首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 56 毫秒
1.
The optimal medium for butyric acid production by Clostridium thermobutyricum in a shake flask culture was studied using statistical experimental design and analysis. The optimal composition of the fermentation medium for maximum butyric acid yield, as determined on the basis of a three-level four-factor Box-Behnken design (BBD), was obtained by response surface methodology (RSM). The high correlation between the predicted and observed values indicated the validity of the model. A maximum butyric acid yield of 12.05 g/l was obtained at K2HPO4 7.2 g/l, 34.9 g/l glucose, 20 g/l yeast extract, and 15 g/l acetate, which compared well to the predicated production of 12.13 g/l.  相似文献   

2.
Song J  An D  Ren N  Zhang Y  Chen Y 《Bioresource technology》2011,102(23):10875-10880
The microbial structure and kinetic characteristics of the hydrogen producing strains in two fermentative continuous stirred-tank reactors (CSTRs) were studied by controlling pH and oxidation and reduction potential (ORP). The fluorescence in situ hybridization (FISH) tests were conducted to investigate the fermentative performance of Clostridium histolyticum (C. histolyticum), Clostridium lituseburense (C. lituseburense) and Enterobacteriaceae. The experimental results showed that in ethanol-type reactor 1#, the relative abundance of the strains was 48%, 30% and 22%. Comparatively, the relative abundance in butyric acid-type reactor 2# was 24%, 55% and 19% with butyric acids and hydrogen as the main products. The kinetic results indicated that the hydrogen yield coefficients YP/X in both reactors were 8.357 and 5.951 l-H2/g, while the coefficients of the cellular yield were 0.0268 and 0.0350 g-Cell/g, respectively. At the same biomass, the hydrogen yield in ethanol-type reactors was more than that in butyric acid reactors. However, the cellular synthesis rate in ethanol-type reactors was low when the same carbon source was used.  相似文献   

3.
Ethylene–vinyl acetate (EVA) copolymer was used to immobilize H2-producing sewage sludge for H2 production in a three-phase fluidized bed reactor (FBR). The FBR with an immobilized cell packing ratio of 10% (v/v) and a liquid recycle rate of 5 l/min (23% bed expansion) was optimal for dark H2 fermentation. The performance of the FBR reactor fed with sucrose-based synthetic medium was examined under various sucrose concentration (Cso) and hydraulic retention time (HRT). The best volumetric H2 production rate of 1.80 ± 0.02 H2 l/h/l occurred at Cso = 40 g COD/l and 2 h HRT, while the optimal H2 yield (4.26 ± 0.04 mol H2/mol sucrose) was obtained at Cso = 20 g COD/l and 6 h HRT. The H2 content in the biogas was stably maintained at 40% or above. The primary soluble metabolites were butyric acid and acetic acid, as both products together accounted for 74–83% of total soluble microbial products formed during dark H2 fermentation.  相似文献   

4.
Summary The rates of glucose utilization by fermentative bacteria and propionate and butyrate utilization by acetogenic bacteria were studied and their dependence of pCO2 in the interval 0–1 bar was determined. A batch fermentation method was used permitting good control of fermentation parameters and rapid experiments.The rate of glucose fermentation to acids, CO2 and H2 was in the order of 12,000 mg glucose/l · day which was about two orders of magnitude faster than the utilization of propionic and butyric acid by acetogenic bacteria. The rate of glucose utilization was about 30% greater at low values of pCO2 compared with 1 bar CO2.Propionate degradation was strongly affected by pCO2; rates were 60 mg/l · day at pCO2=1 bar and 200 mg/l · day at pCO2=0.2 bar. Some CO2 was required since the rate of propionate utilization dropped rapidly below pCO2=0.2 bar. The rate of butyric acid utilization was constant at 170 mg/l · day; slightly lower at pCO2=1 bar.Yields of methane from glucose or acids were close to the theoretical value 50% of degraded substrate-carbon. Yields were 20–30% higher at low values of pCO2 compared with 1 bar CO2.The redox potential was usually between –200 and –250 mV, slowly increasing to between –150 and –200 mV during fermentation. No clear connection between rates of substrate utilization, pCO2 and Eh was detected.  相似文献   

