首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
High enzyme activity of mitochondrial creatine kinase (creatine-N-phosphotransferase, mCK, EC 2.7.3.2) was detected in serum from a patient with advanced carcinoma of the rectum and its isoforms were characterized by means of isoelectric focusing (IEF). Three forms of mCK, membrane-bound (pI 6.9–7.0), octameric (pI 7.0–7.9) and dimeric (pI 6.7, 6.8, 6.9 and 7.0), were detected in the fresh serum. These three forms of mCK were converted to five dimeric isoforms, and these were characterized as one reduced form (pI 7.0) and four oxidized (pI 6.6, 6.7, 6.8 and 6.9) forms upon treatment with urea, hydrogen peroxide or 2-mercaptoethanol (2-ME). The C-terminal of the mCKs was concluded to be a lysine residue because the mCKs treated with carboxypeptidase B migrated to positions closer to the anode than did those not treated with carboxypeptidase B. Therefore, four bands were concluded to represent one reduced-delysined isoform (pI 6.4) and three oxidized-delysined isoforms (pI 6.1, 6.2 and 6.3). The broad octameric mCK band disappeared and a narrow band focused at pI 6.8–6.9 appeared upon probable delysination of the mCKs. Thus, the number of lysine residues at the C-terminal of the octamer was concluded to be variable due to variable catalysis by carboxypeptidase N in the plasma. mCKs seemed to be inactivated during conversion from a membrane-bound form to dimeric oxidized-delysined forms via the octameric, dimeric reduced and oxidized forms.  相似文献   

2.
Isoelectric focusing was used to study the multiple forms of acid phosphatase, arylsulfatase, beta-glucuronidase and beta-N-acetylhexosaminidase in lysosomes isolated from rat kidney. The isoelectric points of the main protein and hydrolase peaks were 1-1.5 units lower when electrofocusing was done in a pH 3-10 gradient than in a pH 10-3 gradient, apparently because the lysosomal constituents aggregated strongly at their isoelectric points and tended to settle somewhat in the gradient due to gravity. In the extended pH gradient the acidic form of each hydrolase occurred as asingle, relatively discrete peak. However, when pooled acidic fractions were refocused in a restricted pH gradient (pH 6-3 or 3-5) multiple acidic enzyme and protein components were resolved with isoelectric points between 2.7 and 5.1. When autolysis was minimized by extracting lysosomal fractions at alkaline pH (0.2% Triton X-100, 0.1%p-nitrophenyloxamic acid, 0.1 M glycine buffer, pH9) and including 0.1%p-NITROPHENYLOXAMIC ACID, AN INHIBITOR OF LYSOSOMAL NEURAMINIDASE AND CATHEPSIN D, in the pH gradient, arylsulfatase, beta-glucuronidase and beta-N-acetylhexosaminidase occurred in two forms, an acidic form with an isoelectric point of about 4.4, and a basic form with an isoelectric point close to 6.2, 6.7 and 8.0, respectively. Acid phosphatase occurred in three forms with isoelectric points of 4.1, 5.6 and 7.4. When some autolytic digestion was permitted by extracting lysosomal fractions in an acidic medium (0.2% Triton X-100, 0.1 M sodium acetate buffer, pH 5.2) AT 0-4DEGREES C and omitting p-nitrophenyloxamic acid from the gradient, the acidic form of beta-glucuronidase and the intermediate form of acid phosphatase were lost, the isoelectric points of the acidic forms of acid phosphatase, arylsulfatase and beta-N-acetylhexosaminidase were increased 0.6-1.2 units, and the isoelectric point of the basic forms of acid phosphatase, arylsulfatase and beta-glucuronidase was increased 0.5 unit. When lysosomal extracts were incubated with bacterial neuraminidase before electrofocusing, the acidic forms of acid phosphatase, arylsulfatase and beta-glucuronidase were largely lost, the isoelectric point of the acidic form of beta-N-acetylhexosaminidase was increased from 4.5 to 6.4, and the isoelectric points of the basic forms of all four hydrolases were increased 0.5-1.5 units. Autoincubation of lysosomal extracts in vitro at pH 5.2 PRODUCED SIMILAR, THOUGH LESS MARKED, effects. cont'd  相似文献   

