首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Forskolin is thought to be a highly specific activator of adenyl cyclase. However, when applied to rat pheochromocytoma (PC12) cells at concentrations of 1 microM or higher it caused an immediate, concentration-dependent inhibition of carbachol-stimulated uptake of 86Rb+ through the nicotinic receptors, which did not appear to be related to activation of adenyl cyclase. The inhibition of receptor activation occurred instantaneously whereas cellular cAMP content did not increase for a measureable period of time. Normal receptor function was recovered rapidly upon removal of forskolin. Additional evidence that this effect of forskolin was not related to cAMP was obtained when 1,9-dideoxyforskolin (an analog of forskolin which does not activate adenyl cyclase) also caused a rapid, concentration-dependent, rapidly reversible inhibition of receptor-mediated influx of 86Rb+ into the cells. An examination of the effect of forskolin on 86Rb+ uptake at various concentrations of carbachol showed that forskolin was not acting by competing with carbachol for the receptor activation site. Given the lipophilic nature of forskolin, it probably acts like a general anesthetic to perturb the plasma membrane lipid structure and alter the function of the nicotinic acetylcholine receptors, possibly by increasing the rate of closure of open channels.  相似文献   

2.
Interaction of forskolin with the P-glycoprotein multidrug transporter.   总被引:2,自引:0,他引:2  
Forskolin and 1,9-dideoxyforskolin, an analogue that does not activate adenylyl cyclase, were tested for their ability to enhance the cytotoxic effects of adriamycin in human ovarian carcinoma cells, SKOV3, which are sensitive to adriamycin and express low levels of P-glycoprotein, and a variant cell line, SKVLB, which overexpresses the P-glycoprotein and has the multidrug resistance (MDR) phenotype. Forskolin and 1,9-dideoxyforskolin both increased the cytotoxic effects of adriamycin in SKVLB cells, yet had no effect on SKOV3 cells. Two photoactive derivatives of forskolin have been synthesized, 7-O-[[2-[3-(4-azido-3- [125I]iodophenyl)propionamido]ethyl] carbamyl]-7-deacetylforskolin, 125I-7-AIPP-Fsk, and 6-O-[[2-[3-(4-azido-3- [125I]iodophenyl)propionamido]ethyl]carbamyl]forskolin, 125I-6-AIPP-Fsk, which exhibit specificity for labeling the glucose transporter and adenylyl cyclase, respectively (Morris et al., 1991). Both photolabels identified a 140-kDa protein in membranes from SKVLB cells whose labeling was inhibited by forskolin and 1,9-dideoxyforskolin. There was no specific labeling of proteins in membranes from the SKOV3 cells. The overexpressed 140-kDa protein in SKVLB membranes was identified as the P-glycoprotein by immunoblot analysis and immunoprecipitation using anti-P-glycoprotein antiserum. Total inhibition of photolabeling of the P-glycoprotein was observed with verapamil, nifedipine, diltiazem, and vinbalastine, and partial inhibition was observed with colchicine and cytochalasin B. Forskolin was less effective at inhibiting the photolabeling of the P-glycoprotein than 1,9-dideoxyforskolin or a lipophilic derivative of forskolin. The data are consistent with forskolin binding to the P-glycoprotein analogous to that of other chemosensitizing drugs that have been shown to partially reverse MDR.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Two photolabels, N-(3-(4-azido-3-125I-phenyl)-propionamide)-6- aminoethylcarbamylforskolin(125I-6-AIPP-Fsk) and N-(3-(4-azido-3-125I-phenyl)propionamide)-7-aminoethylcarbamyl-7- desacetylforskolin (125I-7-AIPP-Fsk) were synthesized with specific activities of 2200 Ci/mmol and used to label adenylyl cyclase and the glucose transporter. The affinities of the photolabels for adenylyl cyclase were determined by their inhibition of [3H]forskolin binding to bovine brain membranes. 6-AIPP-Fsk and 7-AIPP-Fsk inhibited [3H]forskolin binding with IC50 values of 15 nM and 200 nM, respectively. 125I-6-AIPP-Fsk labeled a 115-kDa protein in control and GTP gamma S-preactivated bovine brain membranes. This labeling was inhibited by forskolin but not by 1,9-dideoxyforskolin or cytochalasin B. 125I-6-AIPP-Fsk labeling of partially purified adenylyl cyclase was inhibited by forskolin but not by 1,9-dideoxyforskolin. 125I-7-AIPP-Fsk specifically labeled a 45-kDa protein and not a 115-kDa protein in control and GTP gamma S-preactivated brain membranes. This labeling was inhibited by forskolin, 1,9-dideoxyforskolin, cytochalasin B, and D-glucose but not cytochalasin E or L-glucose. Human erythrocyte membranes were photolyzed with 125I-6-AIPP-Fsk and 125I-7-AIPP-Fsk. 125I-7-AIPP-Fsk, but not 125I-6-AIPP-Fsk, strongly labeled a broad 45-70-kDa band. Forskolin, 7-bromoacetyl-7-desacetylforskolin, 1,9-dideoxyforskolin, cytochalasin B, and D-glucose, but not cytochalasin E or L-glucose, inhibited 125I-7-AIPP-Fsk labeling of the 45-70-kDa band. 125I-6-AIPP-Fsk and 125I-7-AIPP-Fsk are high affinity photolabels with specificity for adenylyl cyclase and the glucose transporter, respectively.  相似文献   