5.
Nostoc sp. was cultivated in an air-lift reactor with continuous recirculation of the head gas phase that aerated and agitated the cyanobacterial suspension at regulated flow rates. The supply of inorganic carbon for growth was coupled with pH control, in the range of 7.7 to 8.1, by intermittent sparging of CO2-head gas mixtures. The formation of irregular bubbles with swirling motion at the photostage of the reactor promoted efficient CO2 transference in dense populations of Nostoc sp. (1.1 g/l) when bubbling at flow rates of 10 l/min. Biomass productivity was almost six-fold higher in the photoreactor (16.4 mg/l.h) than in a conventional system (2.8 mg/l.h). The exponential growth phase of cultures in the photoreactor amounted to 60% of the total growth period.The authors are with the Laboratorio de Alimentos, Area Microbiologia, Facultad de Quimica Bioquimica y Farmacia, Universidad Nacional de San Luis, Chacabuco y Pedernera, 5700 San Luis, Argentina  相似文献   

6.
Production of PHA from starchy wastewater via organic acids   总被引:8,自引:0,他引:8  
Polyhydroxyalkanoate (PHA) was produced from a starchy wastewater in a two-step process of microbial acidogenesis and acid polymerization. The starchy organic waste was first digested in a thermophilic upflow anaerobic sludge blanket (UASB) reactor to form acetic (60-80%), propionic (10-30%) and butyric (5-40%) acids. The total volatile fatty acids reached 4000 mg l(-1) at a chemical oxygen demand (COD) loading rate of 25-35 g l(-1) day(-1). A carbon balance indicates that up to 43% of the organic carbon in the starchy waste went to the organic acids and the rest to biogas, volatile suspended solids and residual sludge accumulated in the reactor. The acid composition profile was affected by COD loading rate: a medium rate around 9 g l(-1) day(-1) gave a high propionic acid content (29% wt) and a high rate around 26 g l(-1) day(-1) led to a high butyric acid content (34% wt). The acids in the effluent solution after microfiltration were utilized and polymerized into PHA by bacterium Alcaligenes eutrophus in a second reactor. Fifty grams of PHA was produced from 100 g total organic carbon (TOC) utilized, a yield of 28% based on TOC, which is comparable with 55 g PHA per 100 g TOC of pure butyric and propionic acids used. PHA formation from individual acids was further investigated in a semi-batch reactor with three acid feeding rates. With a limited nitrogen source (80-100 mg NH(3) per liter), the active biomass of A. eutrophus, not including the accumulated PHA in cells, was maintained at a constant level (8-9 g l(-1)) while PHA content in the cell mass increased continuously in 45 h; 48% PHA with butyric acid and 53% PHA with propionic acid, respectively. Polyhydroxybutyrate was formed from butyric acid and poly(hydroxybutyrate-hydroxyvalerate) formed from propionic acid with 38% hydroxyvalerate.  相似文献   

7.
Summary An anaerobic hybrid reactor was used in the anaerobic treatment of an acidic petrochemical effluent. An organic loading rate of 20.04 kg COD/(m3d) at a HRT of 17 hours was obtained with a volatile fatty acid removal of 91%, and COD removal of 84%. A final reactor effluent containing 44 mg/l ammonia nitrogen and 12.3 mg/l PO4-P was produced.  相似文献   

8.
A two step biological process for the conversion of grass biomass to the biodegradable polymer medium chain length polyhydroxyalkanoate (mcl-PHA) was achieved through the use of anaerobic and aerobic microbial processes. Anaerobic digestion (mixed culture) of ensiled grass was achieved with a recirculated leach bed bioreactor resulting in the production of a leachate, containing 15.3 g/l of volatile fatty acids (VFAs) ranging from acetic to valeric acid with butyric acid predominating (12.8 g/l). The VFA mixture was concentrated to 732.5 g/l with a 93.3 % yield of butyric acid (643.9 g/l). Three individual Pseudomonas putida strains, KT2440, CA-3 and GO16 (single pure cultures), differed in their ability to grow and accumulate PHA from VFAs. P. putida CA-3 achieved the highest biomass and PHA on average with individual fatty acids, exhibited the greatest tolerance to higher concentrations of butyric acid (up to 40 mM) compared to the other strains and exhibited a maximum growth rate (μMAX?=?0.45 h?1). Based on these observations P. putida CA-3 was chosen as the test strain with the concentrated VFA mixture derived from the AD leachate. P. putida CA-3 achieved 1.56 g of biomass/l and accumulated 39 % of the cell dry weight as PHA (nitrogen limitation) in shake flasks. The PHA was composed predominantly of 3-hydroxydecanoic acid (>65 mol%).  相似文献   

