首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The 13C-NMR spectra of the reaction intermediates of D-amino acid oxidase (DAO) were measured with DAO reconstituted with FAD in which the 2-, 4-, 4a-, and 10a-positions of the isoalloxazine moiety were selectively 13C-enriched. The reaction intermediates used include charge-transfer complexes of the oxidized DAO with substrate intermediates and those of the reduced enzyme with substrate intermediates. For the former type of complex, the reaction intermediates with beta-cyano-D-alanine (D-BCNA) and D-proline were used, while for the latter the purple intermediates with D-alanine and D-proline were chosen. The 13C-resonances of 2-13C in the reaction intermediates with D-BCNA and D-proline were downfield-shifted by about 1 ppm relative to the free oxidized DAO. The 4-13C signal for the DAO-D-BCNA intermediate was observed at 1.2 ppm upfield from that of the oxidized DAO, though that for DAO-D-proline intermediate showed no shift. These results suggest modulation of the hydrogen bondings at C(2) = 0 and/or C(4) = 0 in these reaction intermediates. Comparison of the 13C-resonances of reduced DAO with those of free reduced FMN in the neutral and anionic forms indicate that FAD in reduced DAO is in the anionic reduced form. The 4a-13C resonance of reduced DAO is upfield-shifted by about 3 ppm from that of free reduced anionic FMN. Comparison of the 13C-resonances for the purple intermediates with those of reduced FMN and reduced DAO indicate unequivocally that FAD in the purple intermediate is in the anionic reduced state. The 4a-13C resonances for the purple intermediates were substantially upfield-shifted (by 2.4 ppm with D-alanine and 1.9 ppm with D-proline) relative to reduced DAO. This indicates that the electron density, and hence the nucleophilicity, of the 4a-carbon is elevated in the purple intermediate relative to free reduced DAO. This leads to a model in which the oxidative half reaction proceeds via the reaction of molecular oxygen at the 4a-position of the reduced FAD in the purple intermediate. This provides a rational molecular basis for the oxidative half reaction by way of the purple intermediate prior to product release rather than by way of free reduced enzyme after product release.  相似文献   

2.
The interactions of competitive inhibitors, o-, m-, and p-fluorobenzoates, with porcine kidney D-amino acid oxidase (DAO) were studied by 19F-NMR spectroscopy. The 19F-signals of DAO-bound fluorobenzoates were observed as considerably broadened peaks. The chemical shifts, which are referenced to 20 mM NaF in 50 mM sodium phosphate, pH 7.0, were 6.0, 8.2, and 11.9 ppm for free o-, m-, and p-fluorobenzoates, respectively, while those of o-, m-, and p-fluorobenzoates bound to DAO were 12.5, 5.4, and 13.1 ppm, respectively. The 19F-signals of bound o- and p-fluorobenzoates were downfield-shifted relative to those of the free species, whereas the 19F-resonance of m-fluorobenzoate was up-field shifted from that of the free ligand. The magnitude of the chemical shift difference between the free and bound forms decreases in the order of o-, m-, and p-fluorobenzoates. The remarkably large downfield shift of the o-fluorobenzoate when bound to DAO was attributed to the close proximity of the ortho-fluorine atom to the flavin nucleus in comparison with meta- or para-fluorine. The pH-dependences of the 19F-resonances of o-, m-, and p-fluorobenzoates were observed and the pKa values of 3.33, 3.80, and 4.05 were obtained for the carboxyl groups of o-, m-, and p-fluorobenzoates, respectively. It was observed that the 19F-resonances of o- and p-fluorobenzoates are highly sensitive to the ionic state of the carboxyl group, while that of m-fluorobenzoate was moderately sensitive.  相似文献   

