首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
DnaA protein, the initiation factor for chromosomal DNA replication in Escherichia coli, is activated by ATP. ATP bound to DnaA protein is slowly hydrolyzed to ADP, but the physiological role of ATP hydrolysis is unclear. We constructed, by site-directed mutagenesis, mutated DnaA protein with lower ATPase activity, and we examined its function in vitro and in vivo. The ATPase activity of purified mutated DnaA protein (Glu204-->Gln) decreased to one-third that of the wild-type DnaA protein. The mutation did not significantly affect the affinity of DnaA protein for ATP or ADP. The mutant dnaA gene showed lethality in wild-type cells but not in cells growing independently of the function of oriC. Induction of the mutated DnaA protein in wild-type cells caused an overinitiation of DNA replication. Our results lead to the thesis that the intrinsic ATPase activity of DnaA protein negatively regulates chromosomal DNA replication in E. coli cells.  相似文献   

2.
In order to initiate chromosomal DNA replication in Escherichia coli, the DnaA protein must bind to both ATP and the origin of replication (oriC). Acidic phospholipids are known to inhibit DnaA binding to ATP, and here we examine the effects of various phospholipids on DnaA binding to oriC. Among the phospholipids in E. coli membrane, cardiolipin showed the strongest inhibition of DnaA binding to oriC. Synthetic phosphatidylglycerol containing unsaturated fatty acids inhibited binding more potently than did synthetic phosphatidylglycerol containing saturated fatty acids, suggesting that membrane fluidity is important. Thus, acidic phospholipids seem to inhibit DnaA binding to both oriC and adenine nucleotides in the same manner. Adenine nucleotides bound to DnaA did not affect the inhibitory effect of cardiolipin on DnaA binding to oriC. A mobility-shift assay re-vealed that acidic phospholipids inhibited formation of a DnaA-oriC complex containing several DnaA molecules. DNase I footprinting of DnaA binding to oriC showed that two DnaA binding sites (R2 and R3) were more sensitive to cardiolipin than other DnaA binding sites. Based on these in vitro data, the physiological relevance of this inhibitory effect of acidic phospholipids on DnaA binding to oriC is discussed.  相似文献   

3.
We characterized three mutant DnaA proteins with an amino acid substitution of R334H, R342H and E361G that renders chromosomal replication cold (20 degrees C) sensitive. Each mutant DnaA protein was highly purified from overproducers, and replication activities were assayed in in vitro oriC replication systems. At 30 degrees C, all three mutant proteins exhibited specific activity similar to that seen with the wild-type protein, whereas at 20 degrees C, there was much less activity in a replication system using a crude replicative extract. Regarding the affinity for ATP, the dissociation rate of bound ATP and binding to oriC DNA, the three mutant DnaA proteins showed a capacity indistinguishable from that of the wild-type DnaA protein. Activity for oriC DNA unwinding of the two mutant DnaA proteins, R334H and R342H, was more sensitive to low temperature than that of the wild-type DnaA protein. We propose that R334H and R342H have a defect in their potential to unwind oriC DNA at low temperatures, the result being the cold-sensitive phenotype in oriC DNA replication. The two amino acid residues of DnaA protein, located in a motif homologous to that of NtrC protein, may play a role in the formation of the open complex. The E361 residue may be related to interaction with another protein present in a crude cell extract.  相似文献   

4.
5.
Earlier, we reported that the bacteriophage lambda P gene product is lethal to Escherichia coli, and the E. coli rpl mutants are resistant to this lambda P gene-mediated lethality. In this paper, we show that under the lambda P gene-mediated lethal condition, the host DNA synthesis is inhibited at the initiation step. The rpl8 mutation maps around the 83 min position in the E. coli chromosome and is 94 % linked with the dnaA gene. The rpl8 mutant gene has been cloned in a plasmid. This plasmid clone can protect the wild-type E. coli from lambda P gene-mediated killing and complements E. coli dnaAts46 at 42 degrees C. Also, starting with the wild-type dnaA gene in a plasmid, the rpl-like mutations have been isolated by in vitro mutagenesis. DNA sequencing data show that each of the rpl8, rpl12 and rpl14 mutations has changed a single base in the dnaA gene, which translates into the amino acid changes N313T, Y200N, and S246T respectively within the DnaA protein. These results have led us to conclude that the rpl mutations, which make E. coli resistant to lambda P gene-mediated host lethality, are located within the DNA initiator gene dnaA of the host.  相似文献   