9.
The growth of Clostridium populeti in 2% (w/v) glucose medium containing 0.2% (w/v) yeast extract was optimal with 10 mM NH4Cl as the nitrogen source. Although the maximum specific growth rate (=0.32 h-1) with 5 mM NH4Cl was similar, the biomass yield was about 30% lower than that at the optimum. Either sodium sulphide or cysteine-HCl at an optimum concentration of 0.33 mM and 5.0 mM respectively, could serve as the sole sulphur source for growth. The growth rate was unaffected by initial glucose concentrations of up to 10% (w/v), but in the presence of 15% glucose it declined by about 35%. The molar yield of butyric acid (mol/mol glucose) declined from 0.70 in 1% (w/v) initial glucose medium to 0.39 in 10% glucose medium. In 5.7% initial glucose medium, butyric acid levels of 6.3 g/l were obtained (0.56 mol butyrate/mol glucose) after 72 h of incubation in 2.5 l batch cultures. A decrease of about 50% in the maximum specific growth rate of C. populeti was observed in the presence of an initial concentration of either 1.2 g/l of butyric acid or 18.9 g/l of acetic acid.This paper is issued as NRCC No. 29032  相似文献   

10.
《Process Biochemistry》2004,39(10):1249-1256
The granulation process using synthetic wastewater containing pentachlorophenol (PCP) in four 1.1 l laboratory scale upflow anaerobic sludge blanket (UASB) reactors was studied, and the anaerobic biotransformation of PCP during the granulation process investigated. After 110 days granular sludge was developed and up to 160 and 180 mg/l of PCP was added into the reactors R1 and R2, respectively, when they were inoculated with acclimated anaerobic sludge from an anaerobic digester of a citric acid plant. The inoculum was predominately composed of bacilli and filamentous bacteria. Granulation did not occur in reactors R3 and R4 which were inoculated with acclimated anaerobic sludge from aerobic sludge of the municipal sewage treatment plant which consisted mainly of cocci. Despite similar bacilli in the granule, the filamentous bacteria from reactor R1 were thicker than those of reactor R2. The granular sludge had a maximum diameter of 2.5 and 2.2 mm, and SMA of 1.44 and 1.32 gCOD/gTVS per day for reactors R1 and R2, respectively. Over 98% chemical oxygen demand (COD) removal rate and 99% of PCP removal rate were achieved when reactors R1 and R2 were operated at PCP and COD loading rates of 150 and 7.5 g/l per day, respectively. H2-producing acetogens were the dominant anaerobes in the granular sludge.  相似文献   

11.
An anaerobic granular sludge was enriched to utilize H2/CO2 in a continuous gas-fed up-flow anaerobic sludge reactor by applying operating conditions expected to produce acetic acid, butyric acid, and ethanol. Three stages of fermentation were found: Stage I with acetic acid accumulation with the highest concentration of 35 mM along with a pH decrease from initial 6 to 4.5. In Stage II, H2/CO2 was replaced by 100% H2 to induce solventogenesis, whereas butyric acid was produced with the highest concentration of 2.5 mM. At stage III with 10 µM tungsten (W) addition, iso-valeric acid, valeric acid, and caproic acid were produced at pH 4.5–5.0. In the batch tests inoculated with the enriched sludge taken from the bioreactor (day 70), however, methane production occurred at pH 6. Exogenous 15 mM acetate addition enhanced both the H2 and CO2 consumption rate compared to exogenous 10, 30, and 45 mM acetate by the enriched sludge. Exogenous acetate was failed to be converted to ethanol using H2 as electron donor by the enriched acetogens.  相似文献   