3.
The apoenzyme of NADPH oxidoreductase, 'old yellow enzyme', was reconstituted with selectively 13C-enriched flavin mononucleotides and investigated by 13C NMR spectroscopy. The 13C NMR results confirm the results obtained by 15N NMR spectroscopy and yield additional information about the coenzyme-apoenzyme interaction. A strong deshielding of the C(2) and C(4) atoms of enzyme-bound FMN both in the oxidized and reduced state is observed, which is supposed to be induced by hydrogen-bond formation between the protein and the two carbonyl groups at C(2) and C(4) of the isoalloxazine ring system. The chemical shifts of all 13C resonances of the flavin in the two-electron-reduced state indicate that the N(5) atom is sp3-hybridized. From 31P NMR measurements it is concluded that the FMN phosphate group is not accessible to bulk solvent. The unusual 31P chemical shift of FMN in old yellow enzyme seems to indicate a different binding mode of the FMN phosphate group in this enzyme as compared to the flavodoxins. The 13C and 15N NMR data on the old-yellow-enzyme--phenolate complexes show that the atoms of the phenolate are more deshielded whereas the atoms of the enzyme-bound isoalloxazine ring are more shielded upon complexation. A non-linear correlation exists between the chemical shifts of the N(5) and the N(10) atoms and the pKa value of the phenolate derivative bound to the protein. Since the chemical shifts of N(5), N(10) and C(4a) are influenced most on complexation it is suggested that the phenolate is bound near the pyrazine ring of the isoalloxazine system. 15N NMR studies on the complex between FMN and 2-aminobenzoic acid indicate that the structure of this complex differs from that of the old-yellow-enzyme--phenolate complexes.  相似文献   

4.
Resonance Raman (RR) spectra of the complex of anionic semiquinoid D-amino acid oxidase (DAO) with picolinate in H2O and D2O were observed in the 300-1,750 cm-1 region. RR spectra were also measured for the complex of the semiquinoid enzyme reconstituted with isotopically labeled FAD's, i.e., [4a-13C]-, [4,10a-13C2]-, [2-13C]-, [5-15N]-, and [1,3-15N2]-FAD. On the basis of the isotope effects, tentative assignments of the observed bands of the anionic semiquinoid flavin were made. The spectra differ from those of oxidized, neutral semiquinoid, and anionic reduced flavins previously reported. The 1,602 cm-1 band was not shifted for any FAD labeled in ring II and/or ring III and was assigned to a ring I mode. The 1,516 cm-1 band underwent an isotopic shift upon [4a-13C]- or [4,10a-13C2]-labeling. The band was assigned to the mode containing C(4a)-C(10a) stretching. The 1,331 and 1,292 cm-1 bands shifted upon [4a-13C]- or [5-15N]-labeling and were assigned to the modes containing C(4a)-N(5) stretching. The 1,217 and 1,188 cm-1 bands were assigned to the skeletal vibrations of ring III coupled with the N(3)-H bending mode. The RR spectrum of the complex of anionic semiquinoid DAO with alpha-iminopropionate or N-methyl-alpha-iminopropionate was essentially identical with that of the complex with picolinate.  相似文献   

5.
Resonance Raman (RR) spectra of purple intermediates of L-phenylalanine oxidase (PAO) with non-labeled and isotopically labeled phenylalanines as substrates, i.e., [1-13C], [2-13C], [ring-U-13C6], and [15N]phenylalanines, were measured with excitation at 632.8 nm within the broad absorption band around 540 nm. The spectra obtained resemble those of purple intermediates of D-amino acid oxidase (DAO). The isotope effects on the 1,665 cm-1 band with [15N] or [2-13C]phenylalanine indicate that the band is due to the C = N stretching mode of an imino acid derived from phenylalanine, i.e., alpha-imino-beta-phenylpropionate. The intense band at 1,389 cm-1 is contributed to by the CO2- symmetric stretching and C-CO2- stretching modes of alpha-imino-beta-phenylpropionate. The 1,602 cm-1 band, which does not shift upon isotopic substitution of phenylalanine, corresponds to the 1,605 cm-1 band of DAO purple intermediates and was assigned to a vibrational mode associated with the C(10a) = C(4a) - C(4) = O moiety of reduced flavin. These results confirm that PAO purple intermediates consist of the reduced enzyme and an imino acid derived from a substrate, and suggest that the plane defined by C(10a) = C(4a) - C(4) = O of reduced flavin and the plane containing H2+N = C - CO2- of an imino acid are arranged in close contact to each other, generating a charge-transfer interaction.  相似文献   