6.
Landoulsi A  Kohiyama M 《Biochimie》1999,81(8-9):827-834
The purified DnaA protein has a high affinity for cyclic AMP (cAMP). Using equilibrium dialysis, we determined the K(A) value for cAMP as 0.819 muM(-1). The number of cAMP binding sites per DnaA protein molecule was calculated to be 1.04. This binding was quite specific for cAMP. ATP was also bound by DnaA protein and inhibited cAMP binding. This inhibition was non-competitive in nature with an inhibition constant (K(i)) of about 8.25 muM. However, in vivo we have found not only that the DnaA protein level is reduced in a cyclase deletion mutant strain, Delta++ cya, but also that DnaA protein is not degraded. The Delta cya mutants of E. coli are unable to continue DNA synthesis in the absence of de novo protein synthesis and the initiation of DNA replication in these mutants takes place from oriC.  相似文献   

7.
C Weigel  A Schmidt  B Rückert  R Lurz    W Messer 《The EMBO journal》1997,16(21):6574-6583
The formation of nucleoprotein complexes between the Escherichia coli initiator protein DnaA and the replication origin oriC was analysed in vitro by band-shift assays and electron microscopy. DnaA protein binds equally well to linear and supercoiled oriC substrates as revealed by analysis of the binding preference to individual DnaA boxes (9-mer repeats) in oriC, and by a competition band-shift assay. DnaA box R4 (oriC positions 260-268) binds DnaA preferentially and in the oriC context with higher affinity than expected from its binding constant. This effect depends on oriC positions 249 to 274, is enhanced by the wild-type sequence in the DnaA box R3 region, but is not dependent on Dam methylation or the curved DNA segment to the right of oriC. DnaA binds randomly to the DnaA boxes R1, M, R2 and R3 in oriC with no apparent cooperativity: the binding preference of DnaA to these sites was not altered for templates with mutated DnaA box R4. In the oriC context, DnaA box R1 binds DnaA with lower affinity than expected from its binding constant, i.e. the affinity is reduced to approximately that of DnaA box R2. Higher protein concentrations were required to observe binding to DnaA box M, making this low-affinity site a novel candidate for a regulatory dnaA box.  相似文献   

8.
9.
The nucleoprotein complex formed on oriC, the Escherichia coli replication origin, is dynamic. During the cell cycle, high levels of the initiator DnaA and a bending protein, IHF, bind to oriC at the time of initiation of DNA replication, while binding of Fis, another bending protein, is reduced. In order to probe the structure of nucleoprotein complexes at oriC in more detail, we have developed an in situ footprinting method, termed drunken-cell footprinting, that allows enzymatic DNA modifying reagents access to intracellular nucleoprotein complexes in E.coli, after a brief exposure to ethanol. With this method, we observed in situ binding of Fis to oriC in exponentially growing cells, and binding of IHF to oriC in stationary cells, using DNase I and Bst NI endonuclease, respectively. Increased binding of DnaA to oriC in stationary phase was also noted. Because binding of DnaA and IHF results in unwinding of oriC in vitro, P1 endonuclease was used to probe for intracellular unwinding of oriC. P1 cleavage sites, localized within the 13mer unwinding region of oriC ', were dramatically enhanced in stationary phase on wild-type origins, but not on mutant versions of oriC unable to unwind. These observations suggest that most oriC copies become unwound during stationary phase, forming an initiation-like nucleoprotein complex.  相似文献   

