首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We examined the in vivo role of membrane-bound prostaglandin E synthase (mPGES)-1, a terminal enzyme in the PGE2-biosynthetic pathway, using mPGES-1 knockout (KO) mice. Comparison of PGES activity in the membrane fraction of tissues from mPGES-1 KO and wild-type (WT) mice indicated that mPGES-1 accounted for the majority of lipopolysaccharide (LPS)-inducible PGES in WT mice. LPS-stimulated production of PGE2, but not other PGs, was impaired markedly in mPGES-1-null macrophages, although a low level of cyclooxygenase-2-dependent PGE2 production still remained. Pain nociception, as assessed by the acetic acid writhing response, was reduced significantly in KO mice relative to WT mice. This phenotype was particularly evident when these mice were primed with LPS, where the stretching behavior and the peritoneal PGE2 level of KO mice were far less than those of WT mice. Formation of inflammatory granulation tissue and attendant angiogenesis in the dorsum induced by subcutaneous implantation of a cotton thread were reduced significantly in KO mice compared with WT mice. Moreover, collagen antibody-induced arthritis, a model for human rheumatoid arthritis, was milder in KO mice than in WT mice. Collectively, our present results provide unequivocal evidence that mPGES-1 contributes to the formation of PGE2 involved in pain hypersensitivity and inflammation.  相似文献   

3.
Peroxisome proliferator‐activated receptors (PPARs) play a major role in metabolism and inflammatory control. Exercise can modulate PPAR expression in skeletal muscle, adipose tissue, and macrophages. Little is known about the effects of PPAR‐α in metabolic profile and cytokine secretion after acute exercise in macrophages. In this context, the aim of this study was to understand the influence of PPAR‐α on exercise‐mediated immune metabolic parameters in peritoneal macrophages. Mice C57BL/6 (WT) and PPAR‐α knockout (KO) were examined in non‐exercising control (n = 4) or 24 hours after acute moderate exercise (n = 8). Metabolic parameters (glucose, non‐esterified fatty acids, total cholesterol [TC], and triacylglycerol [TG]) were assessed in serum. Cytokine concentrations (IL‐1β, IL‐6, IL‐10, TNF‐α, and MCP‐1) were measured from peritoneal macrophages cultured or not with LPS (2.5 μg/mL) and Rosiglitazone (1 μM). Exercised KO mice exhibited low glucose concentration and higher TC and TG in serum. At baseline, no difference in cytokine production between the genotypes was observed. However, IL‐1β was significantly higher in KO mice after LPS stimulus. IL‐6 and IL‐1β had increased concentrations in KO compared with WT, even after exercise. MCP‐1 was not restored in exercised KO LPS group. Rosiglitazone was not able to reduce proinflammatory cytokine production in KO mice at baseline level or associated with exercise. Acute exercise did not alter mRNA expression in WT mice. Conclusion: PPAR‐α seems to be needed for metabolic glucose homeostasis and anti‐inflammatory effect of acute exercise. Its absence may induce over‐expression of pro‐inflammatory cytokines in LPS stimulus. Moreover, moderate exercise or PPAR‐γ agonist did not reverse this response.  相似文献   

4.
Lipopolysaccharide (LPS) and ratio-detoxified LPS (Rd-LPS) from Salmonella typhimurium were analysed for their ability to stimulate murine peritoneal exudate cells (PEC) and macrophages. Rd-LPS induced much more inflammatory response as compared to LPS. PEC numbers/mouse obtained were significantly higher (3-fold) in response to Rd-LPS than LPS. The haemorrhage was induced in mice by LPS but not by Rd-LPS. Activation of macrophages in vivo by Rd-LPS was significantly higher as compared to LPS. This was evident from the increase levels of their lysosomal enzymes and cytokines. Rd-LPS induced 10-fold increase in acid phosphatase contents of macrophages as compared to controls while only 7-fold increase was obtained with LPS. Arylsulfatase and beta-glucuronidase increased by about 2-fold by Rd-LPS and LPS. Macrophages incubated with Rd-LPS in vitro showed 16-fold and 20-fold increase in the cell associated levels of arylsulfatase and beta-glucuronidase respectively as compared to unstimulated cells. On the other hand, only 6-fold increase was observed in response to LPS in the levels of both the enzymes. TNF-[symbol: see text] and IL-1 secreted by macrophages increased considerably in response to Rd-LPS as compared to those released by LPS. Rd-LPS, thus seems to be a better immunomodulator than untreated LPS.  相似文献   