6.
Thioredoxin reductase (TrxR) from Escherichia coli, the mutant proteins E159Y and C138S, and the mutant protein C138S treated with phenylmercuric acetate were reconstituted with [U-(13)C(17),U-(15)N(4)]FAD and analysed, in their oxidized and reduced states, by (13)C-, (15)N- and (31)P-NMR spectroscopy. The enzymes studied showed very similar (31)P-NMR spectra in the oxidized state, consisting of two peaks at -9.8 and -11.5 p.p.m. In the reduced state, the two peaks merge into one apparent peak (at -9.8 p.p.m.). The data are compared with published (31)P-NMR data of enzymes closely related to TrxR. (13)C and (15)N-NMR chemical shifts of TrxR and the mutant proteins in the oxidized state provided information about the electronic structure of the protein-bound cofactor and its interactions with the apoproteins. Strong hydrogen bonds exist between protein-bound flavin and the apoproteins at C(2)O, C(4)O, N(1) and N(5). The N(10) atoms in the enzymes are slightly out of the molecular plane of the flavin. Of the ribityl carbon atoms C(10alpha,gamma,delta) are the most affected upon binding to the apoprotein and the large downfield shift of the C(10gamma) atom indicates strong hydrogen bonding with the apoprotein. The hydrogen bonding pattern observed is in excellent agreement with X-ray data, except for the N(1) and the N(3) atoms where a reversed situation was observed. Some chemical shifts observed in C138S deviate considerably from those of the other enzymes. From this it is concluded that C138S is in the FO conformation and the others are in the FR conformation, supporting published data. In the reduced state, strong hydrogen bonding interactions are observed between C(2)O and C(4)O and the apoprotein. As revealed by the (15)N chemical shifts and the N(5)H coupling constant the N(5) and the N(10) atom are highly sp(3) hybridized. The calculation of the endocyclic angles for the N(5) and the N(10) atoms shows the angles to be approximately 109 degrees, in perfect agreement with X-ray data showing that the flavin assumes a bent conformation along the N(10)/N(5) axis of the flavin. In contrast, the N(1) is highly sp(2) hybridized and is protonated, i.e. in the neutral state. Upon reduction of the enzymes, the (13)C chemical shifts of some atoms of the ribityl side chain undergo considerable changes also indicating conformational rearrangements of the side-chain interactions with the apoproteins. The chemical shifts between native TrxR and C138S are now rather similar and differ from those of the two other mutant proteins. This strongly indicates that the former enzymes are in the FO conformation and the other two are in the FR conformation. The data are discussed briefly in the context of published NMR data obtained with a variety of flavoproteins.  相似文献   