10.
DnaA protein (the initiator protein) binds and clusters at the four DnaA boxes of the Escherichia coli chromosomal origin (oriC) to promote the strand opening for DNA replication. DnaA protein activity depends on the tight binding of ATP; the ADP form of DnaA protein, generated by hydrolysis of the bound ATP, is inactive. Rejuvenation of ADP-DnaA protein, by replacement with ATP, is catalyzed by acidic phospholipids in a highly fluid bilayer. We find that interaction of DnaA protein with oriC DNA is needed to stabilize DnaA protein during this rejuvenation process. Whereas DnaA protein bound to oriC DNA responds to phospholipids, free DnaA protein is inactivated by phospholipids and then fails to bind oriC. Furthermore, oriC DNA facilitates the high affinity binding of ATP to DnaA protein during treatment with phospholipids. A significant portion of the DnaA protein associated with oriC DNA can be replaced by the ADP form of the protein, suggesting that all of the DnaA protein bound to oriC DNA need not be rejuvenated between rounds of replication.  相似文献   

11.
The chromosomal replication origin oriC and the gene encoding the replication initiator protein DnaA from Thermus thermophilus have been identified and cloned into an Escherichia coli vector system. The replication origin is composed of 13 characteristically arranged DnaA boxes, binding sites for the DnaA protein, and an AT-rich stretch, followed by the dnaN gene. The dnaA gene is located upstream of the origin and expresses a typical DnaA protein that follows the division into four domains, as with other members of the DnaA protein family. Here, we report the purification of Thermus-DnaA (Tth-DnaA) and characterize the interaction of the purified protein with the replication origin, with regard to the binding kinetics and stoichiometry of this interaction. Using gel retardation assays, surface plasmon resonance (SPR) and electron microscopy, we show that, unlike the E. coli DnaA, Tth-DnaA does not recognize a single DnaA box, instead a cluster of three tandemly repeated DnaA boxes is the minimal requirement for specific binding. The highest binding affinities are observed with full-length oriC or six clustered, tandemly repeated DnaA boxes. Furthermore, high-affinity DNA-binding of Tth-DnaA is dependent on the presence of ATP. The Thermus DnaA/oriC interaction will be compared with oriC complex formation generated by other DnaA proteins.  相似文献   

12.
Oligomerization of the initiator protein, DnaA, on the origin of replication (oriC) is crucial for initiation of DNA replication. Studies in Escherichia coli (Gram-negative) have revealed that binding of DnaA to ATP, but not hydrolysis of ATP, is sufficient to promote DnaA binding, oligomerization and DNA strand separation. To begin understanding the initial events involved in the initiation of DNA replication in Mycobacterium tuberculosis (Gram-positive), we investigated interactions of M. tuberculosis DnaA (DnaA(TB)) with oriC using surface plasmon resonance in the presence of ATP and ADP. We provide evidence that, in contrast to what is observed in E. coli, ATPase activity of DnaA(TB) promoted rapid oligomerization on oriC. In support, we found that a recombinant mutant DnaA(TB) proficient in binding to ATP, but deficient in ATPase activity, did not oligomerize as rapidly. The corresponding mutation in the dnaA gene of M. tuberculosis resulted in non-viability, presumably due to a defect in oriC-DnaA interactions. Dimethy sulphate (DMS) footprinting experiments revealed that DnaA(TB) bound to DnaA boxes similarly with ATP or ADP. DnaA(TB) binding to individual DnaA boxes revealed that rapid oligomerization on oriC is triggered only after the initial interaction of DnaA with individual DnaA boxes. We propose that ATPase activity enables the DnaA protomers on oriC to rapidly form oligomeric complexes competent for replication initiation.  相似文献   