12.
Somatic embryos induced from callus cultures of lemongrass [Cymbopogon flexuosus (Nees) Wats.] on Murashige and Skoog medium supplemented with 5 mg/l of 2,4-D, 0.1 mg/l of NAA and 0.5 mg/l of Kn developed into plantlets when plated on a medium supplemented with 3 mg/l of BA, 1 mg/l of GA3 and 0.1 mg/l of NAA. The regeneration potential of callus was retained for more than 2 years on the nutrient medium supplemented with comparatively lower levels of growth regulators (2,4-D at 2 mg/l, NAA at 0.1 mg/l and Kn at 0.25 mg/l). Approximately 30–35 plantlets were produced after two months of culture per 100 mg of callus inoculated. Regenerants were transplanted into soil and transferred to the field for assessment of various morphological and biochemical characteristics. The results of 1 year of field trials showed that plants derived from somatic embryoids were more uniform in all the characteristics examined when compared with the field performance of plants raised through slips by standard propagation procedures. Thus, a procedure has been developed for high frequency long term plant production of lemongrass through in vitro methods.Abbreviations 2,4-D 2,4 -dichlorophenoxyacetic acid - NAA -naphthalene acetic acid - Kn kinetin - BA benzyladenine - GA3 gibberllic acid - MS Murashige and Skoog (1962) basal medium  相似文献   

13.
Dichloromethane (8.9 mg/l) was eliminated from industrially polluted, anaerobic groundwater in a fixed-bed reactor (43 m3) which was packed with activated charcoal and operated continuously for over three years. The elimination of dichloromethane over this period was some ten-fold in excess of the sorptive capacity of the charcoal, and the elimination (3.7 mg/h·[kg of charcoal]: residence time, 49 h) was tentatively attributed to dehalogenative microorganisms immobilized on the charcoal. Anaerobic enrichment cultures, with dichloromethane as the sole added source of carbon and energy, were inoculated with material from the reactor. Reproducibly complete substrate disappearance in subcultures was observed when traces of groundwater (1%) or yeast extract (0.01%) were supplied. Fed-batch experiments under an atmosphere of CO2 plus N2 led to the conversion in 11 days of 11 mM dichloromethane to 3 mM acetate and 2 mM methane, with a growth yield of 0.4 g of protein/mol of dichloromethane; insignificant amounts (<1 M) of chloromethane accumulated. Methanogenesis could be inhibited by 50 mM 2-bromoethane sulfonate without any effect on the dehalogenation rate. The maximum dehalogenation rate was 0.13 mmol dichloromethane/h·l (2.6 mkat/kg of protein).Abbreviation DCM dichloromethane  相似文献   

14.
The effects of eight cofactors of enzymes on daptomycin production were investigated in this work, which included nicotinic acid (VPP), riboflavin (VB2), heme, thiamine (VB1), biotin (VH), cyanocobalamin (VB12), tetrahydrofolic acid (THF) and pyridoxal 5-phosphate (VB6). The dry cell weight (DCW), consumption of glucose, and daptomycin production were obviously improved when proper amount of exogenous cofactors were supplemented in the medium. The effects of heme, THF, VB12 and VB6 on daptomycin production were especially notable. The daptomycin yield enhanced 363, 104, 53 and 46%, respectively, when optimized amount of these four cofactors were supplemented in the broth. Moreover, the daptomycin yield further increased to 632 mg/l, which was over 4.5-fold higher than that of the control (without cofactors), at 132 h in a 7.5-l fermenter, by supplementation all of the eight cofactors at optimized concentrations (VPP 4 mg/l, VB2 0.5 mg/l, heme 9 mg/l, VB1 0.4 mg/l, VH 0.1 mg/l, VB12 0.04 mg/l, THF 6 mg/l and VB6 0.4 mg/l). Further, the effects of cofactors on the corresponding key enzymes and important intracellular metabolites were studied in order to elucidate the mechanism of enhancement of daptomycin production by manipulation of cofactors concentration in the fermentation culture. It is suggested that this strategy for increasing the daptomycin production in Streptomyces roseosporus LC-51 by manipulation of cofactors concentration in the fermentation culture may provide an alternative approach to enhance the production of metabolites in other Streptomyces.  相似文献   