4.
Nicotinic agonists stimulate22Na flux in rat pheochromocytoma PC12 cells. The stimulatory effect of carbamylcholine is maximal at 1 mM, while the stimulatory effect of nicotine and anatoxin maximize at the same level at 100 M and 10 M, respectively. The tertiary amines arecolone and isoarecolone have no effect on flux at 100 M, while the methiodides at 100 M stimulate flux to an extent similar to 1 mM carbamylcholine. Dihydro and alcohol analogues of isoarecolone methiodide have markedly smaller effects on flux. A preincubation for 2 to 20 min with carbamylcholine (2 mM), nicotine (300 M), anatoxin (30 M) or isoarecolone methiodide (100 M) causes marked desensitization to a subsequent carbamylcholine-elicited stimulation of flux. d-Tubocurarine, mecamylamine, hexamethonium, and chlorisondamine inhibit carbamylcholine-elicited flux with IC50 values of 1.0, 0.8, 43, and 0.020 M, respectively. Atropine has no effect at 1 M, but reduces the response to carbamylcholine by 50% at 8.6 M, presumably as a noncompetitive blocker. Other noncompetitive blockers of nicotinic acetylcholine-receptors, such as histrionicotoxins, gephyrotoxin, pumiliotoxin C, phencyclidine, bupivacaine and piperocaine, inhibit carbamylcholine-elicited stimulation of22Na flux with IC50 values from 0.3 to 1.8 M. In contrast to d-tubocurarine, which inhibits carbamylcholine-elicited desensitization, and mecamylamine, which has no apparent effect on desensitization, chlorisondamine and certain noncompetitive blockers appear to enhance desensitization. The effects of agonists, antagonists and noncompetitive blockers at the neuronal nicotinic acetylcholine receptor-channel of PC12 cells are compared to their effects on binding of [125I]-bungarotoxin to agonist-recognition sites and of [3H]perhydrohistrionicotoxin to noncompetitive blocker sites of the nicotinic acetylcholine receptor-channel of electric ray (Torpedo) electroplax membranes. There are marked differences in relative potencies for the two types of nicotinic acetylcholine receptor-channel.  相似文献   

5.
Abstract: Forskolin has been used to stimulate adenylyl cyclase. However, we found that forskolin inhibited voltage-sensitive Ca2+ channels (VSCCs) in a cyclic AMP (cAMP)-independent manner in PC12 cells. Ca2+ influx induced by membrane depolarization with 70 m M K+ was inhibited when cells were preincubated with 10 µ M forskolin. Almost maximum inhibitory effect on Ca2+ influx without any significant increase in cellular cAMP level was observed in PC12 cells exposed to forskolin for 1 min. In addition, the forskolin effect on Ca2+ influx was not affected by the presence of 2',5'-dideoxyadenosine, an inhibitor of adenylyl cyclase that reduces dramatically forskolin-induced cAMP production. 1,9-Dideoxyforskolin, an inactive analogue of forskolin, also inhibited ∼80% of Ca2+ influx induced by 70 m M K+ without any increase in cAMP. The data suggest that forskolin and its analogue inhibit VSCCs in PC12 cells and that the inhibition is independent of cAMP generation.  相似文献   