13.
Escherichia coli DnaA protein initiates DNA replication from the chromosomal origin, oriC, and regulates the frequency of this process. Structure-function studies indicate that the replication initiator comprises four domains. Based on the structural similarity of Aquifex aeolicus DnaA to other AAA+ proteins that are oligomeric, it was proposed that Domain III functions in oligomerization at oriC (Erzberger, J. P., Pirruccello, M. M., and Berger, J. M. (2002) EMBO J. 21, 4763-4773). Because the Box VII motif within Domain III is conserved among DnaA homologues and may function in oligomerization, we substituted conserved Box VII amino acids of E. coli DnaA with alanine by site-directed mutagenesis to examine the role of this motif. All mutant proteins are inactive in initiation from oriC in vivo and in vitro, but they support RK2 plasmid DNA replication in vivo. Thus, RK2 requires only a subset of DnaA functions for plasmid DNA replication. Biochemical studies on a mutant DnaA carrying an alanine substitution at arginine 281 (R281A) in Box VII show that it is inactive in in vitro replication of an oriC plasmid, but this defect is not from the failure to bind to ATP, DnaB in the DnaB-DnaC complex, or oriC. Because the mutant DnaA is also active in the strand opening of oriC, whereas DnaB fails to bind to this unwound region, the open structure is insufficient by itself to load DnaB helicase. Our results show that the mutant fails to form a stable oligomeric DnaA-oriC complex, which is required for the loading of DnaB.  相似文献   

14.
S Wold  E Crooke    K Skarstad 《Nucleic acids research》1996,24(18):3527-3532
Fis protein participates in the normal control of chromosomal replication in Escherichia coli. However, the mechanism by which it executes its effect is largely unknown. We demonstrate an inhibitory influence of purified Fis protein on replication from oriC in vitro. Fis inhibits DNA synthesis equally well in replication systems either dependent upon or independent of RNA polymerase, even when the latter is stimulated by the presence of HU or IHF. The extent of inhibition by Fis is modulated by the concentrations of DnaA protein and RNA polymerase; the more limiting the amounts of these, the more severe the inhibition by Fis. Thus, the level of inhibition seems to depend on the ease with which the open complex can be formed. Fis-mediated inhibition of DNA replication does not depend on a functional primary Fis binding site between DnaA boxes R2 and R3 in oriC, as mutations that cause reduced binding of Fis to this site do not affect the degree of inhibition. The data presented suggest that Fis prevents formation of an initiation-proficient structure at oriC by forming an alternative, initiation-preventive complex. This indicates a negative role for Fis in the regulation of replication initiation.  相似文献   

15.
Escherichia coli DnaA protein, a member of the AAA+ superfamily, initiates replication from the chromosomal origin oriC in an ATP-dependent manner. Nucleoprotein complex formed on oriC with the ATP-DnaA multimer but not the ADP-DnaA multimer is competent to unwind the oriC duplex. The oriC region contains ATP-DnaA-specific binding sites termed I2 and I3, which stimulate ATP-DnaA-dependent oriC unwinding. In this study, we show that the DnaA R285A mutant is inactive for oriC replication in vivo and in vitro and that the mutation is associated with specific defects in oriC unwinding. In contrast, activities of DnaA R285A are sustained in binding to the typical DnaA boxes and to ATP and ADP, formation of multimeric complexes on oriC, and loading of the DnaB helicase onto single-stranded DNA. Footprint analysis of the DnaA-oriC complex reveals that the ATP form of DnaA R285A does not interact with ATP-DnaA-specific binding sites such as the I sites. A subgroup of DnaA molecules in the oriC complex must contain the Arg-285 residue for initiation. Sequence and structural analyses suggest that the DnaA Arg-285 residue is an arginine finger, an AAA+ family-specific motif that recognizes ATP bound to an adjacent subunit in a multimeric complex. In the context of these and previous results, the DnaA Arg-285 residue is proposed to play a unique role in the ATP-dependent conformational activation of an initial complex by recognizing ATP bound to DnaA and by modulating the structure of the DnaA multimer to allow interaction with ATP-DnaA-specific binding sites in the complex.  相似文献   

16.
H Gille  W Messer 《The EMBO journal》1991,10(6):1579-1584
The leftmost region of the Escherichia coli origin of DNA replication (oriC) contains three tandemly repeated AT-rich 13mers which have been shown to become single-stranded during the early stages of initiation in vitro. Melting is induced by the ATP form of DnaA, the initiator protein of DNA replication. KMnO4 was used to probe for single-stranded regions and altered DNA conformation during the initiation of DNA replication at oriC in vitro and in vivo. Unpairing in the AT-rich 13mer region is thermodynamically stable even in the absence of DnaA protein, but only when divalent cations are omitted from the reaction. In the presence of Mg2+, oriC melting is strictly DnaA dependent. The sensitive region is distinct from that detected in the absence of DnaA as it is located further to the left within the minimal origin. In addition, the DNA is severely distorted between the three 13mers and the IHF binding site in oriC. A change of conformation can also be observed during the initiation of DNA replication in vivo. This is the first in vivo evidence for a structural change at the 13mers during initiation complex formation.  相似文献   