7.
The 31P- and 13C-NMR spectra of old yellow enzyme (OYE) were measured. The 31P-NMR signal of FMN bound to apo OYE-I, one of the pure forms of OYE, was observed at a substantially lower field compared to that of free FMN. While the 31P-signal of free FMN is pH-titratable with a pK value of about 6.5, which corresponds to the monoanion-dianion transition of the phosphate group, the 31P-signal of FMN bound to OYE-I shows no pH-dependence at pH 5-9, indicating that the phosphate group of FMN bound to OYE-I is fixed in the dianionic form in the pH region of 5-9. Apo OYE(0), i.e., the OYE preparation obtained by the conventional method, was reconstituted with [2-13C]FMN or [4,10a-13C2]FMN, while apo OYE-I was reconstituted with [4a-13C]FMN. The 13C-NMR spectra of these reconstituted OYE species were measured in the absence and presence of phenolic compounds which form complexes with OYE. Each 13C-signal of the 13C-labeled FMN became broader in the bound state compared to the free state, indicating restriction of flavin mobility in the bound form. Complex formation of the reconstituted OYE species with p-bromophenol did not shift the 10a-13C signal but shifted the 2- and 4-13C signals slightly upfield, whereas the 4a-13C signal was shifted significantly upfield in the complexed form. This complex-induced upfield shift of the 4a-13C signal was measured with various p-substituted phenols.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Resonance Raman (RR) spectra of the complex of pig kidney medium-chain acyl-CoA dehydrogenase with acetoacetyl-CoA and of the purple complex formed upon the addition of octanoyl-CoA to the dehydrogenase were obtained. RR spectra were also measured for the complexes prepared by using isotopically labeled compounds, i.e., [3-13C]-, [1,3-13C]-, and [2,4-13C2]acetoacetyl-CoA; [1-13C]octanoyl-CoA; the dehydrogenase reconstituted with [4a-13C]- and [4,10a-13C2]FAD. Both bands of oxidized flavin and acetoacetyl-CoA were resonance-enhanced in the 632.8 nm excited spectra of the acetoacetyl-CoA complex; this confirms that the broad long-wavelength absorption band is a charge-transfer absorption band between oxidized flavin and acetoacetyl-CoA. The 1,622 cm-1 band was assigned to the C(3)=O stretching mode coupling with the C(2)-H bending mode of the enolate form of acetoacetyl-CoA and the bands at 1,483 and 1,119 cm-1 were assigned to bands associated with the C(2)=C(1)-O- moiety. Both bands of fully reduced flavin and the substrate were resonance-enhanced in the 632.8 nm excited spectra of the purple complex. As the enzyme is already reduced, the substrate must be oxidized to octenoyl-CoA; the complex is a charge-transfer complex between the reduced enzyme and octenoyl-CoA. The low frequency value of the 1,577 cm-1 band, which is associated with the C(2)-C(1)=O moiety of the octenoyl-CoA, suggests that the enzyme-bound octenoyl-CoA has an appreciable contribution of C(2)=C(1)-O-.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
To investigate the structural modulation of ligands and their interaction in the active-site nanospace when they form charge-transfer (CT) complexes with D-amino acid oxidase (DAO) in three redox states, we compared Raman bands of the ligands in complex with DAO with those of ligands free in solution. Isotope-labeled ligands were synthesized for assignments of observed bands. The COO(-) stretching of ligands observed around, 1,370 cm(-1) downshifted by about 17 cm(-1) upon complexation with oxidized, semiquinoid and reduced DAO, except for the case of reduced DAO-N-methylisonicotinate complex (8 cm(-1) downward shift); the interaction mode of the carboxylate group with the guanidino group of Arg283 and the hydroxy moiety of Tyr228 of DAO is similar in the three redox states. The C=N stretching mode (1,704 cm(-1)) of Delta(1)-piperideine-2-carboxylate (D1PC) downshifted to 1,675 and 1,681 cm(-1) upon complexation with reduced and semiquinoid DAO, respectively. The downward shifts indicate that the C=N bond is weakened upon the complexation. This is probably due mainly to charge-transfer (CT) interaction between D1PC and semiquinoid or reduced flavin, i.e., the partial electron donation from the highest occupied molecular orbital (HOMO) of reduced flavin or a singly occupied molecular orbital (SOMO) of semiquinoid flavin to the lowest unoccupied molecular orbital (LUMO), an antibonding orbital, of D1PC. This speculation was supported by the finding that the magnitude of the shift is smaller by 5 cm(-1) (observed at 1,680 cm(-1)) in the case of reduced DAO reconstituted with 7,8-Cl(2)-FAD, whose reduced form has lower electron-donating ability than natural reduced FAD. The amount of electron flow was estimated by applying the theory of Friedrich and Person [(1966) J. Chem. Phys. 44, 2166-2170] to these complexes; the amounts of charge transfer from reduced FAD and reduced 7,8-Cl(2)-FAD to D1PC were estimated to be about 10 and 8% of one electron, respectively, in the CT complexes of reduced DAO with D1PC.  相似文献   