5.
The pathogenesis of sepsis is complex and, unfortunately, poorly understood. The cellular process of autophagy is believed to play a protective role in sepsis; however, the mechanisms responsible for its regulation in this setting are ill defined. In the present study, interferon regulatory factor 1 (IRF-1) was found to regulate the autophagic response in lipopolysaccharide (LPS)-stimulated macrophages. In vivo, tissue macrophages obtained from LPS-stimulated IRF-1 knockout (KO) mice demonstrated increased autophagy and decreased apoptosis compared to those isolated from IRF-1 wild-type (WT) mice. In vitro, LPS-stimulated peritoneal macrophages obtained from IRF-1 KO mice experienced increased autophagy and decreased apoptosis. IRF-1 mediates the inhibition of autophagy by modulating the activation of the mammalian target of rapamycin (mTOR). LPS induced the activation of mTOR in WT peritoneal macrophages, but not in IRF-1 KO macrophages. In contrast, overexpression of IRF-1 alone increased the activation of mTOR and consequently decreased autophagic flux. Furthermore, the inhibitory effects of IRF-1 mTOR activity were mediated by nitric oxide (NO). Therefore, we propose a novel role for IRF-1 and NO in the regulation of macrophage autophagy during LPS stimulation in which IRF-1/NO inhibits autophagy through mTOR activation.  相似文献   

6.
Adjuvant activity of Klebsiella O3 lipopolysaccharide (KO3 LPS) in augmenting antibody response and delayed-type hypersensitivity to protein antigens in SMA mice was much stronger than that of LPS from Escherichia coli O55 and O127 (EO55 LPS and EO127 LPS). Relationship between strength of the adjuvant activity and that of the ability to induce interleukin-1 (IL-1) secretion by peritoneal macrophages from C3H/HeN or SMA mice was investigated using these three kinds of LPS. When supernatant samples of macrophages cultured at 37 °C for 24 hr in the presence of 5 μg/ml LPS were assayed by their mitogenic effect on thymocytes from C3H/HeJ mice, KO3 LPS induced the secretion of about four to six times greater amounts of IL-1 activity than did EO127 LPS. When concentration of LPS used for stimulation of macrophages was varied from 0.1 to 50 μg/ml, KO3 LPS induced the secretion of definitely greater amounts of IL-1 activity than did EO55 LPS and EO127 LPS throughout the LPS concentrations tested. Nearly the same amount of IL-1 activity as that produced by 10 μg/ml EO55 LPS or 50 μg/ml EO127 LPS could be produced by 1.0 μg/ml or lower concentrations of KO3 LPS.  相似文献   

7.
Adenosine is a biologically active molecule that is formed at sites of metabolic stress associated with trauma and inflammation, and its systemic level reaches high concentrations in sepsis. We have recently shown that inactivation of A2A adenosine receptors decreases bacterial burden as well as IL-10, IL-6, and MIP-2 production in mice that were made septic by cecal ligation and puncture (CLP). Macrophages are important in both elimination of pathogens and cytokine production in sepsis. Therefore, in the present study, we questioned whether macrophages are responsible for the decreased bacterial load and cytokine production in A2A receptor-inactivated septic mice. We showed that A2A KO and WT peritoneal macrophages obtained from septic animals were equally effective in phagocytosing opsonized E. coli. IL-10 production induced by opsonized E. coli was decreased in macrophages obtained from septic A2A KO mice as compared to WT counterparts. In contrast, the release of IL-6 and MIP-2 induced by opsonized E. coli was higher in septic A2A KO macrophages than WT macrophages. These results suggest that peritoneal macrophages are not responsible for the decreased bacterial load and diminished MIP-2 and IL-6 production that are observed in septic A2A KO mice. In contrast, peritoneal macrophages may contribute to the suppressive effect of A2A receptor inactivation on IL-10 production during sepsis.  相似文献   