3.
Plasma membranes from bovine epididymal spermatozoa possess both cAMP-independent and cAMP-dependent protein kinase activity. With the synthetic peptide, Leu-Arg-Arg-Ala-Ser-Leu-Gly as substrate, the basal activity of the membrane-associated protein kinase(s) was 0.1 nmol phosphate incorporated X min X mg protein. In the presence of 5 microM cAMP, the apparent activity was increased about twofold. The addition of Nonidet P-40 (0.05%) to the assay mixture increased protein kinase activity to 0.4 and 4.0 nmol phosphate incorporated X min X mg protein in the absence or presence of 5 microM cAMP, respectively. Both isozymes of the cAMP-dependent protein kinase were detected in detergent-solubilized membranes but 95% of the activity appeared as a Type II form based on DEAE-Sephacel chromatography. Several polypeptide components of the plasma membrane served as substrates for membrane-associated cAMP-dependent protein kinases, in vitro. In the absence of detergent, two cAMP-dependent phosphoproteins of 41,000 Mr and 60,000 Mr were detected by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. When 0.05% Nonidet P-40 was included in the assay mixture, a cAMP-dependent phosphoprotein of 43,000 Mr appeared. Two-dimensional polyacrylamide gel electrophoresis of membranes phosphorylated in the presence of 5 microM and 0.05% Nonidet P-40 revealed phosphoproteins of the following molecular weights/isoelectric points: 56,000/6.7, 56,000/6.9, 51,000/6.2, 42,000/5.9, 42,000/6.0, 38,000/6.1, 38,000/6.4, 14,000/7.2, 12,000/7.4 and a train of five polypeptides appearing at 14,000/5.4-6.0.  相似文献   

4.
Thymidine kinase derived from LMTK+ does not exhibit thymidylate kinase activity. However, protein isolated by affinity column chromatography from thymidine kinase-deficient mouse cells (LMTK-) infected by herpes simplex virus type 1 shows thymidylate kinase activity in addition to thymidine kinase and deoxycytidine kinase activities. The virus-induced multifunctional enzyme has a molecular weight of 85,000, whereas the molecular weight of thymidylate kinase from uninfected LMTK- mouse cells is 71,000. The virus-induced enzyme has a Km for thymidine of 0.8 micromolar, and for thymidylate of 25 micromolar, and for thymidylate of 25 micromolar; the ratio of Vmax for thymidylate kinase to thymidine kinase is 1.7. When subjected to isoelectric focusing, thymidylate kinase activity is not separated from thymidine kinase activity, and even though four peaks of activity are observed they have a constant ratio of thymidylate kinase to thymidine kinase activity. The isoelectric points (pI) of these four peaks are 4.8, 5.8, 6.2, and 6.6, respectively. Thymidylate kinase, derived from uninfected cells when subjected to isoelectric focusing, separates into a major component with an isoelectric point at pH 8.2 and a minor component at pH 7.7. Although thymidine and thymidylate kinase activities derived from the virus-infected cells cannot be separated either by affinity column chromatography, glycerol density gradient centrifugation, or isoelectric focusing, there is a differential rate of inactivation when the enzyme is subjected to incubation at 37 degrees, with thymidylate kinase activity being more labile than thymidine kinase activity.  相似文献   