6.
Forskolin, an activator of adenylate cyclase, and its analogs were studied on the nicotinic acetylcholine receptor-ion channel complex (AChR) of rat and frog skeletal muscles. At nanomolar concentrations, forskolin caused desensitization of the AChR located at the junctional region of innervated and the extrajunctional region of chronically denervated rat soleus muscles. The desensitization of the AChR occurred without alteration of the conducting state (channel lifetime, conductance or bursting) as shown by single channel currents. Accordingly, forskolin decreased the peak amplitude of the repetitive evoked endplate currents in frog sartorius muscles. These findings taken together with the good correlation found between the effects of forskolin and its analogs on the desensitization of the nicotinic AChR and their ability to activate adenylate cyclase suggested a possible involvement of phosphorylation of AChR via cyclic AMP on the desensitization process.  相似文献   

7.
A forskolin and verapamil sensitive K+ current in human tracheal cells   总被引:1,自引:0,他引:1  
A voltage-dependent K+ current has been revealed in whole-cell recordings carried out on immortalized cells obtained from the human tracheal epithelium. At positive membrane potentials the current shows a time dependent inactivation which is accelerated by increasing the depolarizing step. Forskolin, a direct activator of adenylyl cyclase, and verapamil, a Ca2+ channel blocker, induce the K+ current to inactivate more rapidly. Control experiments show that the action of these two compounds is not mediated by cyclic AMP and Ca2+. The application of 1,9-dideoxyforskolin, an analogue which does not stimulate adenylate cyclase, inhibits the current in the same way as forskolin; on the contrary, the dibutyryl analogue of cyclic AMP is ineffective. Furthermore, eliminating extracellular Ca2+ does not affect K+ current kinetics. Tetraethylammonium is an effective blocker of this current with an IC50 of 0.3 mM.  相似文献   

8.
The binding of [14,15-3H]14,15-dihydroforskolin ([3H]DHF) to rat liver membranes has been further characterized and was compared with the stimulatory effect of forskolin on adenylate cyclase. The binding equilibrium dissociation constant (KD) for 14,15-dihydroforskolin obtained in inhibition experiments was 0.6 microM, with a maximal binding capacity (Bmax) of 114 pmol/mg protein. A similar KD value (0.5 microM) was derived from kinetics studies that revealed very rapid association and dissociation reactions. For structure-activity relationship studies several forskolin derivatives were synthesized and tested for their ability to inhibit [3H]DHF binding and increase adenylate cyclase activity. Among the tested compounds, forskolin itself was the most potent agonist (K1 = 0.2 microM). Further modification of the molecule in position 7 and (or) 1 decreased or abolished its agonist properties in both adenylate cyclase and binding studies. [3H]DHF binding was not affected by several nucleotides, carbohydrates, lectins, and hormone receptor agonists including isoproterenol, glucagon, and adenosine, but the steroids 17-beta-estradiol, progesterone, and testosterone showed slight inhibitory effects at unphysiologically high concentrations. [3H]DHF binding and forskolin-stimulated adenylate cyclase were sensitive to heat and N-ethylmaleimide treatment. Forskolin protected adenylate cyclase against inactivation by heat but not by N-ethylmaleimide. Preincubation of the membrane with trypsin decreased [3H]DHF binding. The results presented in this study demonstrate that the binding sites identified with [3H]DHF have a high specificity for forskolin and provide evidence that these binding sites are involved in the stimulation of adenylate cyclase by forskolin.  相似文献   

9.
In pheochromocytoma PC12 cells, (+)-cis-decahydroquinoline 195A (5-methyl-2-propyl-cis-decahydroquinoline) and (+)-perhydro-cis-decahydroquinoline 219A (2,5-dipropyl-cis-decahydroquinoline) inhibit carbamylcholine-elicited sodium flux with IC50 values of 1.0 and 1.5 M, respectively. Both of these decahydroquinolines appear to enhance desensitization, although apparent lack of complete removal of (+)-perhydro-cis-219A by washing complicates interpretation of the effects of that agent. A series of cis- and trans-decahydroquinolines with substituents in the 2- and 5-position also exhibit structure-dependent inhibition of carbamylcholine-elicited sodium flux in PC12 cells and all of the decahydroquinolines inhibit binding of the noncompetitive blocking agent [3H]perhydrohistrionicotoxin to muscle-type nicotinic acetylcholine receptor-channels in membranes fromTorpedo electroplax. The Ki values in electroplax membranes range from 1.4 to 7.9 M, making these alkaloids comparable in potencies to the histrionicotoxins. Potencies are increased 2- to 3-fold in the presence of an agonist, carbamylcholine. The profile of activities are similar in PC12 cells and electroplax membranes. The cis- and trans-decahydroquinolines represent another class of noncompetitive blockers for acetylcholine receptor-channels with similar activity for both muscle-type and ganglionic type nicotinic receptors.  相似文献   