8.
9.
This study investigated the role of glutathione peroxidase-1 (GPX1) in protein oxidation in peritoneal macrophages. Macrophages isolated from both wild-type (WT) and GPX1 knockout (KO) mice were activated by lipopolysaccharide (LPS, 1 microg/ml) and interferon-gamma (IFN, 10 U/ml for 24 or 48 h in the presence or absence of 1 microM diquat (DQ), 250 microM aminoguanidine (AG, an inhibitor of inducible nitric oxide synthase), and (or) 100 microM diethyldithiocarbamate (DETC, an inhibitor of Cu,Zn-SOD). In the KO macrophages, there was no protein band detected by Western blot with anti-GPX1 antibody and 98% reduction in total GPX activity compared with WT cells. Nitric oxide (NO) synthesis was greatly enhanced after 24 h by GPX1 knockout and DQ, but inhibited by AG or DETC. Protein carbonyl formation in total cell extract was clearly associated with NO synthesis as higher levels of protein carbonyl were detected in activated KO than WT macrophages, and DQ enhanced slightly while AG or DETC virtually blocked its formation. A similarly marginal effect of GPX1 KO was observed on protein nitration. The LPS/IFN/DQ-induced DNA fragmentation was blocked by AG, but not by DETC. Cell viability at 48 h was decreased by the LPS/IFN activation and further reduced by the addition of DQ, but restored by AG. In conclusion, GPX1 affects the NO production in activated peritoneal macrophages and protects these cells against NO-associated protein oxidation.  相似文献   

10.
Bruton's tyrosine kinase (Btk) is a critical signaling mediator downstream of the B cell Ag receptor. X-linked agammaglobulinemia is caused by mutations in Btk resulting in multiple defects in B cell development and function, and recurrent bacterial infections. Recent evidence has also supported a role for Btk in TLR signaling. We demonstrate that Btk is activated by TLR4 in primary macrophages and is required for normal TLR-induced IL-10 production in multiple macrophage populations. Btk-deficient bone marrow-derived macrophages secrete decreased levels of IL-10 in response to multiple TLR ligands, compared with wild-type (WT) cells. Similarly, Btk-deficient peritoneal and splenic macrophages secrete decreased IL-10 levels compared with WT cultures. This phenotype correlates with Btk-dependent induction of NF-kappaB and AP-1 DNA binding activity, and altered commensal bacteria populations. Decreased IL-10 production may be responsible for increased IL-6 because blocking IL-10 in WT cultures increased IL-6 production, and supplementation of IL-10 to Btk-deficient cultures decreased IL-6 production. Similarly, injection of IL-10 in vivo with LPS decreases the elevated IL-6 serum levels during endotoxemia in Btk-deficient mice. These data further support a role for Btk in regulating TLR-induced cytokine production from APCs and provide downstream targets for analysis of Btk function.  相似文献   

11.
Host responses to Pneumocystis carinii infection mediate impairment of pulmonary function and contribute to the pathogenesis of pneumonia. IL-10 is known to inhibit inflammation and reduce the severity of pathology caused by a number of infectious organisms. In the present studies, IL-10-deficient (IL-10 knockout (KO)) mice were infected with P. carinii to determine whether the severity of pathogenesis and the efficiency of clearance of the organisms could be altered in the absence of IL-10. The clearance kinetics of P. carinii from IL-10 KO mice was significantly enhanced compared with that of wild-type (WT) mice. This corresponded to a more intense CD4(+) and CD8(+) T cell response as well as an earlier neutrophil response in the lungs of IL-10 KO mice. Furthermore, IL-12, IL-18, and IFN-gamma were found in the bronchoalveolar lavage fluids at earlier time points in IL-10 KO mice suggesting that alveolar macrophages were activated earlier than in WT mice. However, when CD4(+) cells were depleted from P. carinii-infected IL-10 KO mice, the ability to enhance clearance was lost. Furthermore, CD4-depleted IL-10 KO mice had significantly more lung injury than CD4-depleted WT mice even though the intensity of the inflammatory responses was similar. This was characterized by increased vascular leakage, decreased oxygenation, and decreased arterial pH. These data indicate that IL-10 down-regulates the immune response to P. carinii in WT mice; however, in the absence of CD4(+) T cells, IL-10 plays a critical role in controlling lung damage independent of modulating the inflammatory response.  相似文献   