15.
Somatic embryogenesis in cotton (Gossypium hirsutum L.) is accelerated when the plant regeneration medium is supplemented with haemoglobin (erythrogen). In cotton SVPR 2 lines, a higher frequency of embryoid formation was observed when the medium contained 400 mg/l haemoglobin. Fresh weight of the callus, rate of embryoid induction, number of embryoids formed and the percentage of plant regeneration from somatic embryos were increased. Among the two different cultivars tested, MCU 11 showed no response to the presence of haemoglobin when compared to SVPR 2, and embryogenic callus formation was completely absent in the former. Medium containing MS salts, 100 mg/l myo-inositol , 0.3 mg/l thiamine-HCL, 0.3 mg/l Picloram (PIC), 0.1 mg/l kinetin and 400 mg/l haemoglobin effected a better response with respect to embryogenic callus induction. After 8 weeks of culture, a high frequency of embryoid induction was observed on medium containing MS basal salts, 100 mg/l myo-inositol, 0.3 mg/l PIC , 0.1 mg/l isopentenyl adenine, 1.0 g/l NH4NO3 and 400 mg/l haemoglobin. Plant regeneration was observed in 75.8% of the mature somatic embryos, and whole plant regeneration was achieved within 6–7 months of culture. The regenerated plantlets were fertile and similar to in vivo-grown, seed-derived plants except that they were phenotypically smaller. A positive influence of haemoglobin was observed at concentrations up to 400 mg/l at all stages of somatic embryogenesis. The increase in the levels of antioxidant enzyme activities, for example superoxide dismutase and peroxidase, indicated the presence of excess oxygen uptake and the stressed condition of the plant tissues that arose from haemoglobin supplementation. This increased oxygen uptake and haemoglobin-mediated stress appeared to accelerate somatic embryogenesis in cotton.Abbreviations BAP Benzylaminopurine - 2,4-D 2,4-Dichlorophenoxyacetic acid - GA3 Gibberellic acid - GR Glutathione reductase - 2iP Isopentenyl adenine - KT Kinetin - NAA Naphthaleneacetic acid - PFC Perfluorocarbon - PIC Picloram - PO Peroxidase - ROS Reactive oxygen species - SOD Superoxide dismutase - T.HCl Thiamine hydrochloride  相似文献   

16.
Membrane bioreactor for drinking water denitrification   总被引:1,自引:0,他引:1  
The aim of this study is to evaluate the performance of a membrane bioreactor with cell recycle to be used for drinking water denitrification, when operated with a high nitrate load (up to 7.68?kgNO3 ?/m3?day) and low hydraulic retention time (down to 0.625?h). Nitrate and nitrite were always completely removed for all the operational conditions used. The effluent's nitrite concentration kept below 0.1?mg NO2 ?/l with exception of a short period, during the reactor start-up, when it accumulates. The performance of the membrane bioreactor was also evaluated using a groundwater containing 148?mg NO3 ?/l. Nitrate and nitrite concentration in the effluent were below the recommended values for drinking water when the reactor was controlled at pH 7.0. The membrane flux decreases during operation as a consequence of membrane fouling. The flux decrease was more severe during operation with synthetic medium than with contaminated groundwater due to the existence of molecular complexes in the synthetic broth. A backshock technique was used to reduce the surface fouling of the membrane. Combining this technique with the use of a reserve asymmetric structured membrane it was found that the membrane flux remains nearly unchanged.  相似文献   

17.
Leaves of Solanum virginianum plants were used for protoplast isolation. To support cell wall formation and cell division, protoplasts were cultured in thin alginate layers floated in liquid medium. When protoplasts were plated at a density of 1.0 × 106/ml in Kao and Michyaluk (KMp8) medium supplemented with 0.5 mg/l zeatin, 1.0 mg/l 2,4-dichlorophenoxyacetic acid, and 1.0 mg/l α-naphthaleneacetic acid, 42.3% of the dividing cells developed microcalli in 3–4 weeks. Shoot formation via organogenesis of protoplast-derived calli was achieved for 28% of calli transferred to solidified KMp8 medium supplemented with 2.0 g/l zeatin and 0.1 mg/l 3-indol acetic acid in about 2 weeks. Further shoot development was observed in Murashige and Skoog (MS) medium without growth regulators and roots were induced after transfer to MS medium containing 1.0 mg/l 3-indol butyric acid. Regenerated plants have normal morphology.  相似文献   