10.
The homologous and heterologous desensitization of rat Leydig-tumour-cell adenylate cyclase induced by lutropin (LH) was characterized with the aid of forskolin and cholera toxin. Forskolin stimulated cyclic AMP production in a dose-dependent manner, with linear kinetics up to 2h. Forskolin also potentiated the action of LH on cyclic AMP production, but was only additive with cholera toxin. Preincubation of rat Leydig tumour cells with LH (1.0 micrograms/ml) for 1 h produced a desensitization of the subsequent LH (1.0 micrograms/ml)-stimulated cyclic AMP production, whereas the responses to cholera toxin (5.0 micrograms/ml), forskolin (100 microM), LH plus forskolin or cholera toxin plus forskolin were unaltered. In contrast, preincubation with LH for 20h produced a desensitization to all the stimuli tested. When rat Leydig tumour cells were preincubated for 1h with forskolin or dibutyryl cyclic AMP, the only subsequent response that was significantly altered was that to LH plus forskolin after preincubation with forskolin. However, preincubation for 20h with forskolin or dibutyryl cyclic AMP induced a desensitization to all stimuli subsequently tested. LH produced a rapid (0-1h) homologous desensitization, which was followed by a slower (2-8h)-onset heterologous desensitization. Forskolin and dibutyryl cyclic AMP were only able to induce heterologous desensitization. The rate of desensitization induced by either forskolin or dibutyryl cyclic AMP was similar to the rate of heterologous desensitization induced by LH. These results demonstrate that in purified rat Leydig tumour cells LH produces an initial homologous desensitization of adenylate cyclase that involves a cyclic AMP-independent lesion at or proximal to the guanine nucleotide regulatory protein (G-protein). This is followed by heterologous desensitization, which can also be induced by forskolin or dibutyryl cyclic AMP, thus indicating that LH-induced heterologous desensitization of rat Leydig-tumour-cell adenylate cyclase involves a cyclic AMP-dependent lesion that is after the G-protein.  相似文献   

11.
The cardioactive diterpene forskolin is a known activator of adenylate cyclase, but recently a specific interaction of this compound with the glucose transporter has been identified that results in the inhibition of glucose transport in several human and rat cell types. We have compared the sensitivity of basal and insulin-stimulated hexose transport to inhibition by forskolin in skeletal muscle cells of the L6 line. Forskolin completely inhibited both basal and insulin-stimulated hexose transport when present during the transport assay. The inhibition of basal transport was completely reversible upon removal of the diterpene. In contrast, insulin-stimulated hexose transport did not recover, and basal transport levels were attained instead. This effect of inhibiting (or reversing) the insulin-stimulated fraction of transport is a novel effect of the diterpene. Forskolin treatment also inhibited the stimulated fraction of transport when the stimulus was by 4 beta-phorbol 12,13-dibutyrate, reversing back to basal levels. Half-maximal inhibition of the above-basal insulin-stimulated transport was achieved with 35-50 microM-forskolin, and maximal inhibition with 100 microM. Forskolin did not inhibit 125I-insulin binding under conditions where it caused significant inhibition of insulin-stimulated hexose transport. Forskolin significantly elevated the cyclic AMP levels in the cells; however its inhibitory effect on the above basal, insulin-stimulated fraction of hexose transport was not mediated by cyclic AMP since: (i) 8-bromo cyclic AMP and cholera toxin did not mimic this effect of the diterpene, (ii) significant decreases in cyclic AMP levels caused by 2',3'-dideoxyadenosine in the presence of forskolin did not prevent inhibition of insulin-stimulated hexose transport, (iii) isobutylmethylxanthine did not potentiate forskolin effects on glucose transport but did potentiate the elevation in cyclic AMP, and (iv) 1,9-dideoxyforskolin, which does not activate adenylate cyclase, inhibited hexose transport analogously to forskolin. We conclude that forskolin can selectively inhibit the insulin- and phorbol ester-stimulated fraction of hexose transport under conditions where basal transport is unimpaired. The results are compatible with the suggestions that glucose transporters operating in the stimulated state (insulin or phorbol ester-stimulated) differ in their sensitivity to forskolin from transporters operating in the basal state, or, alternatively, that a forskolin-sensitive signal maintains the stimulated transport rate.  相似文献   