10.
The carbon-13 nuclear magnetic resonance spectra of a series of alkylcorrinoids, selectively enriched with 13C in the alkyl ligand, were recorded at 25.2 MHz and 25 degrees. The nature of the axial ligands markedly affects the chemical shift of the labeled alkyl moiety (trans effect) as well as the 13C resonances of selected carbon atoms of the corrin ring (cis effect). Although a number of factors appear to influence the trans effect on the chemical shift of the alkyl ligand (important among them being electric field effects), the cis effect appears to be dominated by changes in charge density (at the methine bridge carbon atoms, C-5, C-10, C-15) and by steric effects (at the methyl groups at C-1, C-5, and C-15) accompanying axial ligation. Spin-latice relaxation times of several organocorrinoids, selectively labeled with 13C in the ligands attached to cobalt, were also measured. The T1 values of the methylene carbons of [5'-13C]adenosylcobalamin and [2-13C]carboxymethylcobalamin are very similar to that of the methine bridge carbon atom C-10 of the corrin ring, indicating that rotation about the carbon-cobalt bond of these two corrinoids is severely restricted. On the other hand, internal rotation about the carbon-cobalt bond of methylcobalamin is rapid.  相似文献   

11.
D-(1,5,6-13C3)Glucose (7) has been synthesized by a six-step chemical method. D-(1,2-13C2)Mannose (1) was converted to methyl D-(1,2-13C2)mannopyranosides (2), and 2 was oxidized with Pt-C and O2 to give methyl D-(1,2-13C2)mannopyranuronides (3). After purification by anion-exchange chromatography, 3 was hydrolyzed to give D-(1,2-13C2)mannuronic acid (4), and 4 was converted to D-(5,6-13C2)mannonic acid (5) with NaBH4. Ruff degradation of 5 gave D-(4,5-13C2)arabinose (6), and 6 was converted to D-(1,5,6-13C3)glucose (7) and D-(1,5,6-13C3)mannose (8) by cyanohydrin reduction. D-(2,5,6-13C3)Glucose (9) was prepared from 8 by molybdate-catalyzed epimerization.  相似文献   

12.
The 1H and 13C NMR parameters of the anomeric pairs of aldopyranosyl phosphates and their rigid 1,2-phosphate derivatives are reported.The derivatives of D-glucose, D-galactose, and D-mannose exist in the 4C1 conformation while the L-fuco derivatives are in the C4 conformation. As judged by 31P--1H and 31P--13C coupling constants, all of the alpha anomers of the aldopyranosyl phosphates have the phosphate moiety predominantly trans to C(2) while in the beta anomers other rotamers make significant contributions. This relationship remains the same for the biologically important nucleoside diphosphate sugars (UDPGlc, UDPGal, GDPMan, and GDPFuc). From the pH dependence of 13C chemical shifts, observed in 0.5 M solutions, the pK'a2 of the alpha anomers is 6.1 while the pK'a2 of the beta anomers is 0.6--0.8 pH unit lower. In the 1.2-phosphates, the chair conformation of the parent aldose is retained while an envelope conformation is formed by the cyclic phosphate. In the alpha anomers, the plane is formed between C(2), C(1), O(1), and P while O(2) is above the plane. In the beta anomers, O(1) is out of the plane formed by the other atoms. The beta anomers have phosphorus coupled to C(3) with coupling constants of 10.8--11.7 Hz, approximately 2 Hz greater than the maximum reported for trans coupling (Lapper, R. D., & Smith, I. C. P. (1973) J. Am. Chem. Soc. 95, 2880).  相似文献   

13.
Resonance Raman (RR) spectra were measured for the purple intermediates of D-amino acid oxidase reconstituted with isotopically labelled FAD's, i.e., [4a-13C]-, [4,10a-13C2]-, [2-13C]-, [5-15N]-, and [1,3-15N2]flavin adenine dinucleotides, and compared with those with the native enzyme. The RR lines around 1605 cm-1 with D-alanine or D-proline as a substrate and at 1548 cm-1 with D-alanine undergo isotopic shifts upon [4a-13C]- and [4,10a-13C2]-labelling. These lines are assigned to the vibrational modes associated with C(10a) = C(4a) - C(4) = O moiety of reduced flavin, providing the first assignment of RR lines of reduced flavin and conclusive evidence that reduced flavin is involved in this intermediate.  相似文献   