12.
Vasoactive intestinal peptide (VIP) is a pleiotropic neuropeptide with immunomodulatory properties. The administration of this peptide has been shown to have beneficial effects in murine models of inflammatory diseases including septic shock, rheumatoid arthritis, multiple sclerosis (MS) and Crohn's disease. However, the role of the endogenous peptide in inflammatory disease remains obscure because VIP-deficient mice were recently found to exhibit profound resistance in a model of MS. In the present study, we analyzed the response of female VIP deficient (KO) mice to intraperitoneal lipopolysaccharide (LPS) administration. We observed significant resistance to LPS in VIP KO mice, as evidenced by lower mortality and reduced tissue damage. The increased survival was associated with decreased levels of proinflammatory cytokines (TNFα, IL-6 and IL-12) in sera and peritoneal suspensions of these mice. Moreover, the expression of TNFα and IL-6 mRNA was reduced in peritoneal cells, spleens and lungs from LPS-treated VIP KO vs. WT mice, suggesting that the resistance might be mediated by an intrinsic defect in the responsiveness of immune cells to endotoxin. In agreement with this hypothesis, peritoneal cells isolated from VIP KO naive mice produced lower levels of proinflammatory cytokines in response to LPS in vitro. Finally, decreased NF-κB pathway activity in peritoneal cells was observed both in vivo and in vitro, as determined by assay of phosphorylated I-κB. The results demonstrate that female VIP KO mice exhibit resistance to LPS-induced shock, explainable in part by the presence of an intrinsic defect in the responsiveness of inflammatory cells to endotoxin.  相似文献   

13.
In the present study, we used IL-6 knock-out mice (IL-6KO) to evaluate a possible role of IL-6 in the pathogenesis of non-septic shock induced by peritoneal injection of zymosan. A severe inflammatory response characterized by peritoneal exudation, high peritoneal levels of nitrate/nitrite, and leukocyte infiltration into peritoneal exudate was induced by zymosan administration in wild-type control (WT) mice. This inflammatory process coincided with the damage to the lung and small intestine, as assessed by histological examination. Lung, small intestine and liver myeloperoxidase (MPO) activity, indicative of neutrophil infiltration and lipid peroxidation, were significantly increased in zymosan-treated WT mice. Peritoneal administration of zymosan in the WT mice also induced a significant increase in the plasma levels of nitrite/nitrate and in the levels of peroxynitrite, 18 hours after zymosan challenge. Immunohistochemical examination demonstrated a marked increase in the immunoreactivity to nitrotyrosine in the lung of zymosan-treated WT mice. Zymosan-treated IL-6KO showed significantly decreased mortality and inhibition of the development of peritonitis. In addition, IL-6KO mice showed significant protection from the development of organ failure, since tissue injury and MPO was reduced in the lung, small intestine and liver. Furthermore, a significant reduction of suppression of mitochondrial respiration, DNA strand breakage and reduction of cellular levels of NAD+ was observed in ex vivo macrophages harvested from the peritoneal cavity of IL-6KO mice subjected to zymosan-induced non-septic shock. In vivo treatment with anti-IL-6 (5,000 ng/day per mouse, 24 and 1 hour before zymosan administration) significantly reduced the inflammatory process. Taken together, the present study clearly demonstrates that IL-6 exerts a role in zymosan-induced non-septic shock.  相似文献   

14.
Pulmonary inflammation, abnormalities in alveolar type II cell and macrophage morphology, and pulmonary fibrosis are features of Hermansky-Pudlak Syndrome (HPS). We used the naturally occurring "pearl" HPS2 mouse model to investigate the mechanisms of lung inflammation observed in HPS. Although baseline bronchoalveolar lavage (BAL) cell counts and differentials were similar in pearl and strain-matched wild-type (WT) mice, elevated levels of proinflammatory (MIP1gamma) and counterregulatory (IL-12p40, soluble TNFr1/2) factors, but not TNF-alpha, were detected in BAL from pearl mice. After intranasal LPS challenge, BAL levels of TNF-alpha, MIP1alpha, KC, and MCP-1 were 2- to 3-fold greater in pearl than WT mice. At baseline, cultured pearl alveolar macrophages (AMs) had markedly increased production of inflammatory cytokines. Furthermore, pearl AMs had exaggerated TNF-alpha responses to TLR4, TLR2, and TLR3 ligands, as well as increased IFN-gamma/LPS-induced NO production. After 24 h in culture, pearl AM LPS responses reverted to WT levels, and pearl AMs were appropriately refractory to continuous LPS exposure. In contrast, cultured pearl peritoneal macrophages and peripheral blood monocytes did not produce TNF-alpha at baseline and had LPS responses which were no different from WT controls. Exposure of WT AMs to heat- and protease-labile components of pearl BAL, but not WT BAL, resulted in robust TNF-alpha secretion. Similar abnormalities were identified in AMs and BAL from another HPS model, pale ear HPS1 mice. We conclude that the lungs of HPS mice exhibit hyperresponsiveness to LPS and constitutive and organ-specific macrophage activation.  相似文献   

