm during early development and Kremen3 is expressed asymmetrically in spots in the larval pharyngeal region.In luciferase reporter assays,BbDkk1/2/4 can strongly inhibit Writ signaling,while BbDkk3,BbKremen1 and BbKremen3 can not.No co-operative effect was observed between amphioxus Dkk1/2/4 and Kremens,suggesting that the interaction between Dkk and Kremen likely originated later during evolution.  相似文献   

19.
Wnt glycoproteins are developmentally essential signaling molecules, and lesions afflicting Wnt pathways play important roles in human diseases. Some Wnts signal to the canonical pathway by stabilizing beta-catenin, while others lack this activity. Frizzled serpentine receptors mediate distinct signaling pathways by both classes of Wnts. Here, we tandemly linked noncanonical Wnt5a with the C-terminal half of Dickkopf-2 (Dkk2C), a distinct ligand of the Wnt coreceptor LRP5/6. Whereas Wnt5a, Dkk2C, or both together were incapable of stimulating endogenous canonical signaling, the Wnt5a/Dkk2C chimera efficiently activated this pathway in a manner inhibitable by specific antagonists of either frizzled or LRP receptors. Thus, activation of the canonical pathway requires ligand coupling of an endogenous frizzled/LRP coreceptor complex, rather than Wnt triggering each receptor independently. Moreover, fusion of Wnt5a with Dkk2C unmasked its ability to signal to Dishevelled through multiple frizzleds, indicating that the lack of functional interaction with LRP distinguishes noncanonical Wnt5a from canonical Wnts in mammalian cells. These findings provide a novel mechanism by which the same receptor can be switched between distinct signaling pathways depending on the differential recruitment of a coreceptor by members of the same ligand family.  相似文献   

20.
Dickkopfs (Dkks) are secreted developmental regulators composed of two cysteine-rich domains. We report that the effects of Dkks depend on molecular context. Although Wnt8 signaling is inhibited by both Dkk1 and Dkk2 in Xenopus embryos, the same pathway is activated upon interaction of Dkk2 with the Wnt coreceptor LRP6. Analysis of individual Dkk domains and chimeric Dkks shows that the carboxy-terminal domains of both Dkks associate with LRP6 and are necessary and sufficient for Wnt8 inhibition, whereas the amino-terminal domain of Dkk1 plays an inhibitory role in Dkk-LRP interactions. Our study illustrates how an inhibitor of a pathway may be converted into an activator and is the first study to suggest a molecular mechanism for how a ligand other than Wnt can positively regulate beta-catenin signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号