12.
[3H]Forskolin binds to human platelet membranes in the presence of 5 mM MgCl2 with a Bmax of 125 fmol/mg of protein and a Kd of 20 nM. The Bmax for [3H]forskolin binding is increased to 455 and 425 fmol/mg of protein in the presence of 100 microM guanyl-5'-yl imidodiphosphate (Gpp(NH)p) and 10 mM NaF, respectively. The increase in the Bmax for [3H]forskolin in the presence of Gpp(NH)p or NaF is not observed in the absence of MgCl2. The EC50 values for the increase in the number of binding sites for [3H]forskolin by Gpp(NH)p and NaF are 600 nM and 4 mM, respectively. The EC50 value for Gpp(NH)p to increase the number of [3H]forskolin binding sites is reduced to 35 mM and 150 nM in the presence of 50 microM PGE1 or PGD2, respectively. The increase in the number of [3H]forskolin binding sites observed in the presence of NaF is unaffected by prostaglandins. The binding of [3H]forskolin to membranes that are preincubated with Gpp(NH)p for 120 min or assayed in the presence of PGE1 reaches equilibrium within 15 min. In contrast, a slow linear increase in [3H]forskolin binding is observed over a period of 60 min when Gpp(NH)p and [3H]forskolin are added simultaneously to membranes. A slow linear increase in adenylate cyclase activity is also observed as a result of preincubating membranes with Gpp(NH)p. In human platelet membranes, agents that activate adenylate cyclase via the guanine nucleotide stimulatory protein (Ns) increase the number of binding sites for [3H]forskolin in a magnesium-dependent manner. This is consistent with the high affinity binding sites for [3H]forskolin being associated with the formation of an activated complex of the Ns protein and adenylate cyclase. This state of the adenylate cyclase may be representative of that formed by a synergistic combination of hormones and forskolin.  相似文献   

13.
Abstract: α-Secretase cleaves the full-length Alzheimer's amyloid precursor protein (APP) within the amyloid β peptide sequence, thus precluding amyloid formation. The resultant soluble truncated APP is constitutively secreted. This nonamyloidogenic processing of APP is increased on stimulation of the phospholipase C/protein kinase C pathway by phorbol esters. Here we used C6 cells transfected with APP751 to examine whether the α-secretase cleavage is regulated by the adenylate cyclase signal transduction pathway. Forskolin, an activator of adenylate cyclase, inhibited both the constitutive and phorbol ester-stimulated secretion of nexin II (NXII), the secreted product of the α-secretase cleavage of APP751. At 1 µ M , forskolin inhibited secretion of NXII by ∼50% without affecting either the intracellular levels of total APP or the secretion of secretory alkaline phosphatase. In contrast, 1,9-dideoxyforskolin, an inactive analogue of forskolin, did not affect secretion of NXII. These results indicated that forskolin specifically inhibited the α-secretase cleavage of APP751. Forskolin treatment increased the intracellular concentration of cyclic AMP (cAMP), suggesting that the forskolin effects on APP cleavage may be mediated by cAMP. In support of this suggestion, both dibutyryl cAMP, a cAMP analogue, and isoproterenol, an activator of adenylate cyclase, also inhibited secretion of NXII. These data indicate that forskolin inhibition of the nonamyloidogenic cleavage of APP is mediated by the second messenger cAMP, which together with the protein kinase C signal transduction pathway modulates the secretory cleavage of APP.  相似文献   