5.
A calcium-dependent protein kinase was partially purified and characterized from the green alga Dunaliella salina. The enzyme was activated at free Ca2+ concentrations above 10−7 molar. and half-maximal activation was at about 3 × 10−7 molar. The optimum pH for its Ca2+-dependent activity was 7.5. The addition of various phospholipids and diolein had no effects on enzyme activity and did not alter the sensitivity of the enzyme toward Ca2+. The enzyme was inhibited by calmodulin antagonists, N-(6-aminohexyl)-1-naphthalene sulfonamide and N-(6-aminohexyl)-5-chloro-1-naphthalene sulfonamide in a dose-dependent manner while the protein kinase C inhibitor, sphingosine, had little effect on enzyme activity up to 800 micromolar. Immunoassay showed some calmodulin was present in the kinase preparations. However, it is unlikely the kinase was calmodulin regulated, since it still showed stimulation by Ca2+ in gel assays after being electrophoretically separted from calmodulin by two different methods. This gel method of detection of the enzyme indicated that a protein band with an apparent molecular weight of 40,000 showed protein kinase activity at each one of the several steps in the purification procedure. Gel assay analysis also showed that after native gel isoelectric focusing the partially purified kinase preparations had two bands with calcium-dependent activity, at isoelectric points 6.7 and 7.1. By molecular weight, by isoelectric point, and by a comparative immunoassay, the Dunaliella kinase appears to differ from at least some of the calcium-dependent, but calmodulin and phospholipid independent kinases described from higher plants.  相似文献   

6.
p34cdc2 protein kinase is a universal regulator of M-phase in eukaryotic cell cycle. To investigate the regulation of meiotic and mitotic cell cycle in mammals, we examined the changes in phosphorylation states of p34cdc2 and its histone H1 kinase activity in mouse oocytes and embryos. We showed that p34cdc2 has three different migrating bands (referred to as upper, middle and lower bands) on SDS-PAGE followed by immunoblotting with anti-PSTAIR antibody, and that the upper and middle bands are phosphorylated forms since these two bands shifted to the lower one by alkaline phosphatase treatment. In meiotic cell cycle, only germinal vesicle (GV) stage oocytes had the three forms. The phosphorylated forms decreased gradually in oocytes up to 2 h after isolation from follicles, and thereafter the phosphorylation states did not change significantly until metaphase II. However, the histone H1 kinase activity oscillated, being activated at the first and second metaphase in meiosis and inactivated at the time of the first polar body extrusion. These results suggest that changes in phosphorylation states of p34cdc2 triggered its activation at the first metaphase, but not inactivation and reactivation at the first and second metaphase, respectively. In mitotic cell cycle, phosphorylated forms appeared at 4 h after insemination, increased greatly just before metaphase, and were dephosphorylated in metaphase. Histone H1 kinase activity was high only at metaphase. This kinase activation is probably triggered by dephosphorylation of p34cdc2.  相似文献   

7.
Bovine liver mitochondria contain about 10% of the total glyoxalase II activity in the homogenate. Electrophoresis and isoelectric focussing of either crude mitochondrial extract or the purified mitochondrial glyoxalase II resolved the enzyme activity into five forms (pl 6.3, 6.7, 7.1, 7.7, and 7.9). Since bovine liver cytosol contains a single form of glyoxalase II (pl 7.5), at least four forms are exclusively mitochondrial with no counterpart in the cytosol. The relative molecular mass of mitochondrial glyoxalase II is about 23-24 kDa, similar to the cytosolic form. The kinetic constants obtained using S-D-lactoyl, S-acetyl-, S-acetoacetyl-, and S-succinyl-glutathione as substrates are similar to those reported for glyoxalase II from rat liver mitochondria. S-D-Lactoyl- and S-acetoacetyl-glutathione are the best substrates. S-Acetylglutathione is the poorest substrate with respect to both Vmax and Km values.  相似文献   