14.
Resonance Raman (RR) spectra were obtained in H2O or D2O solution for the purple intermediates of D-amino acid oxidase (DAO) with isotopically labeled substrates, i.e., [1-13C]-, [2-13C]-, [3-13C]-, [15N]-, and [3,3,3-D3]alanine; [carboxyl-13C]- and [15N]proline. RR spectra were also measured for the intermediates of DAO reconstituted with isotopically labeled FAD's, i.e., [4a-13C]-, [4,10a-13C2]-, [2-13C]-, [5-15N]-, and [1,3-15N2]FAD in D2O. The isotopic shift of the 1692 cm-1 band upon [15N]- or [2-13C]-substitution of alanine indicates that the band is due to the C = N stretching mode of an imino acid derived from D-alanine, i.e., alpha-iminopropionate. The 1658 cm-1 band with D-proline was also assigned to the C = N stretching mode of an imino acid derived from D-proline, i.e., delta 1-pyrrolidine-2-carboxylate, since the band shifts to 1633 cm-1 upon [15N]-substitution and its stretching frequency is generally found in this frequency region. Since the band shifts to low frequency in D2O, the imino acid should have a protonated imino group such as the C = N+1H form. The intense band at 1363 cm-1 with D-alanine was assigned to a mixing of the CO2- symmetric stretching and CH3 symmetric deformation modes in alpha-iminopropionate, based on the isotope effects. The 1359 cm-1 band with D-proline has probably contributions of CO2- symmetric stretching and CH2 wagging, considering the isotope effects with [carboxyl-13C]proline. The 1359 cm-1 band with D-proline was split into 1371 cm-1 and 1334 cm-1 bands in D2O. As this splitting of the 1359 cm-1 band with D-proline in D2O can not be interpreted only by the replacement of the C = N+1-H proton by deuterium, the carboxylate of the imino acid probably interacts with the enzyme through some proton(s) exchangeable by deuterium(s) in D2O. The bands around 1605 cm-1 which shift upon [4a-13C]- and [4,10a-13C2]-labeling of FAD are derived from a fully reduced flavin, because the isotopic shifts of the band are very different from those of the bands of oxidized or semiquinoid flavin observed near 1605 cm-1.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
Hepatocytes from fed rats were incubated for 120 min in the presence of alpha-D-[1,2-13C]glucose pentaacetate (1.7 mM), both D-[1,2-13C]glucose (1.7 mM) and acetate (8.5 mM), alpha-D-glucose penta[2-13C]acetate (1.7 mM), or D-[1,2-13C]glucose (8.3 mM). The amounts of 13C-enriched L-lactate and D-glucose and those of acetate and beta-hydroxybutyrate recovered in the incubation medium were comparable under the first two experimental conditions. The vast majority of D-glucose isotopomers consisted of alpha- and beta-D[1,2-13C]glucose. The less abundant single-labeled isotopomers of D-glucose were equally labeled on each C atom. The output of 13C-labeled L-lactate, mainly L-[2-13C]lactate and L-[3-13C]lactate, was 1 order of magnitude lower than that found in hepatocytes exposed to 8.3 mM D-[1,2-13C]glucose, in which case the total production of the single-labeled species of D-glucose was also increased and that of the C3- or C4-labeled hexose was lower than that of the other 13C-labeled isotopomers. In cells exposed to alpha-D-glucose penta[2-13C]acetate, the large majority of 13C atoms was recovered as [2-13C]acetate and, to a much lesser extent, beta-hydroxybutyrate labeled in position 2 and/or 4. Nevertheless, L-[2-13C]lactate, L-[3-13C]lactate, and single-labeled D-glucose isotopomers were also produced in amounts higher or comparable to those found in cells exposed to alpha-D-[1,2-13C]glucose pentaacetate. However, a modest preferential labelling of the C6-C5-C4 moiety of D-glucose, relative to its C1-C2-C3 moiety, and a lesser isotopic enrichment of the C3 (or C4), relative to that of C1 (or C6) and C2 (or C5), were now observed. These findings indicate that, despite extensive hydrolysis of alpha-D-glucose pentaacetate (1.7 mM) in the hepatocytes, the catabolism of its D-glucose moiety is not more efficient than that of unesterified D-glucose, tested at the same molar concentration (1.7 mM) in the presence of the same molar concentration of unesterified acetate (8.5 mM), and much lower than that found at a physiological concentration of the hexose (8.3 mM). The present results also argue against any significant back-and-forth interconversion of D-glucose 6-phosphate and triose phosphates, under conditions in which sizeable amounts of D-glucose are formed de novo from 13C-enriched Krebs cycle intermediates generated from either D-[1,2-13C]glucose or [2-13C]acetate.  相似文献   