14.
Forskolin (40 μM) stimulated adenylate cyclase activities of bovine thyroid plasma membranes without pthe addition of guanine nucleotides. GDP had little effect on the forskolin-stimulated adenylate cyclase activity while Gpp[NH]p (0.1–1.0 μM) decreased it. In the presence of TSH (10 mU/0.11), Gpp[NH]p no longer caused inhibition. Forskolin did not affect phosphodiesterase activities of thyroid homogenates. Forskolin (10 μM) rapidly increased cAMP levels in bovine thyroid slices both in the absence and presence of a phosphodiesterase inhibitor. The effect of TSH (50 mU/ml) on cAMP levels was additive or greater than additive to that of forskolin. An initial 2-h incubation of slices with forskolin did not decrease their subsequent cAMP responses to either forskolin and/or TSH while similar treatment of slices with TSH induced desensitization of the cAMP response to TSH, but not to forskolin. Forskolin (10 μM) as well as TSH (50 mU/ml) activated cAMP-dependent protein kinase of slices in the absence of a phosphodiesterase inhibitor. Although forskolin activated the adenylate cyclase cAMP system, it did not stimulate iodide organification or glucose oxidation, effects which have been attributed to cAMP. In fact, forskolin inhibited these parameters and 32P incorporation into phospholipids as well as their stimulation by TSH. These results indicate that an increase in cAMP levels and cAMP-dependent protein kinase activity in thyroid slices may not necessarily reproduce the effects of TSH on the thyroid.  相似文献   

15.
The Torpedo nicotinic acetylcholine receptor (AChR) contains a binding site for aromatic amine noncompetitive antagonists that is distinct from the binding site for agonists and competitive antagonists. To characterize the location and function of this allosteric antagonist site, an alkylating analog of meproadifen has been synthesized, 2-(chloroethylmethylamino)-ethyl-2, 2-diphenylpentanoate HCl (meproadifen mustard). Reaction of [3H]meproadifen mustard with AChR-rich membrane suspensions resulted in specific incorporation of label predominantly into the AChR alpha-subunit with minor incorporation into the beta-subunit. Specific labeling required the presence of high concentration of agonist and was inhibited by reversible noncompetitive antagonists including proadifen, meproadifen, perhydrohistrionicotoxin (HTX), and tetracaine when present at concentrations consistent with the binding affinity of these compounds for the allosteric antagonist site. No specific alkylation of the AChR alpha-subunit was detected in the absence of agonist, or in the presence of the partial agonist phenyltrimethylammonium or the competitive antagonists, d-tubocurarine, gallamine triethiodide, or decamethonium. Reaction with 35 microM meproadifen mustard for 70 min in the presence of carbamylcholine produced no alteration in the concentration of [3H]ACh-binding sites, but decreased by 38 +/- 4% the number of allosteric antagonist sites as measured by [3H]HTX binding. This decrease was not observed when the alkylation reaction was blocked by the presence of HTX. These results lead us to conclude that meproadifen mustard alkylates the allosteric antagonist site in the Torpedo AChR and that part of that site is associated with the AChR alpha-subunit.  相似文献   

16.
The role of cAMP in the control of secretion from bovine adrenal chromaffin cells was examined using the adenylate cyclase activator, forskolin. Treatment of chromaffin cells with forskolin resulted in a rise in cAMP levels. Forskolin inhibited catecholamine release elicited by carbamylcholine or nicotine but had no effect on secretion evoked by 55 mM K+. Inhibition of carbamylcholine-stimulated release by forskolin was half-maximal at 10 microM forskolin. The inhibition by forskolin of secretion evoked by carbamylcholine was at a step distal to the rise in intracellular free calcium concentration ([Ca2+]i), since this rise was not inhibited by forskolin, which itself produced a small rise in [Ca2+]i. The results suggest that secretion evoked by carbamylcholine is due to the activation of an additional second messenger pathway acting with the rise in [Ca2+]i. This additional pathway may be the target for cAMP action.  相似文献   

17.
A series of 8-methyl-5-substituted indolizidines inhibit binding of the noncompetitive blocking agent [3H]perhydrohistrionicotoxin to muscle-type nicotinic acetylcholine receptor-channels in membranes fromTorpedo electroplax. The Ki values range from 0.16 to 1.12 M, making these alkaloids among the most potent ligands for this site. Unlike most noncompetitive blockers, the potencies of the 8-methyl-5-substituted indolizidines arereduced in the presence of carbamylcholine. Indolizidine 205A (8-methyl-5-(4-pentynyl)indolizidine) is unique in enhancing binding of [3H]perhydrohistrionicotoxin by 1.5-fold. The enhancement is at a maximum at 0.01 to 0.1 M, followed by progressive inhibition with an IC50 of about 20 M. In the presence of carbamylcholine, which itself enhances binding of [3H]perhydrohistrionicotoxin, indolizidine 205A causes only an inhibition of binding with an IC50 of about 10 M. Indolizidines with a hydroxy substituent on the 8-methyl group have very low activity. None of the indolizidines affect binding of [125I]-bungarotoxin to acetylcholine recognition sites. In pheochromocytoma PC12 cells, indolizidine 205A has no agonist activity, but only inhibits carbamylcholine-elicited22Na+ influx. The profile of potencies for the 8-methyl-5-substituted indolizidines is similar in electroplax membranes and PC12 cells. Indolizidines 205A and 209B (8-methyl-5-pentylindolizidine) have no apparent effect on desensitization of receptors in PC12 cells. The 5,8-disubstituted indolizidines appear to represent an atypical and potent class of noncompetitive blockers for muscle-type and ganglionic nicotinic receptor-channels.  相似文献   