8.
The protein composition of human submandibular saliva obtained from a single donor has been investigated, and 21 proteins have been resolved. On Sephadex G-100, submandibular secretions (unstimulated) separated into four fractions, I, II, III, and IV. Each fraction was analyzed further by isoelectric focusing and disc gel electrophoresis. The major components detected in each fraction along with their isoelectric point (pI) are as follows: I, blood group specific substance (2.3), immunoglobulin A (5.0–6.0), and immunoglobulin G (4.5–6.5); II, albumin (4.9), two glycoproteins (5.0), and acid phosphatase (5.2); III, three phosphoproteins (4.3–4.4), isoamylase 1A (5.9), isoamylase 1B (6.4), unidentified protein (7.1), lysozyme (>10), and a basic protein (>10); and IV, isoamylase 2A (5.9) and isoamylase 2B (6.4). Isoamylase 1A and IB are glycoproteins. Stimulated submandibular secretions were also resolved into four protein fractions by gel filtration. Fraction III, compared with unstimulated secretions, showed the greatest percent increase in protein. Analysis of this fraction by disc gel electrophoresis demonstrated the presence of four protein bands which were not detected in the unstimulated secretion. One of these proteins is tentatively identified as a phosphoprotein and two as basic proteins (pI > 10). The protein composition of submandibular, parotid, and sublingual secretions is compared.  相似文献   

9.
Two-dimensional electrophoretic analysis of crude microtubule preparations from the rat brain revealed the presence of three polypeptides in positions corresponding to those of the isovariants of purified rat brain creatine kinase (CK-BB). By the use of [gamma-32P]ATP, the two more acidic forms of these polypeptides were shown to be phosphorylated. Their identity as phosphorylated forms of CK-BB was established by using various peptide mapping techniques. Thus CK-BB is a phosphoprotein and its isoelectric variation may be attributed to phosphorylation.  相似文献   

10.
Pure bile, pancreatic and duodenal human juices have been analyzed by isoelectric focusing, either at rest or upon stimulation with caerulein. In rats, stimulation has also been performed with secretin. Twenty bands have been resolved and quantified in the pancreatic secretion. By developing zymograms, a number of isozymes have been identified: 6 isoamylases [pI's 7.2, 7.1 and 6.6 (major) and pI's 7.4, 6.7 and 5.8 (minor)], 3 lipases [pI's 7.0 and 6.8 (major) and 6.4 (minor)], two major alkaline proteases (pI's 9.8 and 8.4) and one major acidic protease (pI 4.3) and one band of RNAase activity (pI 8.6). The stimulation kinetics follow a mechanism according to Palade, indicating uniform response to secretogogues, parallel intracellular transport and parallel discharge of pancreatic exocrine proteins.  相似文献   

11.
A rapid, large scale purification procedure for gibbon interleukin 2   总被引:14,自引:0,他引:14  
Interleukin 2 (IL 2) was purified from the conditioned medium of a gibbon T cell line, MLA144, which releases IL 2 constitutively. The IL 2 was obtained free of contaminating proteins by a simple process consisting of an initial batch purification on trimethylsilyl-controlled pore glass followed by reversed phase high pressure liquid chromatography. Overall recovery of IL 2 activity ranged from 70 to 100% of initial activity and yielded 2 X 10(6) or greater units of IL 2 per 15 liters of serum-free MLA144 conditioned medium. The specific activity of purified IL 2 ranged from 0.5 to 1 X 10(8) IL 2 U/mg protein. The purified IL 2 showed four molecular species when analyzed by two-dimensional isoelectric focusing-SDS-polyacrylamide gel electrophoresis. Each of the four molecular forms was active in the bioassay for IL 2 activity. Three molecular forms had apparent m.w. of 16,000 but different isoelectric points of 5.9, 6.3, and 6.7. One molecular form had an apparent m.w. of 15,000 and an isoelectric point of 7.2. The most abundant form of IL 2 had an apparent m.w. of 16,000 and an isoelectric point of 6.3. The purified IL 2 supported the growth of IL 2-dependent lymphocytes to a greater extent than did the same level of crude IL 2-containing MLA144 conditioned medium. The ability to purify large amounts of IL 2 by a rapid and efficient procedure will be of great help in both biochemical and immunologic studies of this lymphokine.  相似文献   