16.
G P Kraan  N M Drayer 《Steroids》1990,55(4):159-164
A urinary method of determining the cortisol production rate (CPR) in children was studied under physiologic conditions by administration of low amounts of [1,2,3,4-13C]cortisol. The CPR in three patients with multiple pituitary deficiency ranged from 7 to 16 mumoles d-1 m-2, and the CPR in three patients with congenital adrenal hyperplasia (CAH) due to 11 beta-hydroxylase deficiency (11 beta OHD) and 17 alpha-hydroxylase deficiency (17 alpha OHD) from 0.1 to 2.11 mumoles d-1 m-2. Results showed that with this method, very low CPRs can be reliably measured. The metabolism of [13C4]cortisol or [9,12,12-2H]cortisol was compared with that of native cortisol in adrenalectomized piglets. For the urinary cortisol metabolites, small to substantial differences in isotope dilution were noted relative to that in the original cortisol mixture. With [13C4]cortisol, the so-called secondary isotope effects were approximately 2% to 3% for tetrahydrocortisone (THE) and tetrahydrocortisol (THF), and about 10% for the cortolones, relative to the cortisol mixture. When [2H3]cortisol was used, the cortisol metabolites THE and THF contained only two deuterium atoms. Together with this apparent loss of one deuterium atom, the secondary isotope effects in these steroids amounted to 5% to 10%. It was concluded that [13C4]cortisol was the better tracer to use for the measurement of urinary CPR.  相似文献   

17.
Double Quantum (DQ) NMR, which utilizes the magnetic dipole interaction between the (13)C atoms, was used for the complete assignment of the (13)C NMR resonances to the corresponding carbon ring positions for the monoclinic and triclinic allomorphs of methyl 4'-O-methyl-beta-D-cellobioside-(13)C(12)(1-(13)C(12)), a cellodextrin model compound of cellulose (13)C-perlabeled at the cellobiose core. The through-space interactions were used to identify the direct chemical bonds between adjacent carbon atoms in the rings. More importantly, the (13)C NMR signals of the carbon sites C1' and C4 involved in the glycosidic bond were identified. This allowed for the complete (13)C chemical shift assignment, that when combined with the X-ray crystallography data provides a complete characterization.  相似文献   

18.
Eight anionic disaccharide precursors of lipid A accumulate at 42 degrees C in 3-deoxy-D-manno-octulosonic acid-deficient temperature-sensitive mutants of Salmonella typhimurium. These compounds comprise a series of lipids based on the minimal structure, O-[2-amino-2-deoxy-N2,O3-bis(3-hydroxytetradecanoyl)-beta-D-glucopyranos yl] -(1----6)-2-amino-2-deoxy-N2, O3-bis(3-hydroxytetradecanoyl)-alpha-D-glucopyranose 1,4'- bisphosphate (designated lipid IVA) that differ from each other by the presence of an additional phosphoethanolamine moiety (IIIA), or an aminodeoxypentose moiety (IIA), or both (IA). A homologous set of metabolites is further derivatized with a palmitoyl function; these are designated IVB, IIIB, IIB, and IB (Raetz, C. R. H., Purcell, S., Meyer, M. V., Qureshi, N., and Takayama, K. (1985) J. Biol. Chem. 260, 16080-16088). The attachment of the palmitoyl moiety, known to be on the reducing terminal GlcN residue by mass spectrometry, was determined to be O-beta of the N2-linked beta-hydroxymyristoyl group of that residue of IVB by 13C NMR and two-dimensional 1H chemical shift correlation spectroscopy experiments. 31P NMR indicated the presence of diphosphodiester moieties in IIIA, IIIB, and IA and monophosphodiester moieties in IIA and IA. Selective 1H decoupling of the 31P spectrum of IIIA demonstrated that the O-diphosphoethanolamine moiety is attached to the O4' position in IIIA. On the basis of the observed 31P chemical shifts it was concluded that the aminodeoxypentose is located at position 1 in IIA and IA, while diphosphoethanolamine is most likely located at O-4' in IA and IIIB, as in IIIA.  相似文献   