15.
Nitric oxide (NO) reacts with superoxide to produce peroxynitrite, a potent oxidant and reportedly exerts cytotoxic action. Herein we validated the hypothesis that interaction of NO with superoxide exerts protection against superoxide toxicity using macrophages from mice with a knockout (KO) of inducible NO synthase (NOS2) and superoxide dismutase 1 (SOD1), either individually or both. While no difference was observed in viability between wild-type (WT) and NOS2KO macrophages, SOD1KO and SOD1-and NOS2-double knockout (DKO) macrophages were clearly vulnerable and cell death was observed within four days. A lipopolysaccharide (LPS) treatment induced the formation of NOS2, which resulted in NO production in WT and these levels were even higher in SOD1KO macrophages. The viability of the DKO macrophages but not SOD1KO macrophages were decreased by the LPS treatment. Supplementation of NOC18, a NO donor, improved the viability of SOD1KO and DKO macrophages both with and without the LPS treatment. The NOS2 inhibitor nitro-l-arginine methyl ester consistently decreased the viability of LPS-treated SOD1KO macrophages but not WT macrophages. Thus, in spite of the consequent production of peroxynitrite in LPS-stimulated macrophages, the coordinated elevation of NO appears to exert anti-oxidative affects by coping with superoxide cytotoxicity upon conditions of inflammatory stimuli.  相似文献   

16.
The present study was conducted to critically determine the protective role of IL-18 in host response to Mycobacterium tuberculosis infection. IL-18-deficient (knockout (KO)) mice were slightly more prone to this infection than wild-type (WT) mice. Sensitivity of IL-12p40KO mice was lower than that of IL-12p40/IL-18 double KO mice. IFN-gamma production caused by the infection was significantly attenuated in IL-18KO mice compared with WT mice, as indicated by reduction in the levels of this cytokine in sera, spleen, lung, and liver, and its synthesis by spleen cells restimulated with purified protein derivatives. Serum IL-12p40 level postinfection and its production by peritoneal exudate cells stimulated with live bacilli were also significantly lower in IL-18KO mice than WT mice, suggesting that attenuated production of IFN-gamma was secondary to reduction of IL-12 synthesis. However, this was not likely the case, because administration of excess IL-12 did not restore the reduced IFN-gamma production in IL-18KO mice. In further studies, IL-18 transgenic mice were more resistant to the infection than control littermate mice, and serum IFN-gamma level and its production by restimulated spleen cells were increased in the former mice. Taken together, our results indicate that IL-18 plays an important role in Th1 response and host defense against M. tuberculosis infection although the contribution was not as profound as that of IL-12p40.  相似文献   

17.
Pulmonary Cryptococcus neoformans infection of C57BL/6 mice is an established model of a chronic pulmonary fungal infection accompanied by an "allergic" response (T2) to the infection, i.e., a model of an allergic bronchopulmonary mycosis. Our objective was to determine whether IFN-gamma plays a role in regulating the pulmonary T2 immune response in C. neoformans-infected C57BL/6 mice. Long-term pulmonary fungistasis was lost in IFN-gamma knockout (KO) mice, resulting in an increased pulmonary burden of fungi at wk 3. IFN-gamma was required for the early influx of leukocytes into the lungs but was not required later in the infection. By wk 3, eosinophil and macrophage numbers were elevated in the absence of IFN-gamma. The inducible NO synthase to arginase ratio was lower in the lungs of IFN-gamma KO mice and the macrophages had increased numbers of intracellular cryptococci and YM1 crystals, indicative of alternatively activated macrophages in these mice. There was evidence of pulmonary fibrosis in both wild-type and IFN-gamma KO mice by 5 wk postinfection. IFN-gamma production was not required for the development of T2 cytokine (IL-4, IL-5, IL-13) producing cells in the lungs and lung-associated lymph nodes or induction of an IgE response. At a number of time points, T2 cytokine production was enhanced in IFN-gamma KO mice. Thus, in the absence of IFN-gamma, C57BL/6 mice develop an augmented allergic response to C. neoformans, including enhanced generation of alternatively activated macrophages, which is accompanied by a switch from a chronic to a progressive pulmonary cryptococcal infection.  相似文献   