12.
The occurrence of glutathione transferase isoenzymes in mammalian erythrocytes was investigated. The enzymes present in the hemolysates of human, horse, beef, pig, and sheep erythrocytes were purified by a column of GSH-linked epoxy-activated Sepharose 6B and subjected to an isoelectric focusing run in the pH range 3.5-10. Human and horse preparations were resolved in a single peak of activity centered at pH 4.6 and 5.9, respectively. Two forms with a maximum of activity at pH 4.9 and 7.0 and four with a maximum at pH 5.9, 6.5, 7.1, and 8.1 were separated from bovine and porcine erythrocytes. At least six forms ranging from pH 4.3 to pH 7.1 were present in the ovine preparation, the neutral contributing more than 90% of total activity. The subunit composition of affinity-bound fractions was studied by sodium dodecyl sulfate-gel electrophoresis. The analysis revealed that erythrocyte glutathione transferases are composed of subunits of identical molecular weights. This result suggests that the polymorphism existing in beef, pig, and sheep may be due to charge isomers. The erythrocyte glutathione transferases did not express selenium-independent GSH peroxidase activity.  相似文献   

13.
The cellulase enzyme system of Trichoderma reesei RUT C-30 has been separated by DEAE ion exchange chromatography into four fractions. Their specificity towards substituted cellulose and cellooligosaccharides was revealed by analytical IEF and activity stains. Fraction EGI (26% of the total protein) exhibited mainly endoglucanase activity on carboxymethylcellulose (CMC) whereas endoglucanases EGII and EGIII (15% of the total protein) showed high activity towards CMC as well as xylan, 4-methylumbelliferyl cellobioside [MeUmb(Glc)2] and p-nitrophenyl lactoside (pNPL). A subfraction of EGI (pI 5.9) which has been described in the literature as a cellobiohydrolase (CBHII) was isolated by preparative isoelectric focusing, and was shown to have only 3 U CMCase activity per milligram. Turbidimetric measurements and phase contrast microscopy demonstrated differences between endoglucanase and cellobiohydrolase behaviour during the hydrolysis of purified cellulose (Solka Floc BW-40). Treatment of the purified cellulose with endoglucanases resulted in fibre breakdown into small particles. This was contrasted with no morphological change to the fibres when contacted with the cellobiohydrolase. By this technique it was revealed that the EGI subfraction (pI 5.9) behaves as an endoglucanase and not as a cellobiohydrolase. Incubation of this enzyme with acid-swollen cellulose resulted in cellotriose production, as it did with other endoglucanases which exhibited CMCase activities >; 100 U mg−1. Cellotriose was not present during the hydrolysis of acid-swollen cellulose with the CBHI fraction.  相似文献   

14.
Cell fusions have been used to determine the biological activity of the MPF complex in murine oocytes during their progression through anaphase and telophase to metaphase II. Oocytes (1) at metaphase I, (2) during the anaphase-telophase transition, or (3) at metaphase II were fused to germinal vesicle-staged (immature) oocytes. The hybrids were cultured for 1 h in the presence of db cAMP before fixation and nuclear evaluation. Metaphase I oocytes invariably induced germinal vesicle breakdown (GVBD) in the immature partner. By contrast, anaphase/telophase oocytes never induced GVBD in immature oocytes. The capacity to induce GVBD reappears after the formation of the second metaphase plate. In a second study, histone H1 kinase activity was measured during mouse oocyte maturation in single oocytes. H1 kinase activity was low in GV oocytes, increased sharply at MI, declined during anaphase and telophase and increased again at MII. After egg activation, H1 kinase activity was reduced to basal levels. These results provide direct evidence that a drop in activity of MPF in murine oocytes occurs concomitantly with the exit from metaphase I; MPF activity remains low until the cell re-enters metaphase.  相似文献   