18.
Forskolin is a potent activator of the cyclic AMP-generating system in many tissues. In dog thyroid slices, the enhancement of cyclic AMP level was rapid, sustained in the presence of forskolin, but easily reversible after its withdrawal. Contrary to TSH, forskolin induced little apparent desensitization. Forskolin potentiated the effects of TSH, PGE1 and cholera toxin. However, the forskolin-induced cyclic AMP accumulation was still sensitive to inhibitors of dog thyroid adenylate cyclase such as iodide, norepinephrine and adenosine. As fluoride, but contrary to TSH and PGE1, forskolin stimulated adenylate cyclase in a medium where Mg2+ was replaced by Mn2+. This suggests that in thyroid, as in other tissues, forskolin acts beyond the receptor level but, as it potentiates hormone action and does not impair modulation by inhibitors, it may interact with the nucleotide-binding regulatory proteins. Forskolin mimicked the effect of TSH on iodide organification and secretion.  相似文献   

19.
K Sugio  J W Daly 《Life sciences》1984,34(2):123-132
The effects of forskolin analogs, phosphodiesterase inhibitors and 8-bromo cyclic AMP on plasma exudations induced with bradykinin and prostaglandin E1 in rat skin were investigated using [125I]bovine serum albumin (125I-BSA). Forskolin, forskolin 7-ethyl carbonate and 7-desacetylforskolin, which are potent activators of adenylate cyclase, greatly potentiated the bradykinin-induced plasma exudation and inhibited the prostaglandin E1-induced response. On the other hand, 14,15-dihydroforskolin and 1,9-dideoxyforskolin, which are weak or inactive as activators of adenylate cyclase, did not have any significant effect on bradykinin and prostaglandin E1-induced plasma exudations. The phosphodiesterase inhibitors, ZK 62711, dipyridamole, HL 725, and 3-isobutyl-1-methylxanthine potentiated the bradykinin-induced plasma exudation and inhibited the prostaglandin E1-induced response. Papaverine had biphasic effects on the bradykinin-response and slight inhibitory effects on the prostaglandin E1-response. 8-Bromo cyclic AMP in the doses of 0.01 to 1 microgram potentiated the bradykinin-induced plasma exudation, but had no effect at doses of 10 and 100 micrograms. 8-Bromo cyclic AMP at all doses significantly inhibited the prostaglandin E1-induced response. The results suggest that the effects of forskolin and its analogs on plasma exudations induced with bradykinin and prostaglandin E1 in rat skin derive from activation of cyclic AMP-generating systems.  相似文献   

20.
[3H]Vinblastine transport across MDCK (renal epithelial) cell layers has been characterised. The basal-to-apical [3H]vinblastine flux (JA-B) (at 10 nM) exceeded apical-to-basal flux by 19.6 fold. Net vinblastine secretion (JB-A - JA-B) was inhibited by verapamil (0.1 mM) primarily by a reduction in JB-A, consistent with net vinblastine secretion resulting from an inhibition of P-glycoprotein. 1,9-Dideoxy-forskolin and forskolin (0.1 mM) both resulted in significant inhibition of JB-A and net vinblastine secretion of 64.3 +/- 3.1% and 29.1 +/- 4.8% respectively. 7 beta-deactyl-7 beta-(gamma-N-methylpiperazino)-butyryl-forskolin was ineffective. Half-maximal inhibition of vinblastine secretion by 1,9-dideoxy-forskolin was observed at 65 microM. 1,9-dideoxy-forskolin is unable to stimulate adenylate cyclase, suggesting that this forskolin derivative is a potentially important lead antagonist of P-glycoprotein for circumvention of pleiotropic drug resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号