17.
The DnaA protein specifically binds to the origin of chromosomal DNA replication and initiates DNA synthesis. In addition to this sequence-specific DNA binding, DnaA protein binds to DNA in a sequence-independent manner. We here compared the two DNA binding activities. Binding of ATP and ADP to DnaA inhibited the sequence-independent DNA binding, but not sequence-specific binding. Sequence-independent DNA binding, but not sequence-specific binding, required incubation at high temperatures. Mutations in the C-terminal domain affected the sequence-independent DNA binding activity less drastically than they did the sequence-specific binding. On the other hand, the mutant DnaA433, which has mutations in a membrane-binding domain (K327 to I344) was inert for sequence-independent binding, but could bind specifically to DNA. These results suggest that the two DNA binding activities involve different domains and perform different functions from each other in Escherichia coli cells.  相似文献   

18.
Initiation of chromosome replication in Escherichia coli is governed by the interaction of the initiator protein DnaA with the replication origin oriC. Here we present evidence that homo-oligomerization of DnaA via its N-terminus (amino acid residues 1-86) is also essential for initiation. Results from solid-phase protein-binding assays indicate that residues 1-86 (or 1-77) of DnaA are necessary and sufficient for self interaction. Using a 'one-hybrid-system' we found that the DnaA N-terminus can functionally replace the dimerization domain of coliphage lambda cl repressor: a lambdacl-DnaA chimeric protein inhibits lambda plasmid replication as efficiently as lambdacI repressor. DnaA derivatives with deletions in the N-terminus are incapable of supporting chromosome replication from oriC, and, conversely, overexpression of the DnaA N-terminus inhibits initiation in vivo. Together, these results indicate that (i) oligomerization of DnaA N-termini is essential for protein function during initiation, and (ii) oligomerization does not require intramolecular cross-talk with the nucleotide-binding domain III or the DNA-binding domain IV. We propose that E. coli DnaA is composed of largely independent domains - or modules - each contributing a partial, though essential, function to the proper functioning of the 'holoprotein'.  相似文献   

19.
It is shown here that plasmids containing the replication origin of Escherichia coli (oriC) cannot replicate in an extrachromosomal state in E. coli cells with the polA1hip3 double mutation. This E. coli mutant is deficient in the polymerizing function of DNA polymerase I (Pol I) and is unable to produce functional IHF protein. The inability of the oriC minichromosomes to replicate in the absence of IHF is dependent on the absence of Pol I; cells with the polA+himA- or polA+hip- mutation, which are deficient in the alpha and beta subunits of the IHF heterodimer, respectively, can support replication of the oriC replicons. We propose that IHF-deficient cells utilize an alternative pathway of the DNA replication in which Pol I is required. In vitro DNA binding assays revealed that the IHF binding site resides between the oriC coordinates 110 and 122 and is adjacent to the DnaA "box" 1. Within the area protected by IHF we found at least 1 out of 11 GATC methylation sites present in oriC. The consequences of lack of IHF protein binding to the oriC and the indirect effects of the IHF deficiency on the oriC replication are discussed.  相似文献   

20.
P Hughes  A Landoulsi  M Kohiyama 《Cell》1988,55(2):343-350
DnaA protein interacts with cAMP with a KD of 1 microM. This interaction stimulates DnaA protein binding to the chromosome replication origin (oriC) and the mioC promoter region, protects DnaA protein from thermal inactivation, releases ADP but not ATP bound to DnaA protein, and restores normal DNA replication activity and ATPase activity in inactive ADP-DnaA protein preparations. A model is proposed in which cellular cAMP levels govern the replication activity of DnaA protein by promoting the recycling of the inactive ADP-DnaA protein form into the active ATP form.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号