15.
The intracellular pH of frog sartorius muscles exposed to an extracellular pH 8.0 (25 mM HCO3-, 1% CO2) was 6.9-7.1. Following a fatiguing stimulation period (one tetanic contraction per second for 3 min), the intracellular pH was 6.5-6.7. When similar experiments were repeated with frog sartorius muscles exposed to pH 6.4 (2mM HCO3-, 1% CO2), the intracellular pH was 6.8-6.9 at rest and 6.3-6.4 following fatigue. So, in both experiments the intracellular pH decreased by 0.4-0.5 pH unit during fatigue. When the CO2 concentration of the bathing solution was increased from 1 to 30%, the intracellular pH of resting muscles decreased from 7.0 to 6.2-6.3. Although the effect of CO2 on the intracellular pH was greater than the fatigue effect, the decrease in tetanic force with CO2 was less than 40%, while during fatigue the tetanic force decreased by at least 70%. Therefore in frog sartorius muscle the decrease in tetanic force during fatigue exceeds the decrease that is expected from just a change in intracellular pH.  相似文献   

16.
Lipopolysaccharide-stimulated human monocytes secrete a 10 kD peptide (MONAP) of high neutrophil, not however monocyte or eosinophil stimulating activity. By reversed phase HPLC MONAP could be distinguished from Interleukin 1. Analytic isoelecto-focusing of pure MONAP (single line upon sodiumdodecylsulfate polyacrylamide gel electrophoresis, single peak after RP-18-HPLC), obtained by size exclusion HPLC followed by two different reversed phase HPLC steps revealed charge heterogeneity giving major components with isoelectric points at 4.7, 4.9, 6.4 and 6.9, all of which exhibited chemotactic activity.  相似文献   

17.
1. Rat kidney lysosomal glycoproteins, prelabelled in the N-acetylneuraminic acid and polypeptide portions with N-acetyl[(3)H]mannosamine and [(14)C]lysine, or with N-acetyl-[(14)C]glucosamine, were incubated under various conditions. Autolytic cleavage of labelled N-acetylneuraminic acid and peptide was maximum at pH5.0. 2. N-Acetylneuraminic acid was released more rapidly than peptide during incubation at 37 degrees or 4 degrees C at pH5. p-Nitrophenyloxamic acid, an inhibitor of bacterial neuraminidase (Edmond et al., 1966), inhibited the cleavage of N-acetylneuraminic acid and peptide, and also inhibited cathepsin D activity. 3. Galactono-, mannono-, and glucono-lactone, inhibitors of the corresponding glycosidases, blocked the autolytic cleavage of N-acetyl[(14)C]glucosamine and protein without inhibiting beta-N-acetylhexosaminidase or cathepsin D activity. These findings suggest that the carbohydrate side chains protect the polypeptide portion of the lysosomal glycoproteins against proteolytic attack by lysosomal cathepsins. 4. In electrofocusing experiments, autolysis was minimized by adding 0.1% p-nitrophenyloxamic acid to the media used for extraction and electrofocusing, and by maintaining an alkaline pH (pH8.8-9) during extraction and dialysis. Arylsulphatase occurred in two forms with pI values of 4.4 and 6.4-6.7, and beta-glucuronidase in two forms with pI values of 4.4 and 6.1. When [(14)C]lysine and N-acetyl[(3)H]mannosamine were given to rats 1.5 and 1 h before killing, (14)C and (3)H were largely restricted to highly acidic glycoprotein species with pI values of 2.1-5.1. 5. When a lysosomal extract was adjusted to pH5 and incubated at 20 degrees C for 16h and then at 37 degrees C for 1 h before electrofocusing, 32 and 58% of the labelled peptide and N-acetylneuraminic acid was cleaved and the pI values of the labelled glycoproteins were markedly increased. About 80% of the acidic form of arylsulphatase and beta-glucuronidase was recovered with the basic form, and the pI of the basic form of both enzymes rose to 7.0. Similar, though less marked changes, were observed when a lysosomal extract was kept at pH5 for 2h at 4 degrees C before electrofocusing. 6. When an acidic lysosomal fraction (pI4.2-4.6) was incubated at pH5 for 2.5h and refocused, 80% of the arylsulphatase now occurred in two forms with pI values of 5 and 6.4. When a basic lysosomal fraction (pI5.8-6.4) was similarly incubated, the pI of arylsulphatase increased from 6.4 to 7.2. The relative increase in pI of arylsulphatases was accompanied by a proportional loss of N-acetylneuraminic acid from the glycoprotein associated with these forms. 7. These experiments show that lysosomal glycoproteins and two representative hydrolases, when exposed to a mildly acidic pH, readily undergo autolytic degradation and their pI values increase. These observations may have a bearing on the origin of the molecular heterogeneity of the lysosomal enzymes.  相似文献   