18.
The multifunctional cytokine interleukin (IL)-6 has been shown to modulate inflammation and angiogenesis. In a mouse model of lung angiogenesis induced by chronic left pulmonary artery ligation (LPAL), we previously showed increased expression of IL-6 mRNA in lung homogenates 4 h after the onset of pulmonary ischemia. To determine whether IL-6 influences both new vessel growth and inflammatory cell influx, we studied wild-type (WT) and IL-6-deficient C57Bl/6J (KO) mice after LPAL (4 h and 1, 7, 14 days). We measured IL-6 protein of the lung by ELISA, the lavage cell profile of the left lung, and new systemic vessel growth with radiolabeled microspheres (14 days after LPAL) in WT and KO mice. We confirmed a 2.4-fold increase in IL-6 protein in the left lung of WT mice compared with right lung 4 h after LPAL. A significant increase in lavaged neutrophils (7.5% of total cells) was observed only in WT mice 4 h after LPAL. New vessel growth was significantly attenuated in KO relative to WT (0.7 vs. 1.9% cardiac output). In an additional series, treatment of WT mice with anti-neutrophil antibody demonstrated a reduction in lavaged neutrophils 4 h after LPAL; however, IL-6 protein remained elevated and neovascularization to the left lung (2.3% cardiac output) was not altered. These results demonstrate that IL-6 plays an important modulatory role in lung angiogenesis, but the changes are not dependent on trapped neutrophils.  相似文献   

19.
Necrotizing enterocolitis (NEC) is an emergency of the newborn that often requires surgery. Growth factors from stem cells may aid in decreasing intestinal damage while also promoting restitution. We hypothesized that 1) TNF, LPS, or hypoxia would alter bone marrow mesenchymal stem cell (BMSC) TNF, IGF-1, IL-6, and VEGF production, and 2) TNF receptor type 1 (TNFR1) or type 2 (TNFR2) ablation would result in changes to the patterns of cytokines and growth factors produced. BMSCs were harvested from female wild-type (WT), TNFR1 knockout (KO), and TNFR2KO mice. Cells were stimulated with TNF, LPS, or hypoxia. After 24 h, cell supernatants were assayed via ELISA. Production of TNF and IGF-1 was decreased in both knockouts compared with WT regardless of the stimulus utilized, whereas IL-6 and VEGF levels appeared to be cooperatively regulated by both the activated TNF receptor and the initial stimulus. IL-6 was increased compared with WT in both knockouts following TNF stimulation but was significantly decreased with LPS. Compared with WT, hypoxia increased IL-6 in TNFR1KO but not TNFR2KO cells. TNF stimulation decreased VEGF in TNFR2KO cells, whereas TNFR1 ablation resulted in no change in VEGF compared with WT. TNFR1 ablation resulted in a decrease in VEGF following LPS stimulation compared with WT; no change was noted in TNFR2KO cells. With hypoxia, TNFR1KO cells expressed more VEGF compared with WT, whereas no difference was noted between WT and TNFR2KO cells. TNF receptor ablation modifies BMSC cytokine production. Identifying the proper stimulus and signaling cascades for the production of desired growth factors may be beneficial in maximizing the therapeutic potential of stem cells.  相似文献   

20.
Three-week exercise training decreased the steady state level of beta(2)-adrenergic receptor (beta(2)AR) mRNA in peritoneal macrophages from BALB/c mice. When peritoneal macrophages from both exercise-trained and sedentary control mice were stimulated with lipopolysaccharide (LPS), interleukin (IL)-12 mRNA and protein expression was markedly higher in trained mice than in control mice. To determine whether enhanced production of IL-12 was associated with decreased expression of beta(2)AR, we transfected the macrophage cell line, RAW264, with a eukaryotic expression vector containing beta(2)ar cDNA, establishing a cell line overexpressing beta(2)AR (RAWar). Following LPS stimulation, IL-12 mRNA and protein expression was significantly lower in RAWar cells than in RAW264 cells transfected with vector alone (RAWvec). Furthermore, when the expression of transfected beta(2)AR in RAWar cells was down-regulated by a tetracycline repressor-regulated mammalian expression system, expression of IL-12 mRNA and protein following LPS stimulation tended to return to the levels in RAWvec cells. These findings indicate that macrophage production of IL-12 following LPS stimulation is regulated by the expression level of beta(2)AR, suggesting that the down-regulation of beta(2)AR expression associated with exercise training improves IL-12-induced type 1 helper T cell-mediated immune responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号