18.
Young healthy cotyledon and leaf explants of Rhinacanthus nasutus (L.) Kurz. were incubated on Murashige and Skoog (MS) medium supplemented with 1.0–5.0 mg/l 2, 4-dichlorophenoxyacetic acid (2,4-D) either alone or in combination with 0.3–1.5 mg/l indole-3-butyric acid (IBA). The optimum callus induction (100 %) was observed from cotyledon explants on MS medium supplemented with 4 mg/l 2, 4-D and 0.5 mg/l IBA. The friable, embryogenic callus when subcultured on half strength MS medium supplemented with IBA (3.0–5.0 mg/l) produced several somatic embryos at various stages of development (globular, heart, torpedo) after 45 days of culture. The highest frequency of callus embryogenesis was observed on ½MS medium supplemented with 4.0 mg/l IBA. Moreover, 47 % of incubated callus responded with a mean number of 16.3 somatic embryos per gram callus. For germination, somatic embryos at the torpedo stage were isolated and subcultured on ½MS medium supplemented with 0.5 mg/l each of 6-benzyladenine and indole-3-acetic acid. After 45 days of culture, plantlets developed with mean lengths of 3.8 cm. Somatic embryos at the torpedo stage were collected and suspended in a matrix of MS medium containing sodium alginate (3 % W/V), dropped into 100 mM calcium chloride (CaCl2·2H2O) solution for the production of synthetic seeds. Optimum growth ability of synthetic seed was obtained on MS medium supplemented with 0.2 mg/l gibberellic acid (GA3). Well developed healthy plantlets derived from somatic embryos and synthetic seeds were hardened and successfully transplanted to soil.  相似文献   

19.
This study was designed to examine the protective potential of zinc on the histoarchitecture distortion induced by nickel in rats. Male Sprauge Dawley (S.D) rats received either nickel alone in the form NiSO4·6H2O at a dose of 800 mg/l in drinking water, zinc alone in the form of ZnSO4·7H2O at a dose of 227 mg/l in drinking water, or nickel plus zinc or drinking water alone for a total duration of eight weeks. The effects of different treatments were studied on rat liver histoarchitecture by using both light and transmission electron microscopes. Normal control and zinc treated animals revealed normal histology of liver, however, nickel treated animals resulted in drastic alterations of normal hepatic histoarchitecture, after 8 weeks of treatment. Administration of zinc to nickel treated rats resulted in marked improvement in the structure of hepatocytes, thus emphasizing the protective potential of zinc in restoring the altered hepatic histoarchitecture close to the histoarchitecture of normal animals.  相似文献   

20.
Sulfur dioxide (SO2) is one of the major pollutantsin the atmosphere that cause acid rain. Microbialprocesses for reducing SO2 to hydrogen sulfide(H2S) have previously been demonstrated byutilizing mixed cultures of sulfate-reducing bacteria(SRB) with municipal sewage digest as the carbon andenergy source. To maximize the productivity of theSO2-reducing bioreactor in this study, variousimmobilized cell bioreactors were investigated: a stirredtank with SRB flocs and columnar reactors with cellsimmobilized in either -carrageenan gel matrix orpolymeric porous BIO-SEPTM beads. Themaximum volumetric productivity for SO2reduction in the continuous stirred-tank reactor (CSTR)with SRB flocs was 2.1 mmol SO2/h·l. The-carrageenan gel matrix used for cellimmobilization was not durable at feed sulfiteconcentrations greater than 2000 mg/l or at sulfite feedrate of 1.7 mmol/h·l. A columnar reactor withmixed SRB cells that had been allowed to grow intohighly stable BIO-SEP polymeric beads exhibited thehighest sulfite conversion rates, in the range of16.5 mmol/h·l (with 100% conversion) to20 mmol/h·l (with 95% conversion). In addition toflue gas desulfurization, potential applications of thismicrobial process include the treatment ofsulfate/sulfite-laden wastewater from the pulp and paper,petroleum, mining, and chemical industries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号