18.
The molecular basis for altered cyclic AMP-dependent protein kinase activity was examined in three different mutant clones (Kin-1, Kin-7, and Kin-8) derived from the Y1 mouse adrenocortical cell line. Parental Y1 cells and the Kin mutants were labeled with L-[35S] methionine and the regulatory subunit of the type 1 cAMP-dependent protein kinase isozyme (RI) was immunoprecipitated from each clone with a specific guinea pig antiserum. When analyzed by electrophoresis on isoelectric focusing gels, the immunoprecipitates from mutant clones exhibited parental forms of RI plus an additional acidic variant form which likely accounted for altered cAMP-dependent protein kinase activity. Poly(A+) RNA was isolated from Y1 and Kin mutant cells and was translated in a cell-free, reticulocyte lysate system in the presence of L-[35S]methionine. The RI synthesized from poly(A+) RNA was immunoprecipitated from the translation mixture and analyzed on isoelectric focusing gels. The poly(A+) RNA from the Kin mutant clones directed the synthesis of parental and acidic variant forms of RI. These results suggest that the altered electrophoretic forms of RI arise from mutations in one of two RI genes rather than from post-translational modifications of the protein. The coexistence of parental and variant forms of RI in the Kin mutants indicate that the mutations are codominant.  相似文献   

19.
In Physarum polycephalum (Myxomycetes) aphidicolin has been found to delay metaphase onset when applied to synchronous plasmodia 3 h before control metaphase. In contrast to the action of temperature shifts, aphidicolin treatment did not delay the initiation of the increase of thymidine kinase synthesis (EC 2.7.1.21, ATP-thymidine 5' phosphotransferase) and the decrease of the synthesis of thymidine kinase occurred normally after completion of mitosis in presence of aphidicolin. The amount of thymidine kinase synthesized was larger for aphidicolin treated plasmodia than in the control due to both a longer period of increased synthesis and a higher maximum rate of synthesis. These results were interpreted by postulating the presence of two regulatory pathways. The first one acting on the increase of the synthesis of thymidine kinase and on mitosis onset was sensitive to temperature shifts from 22 to 32 degrees C. The second one acting on mitosis onset only was sensitive to aphidicolin.  相似文献   

20.
Protein kinases associated with the transforming proteins of a number of retroviruses are specific for tyrosine. Several proteins in cells transformed by these viruses are phosphorylated at tyrosine. We have now identified three unrelated abundant nonphosphorylated cellular proteins of 46,000, 39,000 and 28,000 daltons in chick embryo cells, which are the unphosphorylated forms of phosphotyrosine-containing proteins and thus are substrates for tyrosine protein kinases. By two-dimensional gel analysis, we have found that the 46,000-dalton protein exists in two unphosphorylated forms of which the more acidic is a minor species. This latter form is phosphorylated, chiefly at serine, in both normal and transformed cells, generating a yet more acidic species. In transformed but not normal cells, the major form is phosphorylated at tyrosine and serine, yielding a fourth isoelectric variant. The 46,000-dalton unphosphorylated protein has been partially purified, and antiserum to it recognizes all four isoelectric variants of the protein. The 39,000-dalton protein has two unphosphorylated forms of which the more acidic is a minor species. The major form is phosphorylated at tyrosine and serine in transformed cells only. The 39,000-dalton unphosphorylated protein has been partially purified, and antiserum raised to it recognizes all three isoelectric variants. The 28,000-dalton protein has a single phosphorylated form which contains serine in normal cells, but both serine and tyrosine in transformed cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号