19.
Desulfovibrio vulgaris apoflavodoxin has been reconstituted with 15N and 13C-enriched riboflavin 5'-phosphate. For the first time all carbon atoms of the isoalloxazine ring of the protein-bound prosthetic group have been investigated. The reconstituted protein was studied in the oxidized and in the two-electron-reduced state. The results are interpreted in terms of specific interactions between the apoprotein and the prosthetic group, and the chemical structure of protein-bound FMN. In the oxidized state weak hydrogen bonds exist between the apoprotein and the N(5), N(3) and O(4 alpha) atoms of FMN. The N(1) and O(2 alpha) atoms of FMN form strong hydrogen bonds. The isoalloxazine ring of FMN is strongly polarized and the N(10) atom shows an increased sp2 hybridisation compared to that of free FMN in aqueous solution. The N(3)-H group is not accessible to bulk solvent, as deduced from the coupling constant of the N(3)-H group. In the reduced state the hydrogen bond pattern is similar to that in the oxidized state and in addition a strong hydrogen bond is observed between the N(5)-H group of FMN and the apoprotein. The reduced prosthetic group possesses a coplanar structure and is ionized. The N(3)-H and N(5)-H groups are not accessible to solvent water. Two-electron reduction of the protein leads to a large electron density increase in the benzene subnucleus of bound FMN compared to that in free FMN. The results are discussed in relation to the published crystallographic data on the protein.  相似文献   

20.
Stable 3-nitro tyrosine (3-NO(2)-Tyr), o-, m-, and p-tyrosine isomers induced by oxidation of tyrosine residues in protein were considered important biomarkers for the existence of toxic oxidizing agents peroxynitrite (ONOO(-)) and OH*, which could lead to such diseases as acute lung injury, neurodegenerative disorders, atherosclerosis, cancers and many other diseases. Therefore, development of an accurate, simple and sensitive method to simultaneously detect o-, m-, and p-tyrosine and 3-NO(2)-Tyr is necessary. Fluorescence detection is highly sensitive to o-, m-, and p-tyrosine, but it cannot be used to detect 3-NO(2)-Tyr, due to the strong fluorescence-quenching characteristic of the NO(2) group. In this study, we developed a highly sensitive reversed HPLC-UV method, combined with pre-column cloud point extraction (CPE), to simultaneously determine o-, m-, and p-tyrosine and 3-NO(2)-Tyr. The procedure included derivatization of a sample with 6-aminoquinolyl-N-hydroxy-succinimidyl carbomate (AccQ) at 0.20 mol/l borate buffer (pH 8.80) for 30 min at 70 degrees C, and pre-concentration with surfactant cloud point extraction. The surfactant-rich phase was then diluted with deionized water and injected directly into the to HPLC column for analysis. A C(18) column (3.9 mm i.d. x 300 mm) was used for gradient elution separation at 25 degrees C and the detection wavelength was at 254 nm. Nineteen general amino acids showed no interference. The detection limits of p-, o-, m-Tyr and 3-NO(2)-Tyr were between 5 and 15 nmol/l. The linear range was from 0.05 to approximately 100 micromol/l.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号