首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We characterize the type of selection acting within and among mitochondrial lineages in five closely related Drosophila species. We focus on D. simulans, where three genetically distinct mitochondrial haplogroups show high interhaplogroup divergence and low intrahaplogroup polymorphism. Using maximum likelihood models we find that the branches leading to these three distinct mitochondrial groups show a significantly reduced rate of nonsynonymous relative to synonymous substitution. This interhaplogroup rate is significantly reduced compared to the intrahaplogroup rate, and closely resembles the rate observed between distinct species. The data suggest that slightly deleterious mutations segregating within D. simulans haplogroups are removed by selection prior to their fixation among haplogroups. We explore several hypotheses to explain how lineages within a single species can be compatible with this model of slightly deleterious mutation. The most likely hypothesis is that D. simulans haplogroups have persisted in isolation, perhaps due to association with the bacterial symbiont Wolbachia and/or demographic history, introducing a bias against the fixation of slightly deleterious mutations.  相似文献   

2.
Hybridization between humans and Neanderthals has resulted in a low level of Neanderthal ancestry scattered across the genomes of many modern-day humans. After hybridization, on average, selection appears to have removed Neanderthal alleles from the human population. Quantifying the strength and causes of this selection against Neanderthal ancestry is key to understanding our relationship to Neanderthals and, more broadly, how populations remain distinct after secondary contact. Here, we develop a novel method for estimating the genome-wide average strength of selection and the density of selected sites using estimates of Neanderthal allele frequency along the genomes of modern-day humans. We confirm that East Asians had somewhat higher initial levels of Neanderthal ancestry than Europeans even after accounting for selection. We find that the bulk of purifying selection against Neanderthal ancestry is best understood as acting on many weakly deleterious alleles. We propose that the majority of these alleles were effectively neutral—and segregating at high frequency—in Neanderthals, but became selected against after entering human populations of much larger effective size. While individually of small effect, these alleles potentially imposed a heavy genetic load on the early-generation human–Neanderthal hybrids. This work suggests that differences in effective population size may play a far more important role in shaping levels of introgression than previously thought.  相似文献   

3.
Holmes EC 《Journal of virology》2003,77(20):11296-11298
Considerable uncertainty surrounds the evolutionary rates of and selection pressures acting on arthropod-borne RNA viruses (arboviruses). In particular, it is unclear why arboviruses such as dengue virus show substantial genetic variation within individual humans and mosquitoes yet low long-term rates of amino acid substitution. To address this question, I compared patterns of nonsynonymous variation in populations of dengue virus sampled at different levels of evolutionary divergence. Although nonsynonymous variation was abundant in viral populations within individual humans, there was a marked reduction in the frequency of nonsynonymous mutations in interhost comparisons. Moreover, intrahost genetic variation corresponded to a random pattern of mutation, and most of the sites that exhibited nonsynonymous variation within hosts were invariant at deeper phylogenetic levels. This loss of long-term nonsynonymous variation is the signature of extensive purifying selection such that more than 90% of all nonsynonymous mutations are deleterious. Consequently, although arboviruses are able to successfully adapt to diverse cell types, they are characterized by a high rate of deleterious mutation.  相似文献   

4.
Comparative analysis of recently sequenced eukaryotic genomes has uncovered extensive variation in transposable element (TE) abundance, diversity, and distribution. The TE profile in the sequenced pufferfish genomes is more similar to that of Drosophila melanogaster than to human or mouse, in that pufferfish TEs exhibit low overall abundance, high family diversity, and localization in the heterochromatin. It has been suggested that selection against the deleterious effects of ectopic recombination between TEs has structured the TE profile in Drosophila and pufferfish but not in humans. We test this hypothesis by measuring the sample frequency of 48 euchromatic TE insertions in the genome of the green spotted pufferfish (Tetraodon nigroviridis). We estimate the strength of selection acting on recent insertions by analyzing the site frequency spectrum using a maximum-likelihood approach. We show that in contrast to Drosophila, euchromatic TE insertions in Tetraodon are selectively neutral and that the low copy number and compartmentalized distribution of TEs in the Tetraodon genome must be caused by regulation by means other than purifying selection acting on recent insertions. Inference of regulatory processes governing TE profiles should take into account factors such as effective population size, incidence of inbreeding/outcrossing, and other species-specific traits.  相似文献   

5.
The evolutionary expansion of CAG repeats in human triplet expansion disease genes is intriguing because of their deleterious phenotype. In the past, this expansion has been suggested to reflect a broad genomewide expansion of repeats, which would imply that mutational and evolutionary processes acting on repeats differ between species. Here, we tested this hypothesis by analyzing repeat- and flanking-sequence evolution in 28 repeat-containing genes that had been sequenced in humans and mice and by considering overall lengths and distributions of CAG repeats in the two species. We found no evidence that these repeats were longer in humans than in mice. We also found no evidence for preferential accumulation of CAG repeats in the human genome relative to mice from an analysis of the lengths of repeats identified in sequence databases. We then investigated whether sequence properties, such as base and amino acid composition and base substitution rates, showed any relationship to repeat evolution. We found that repeat-containing genes were enriched in certain amino acids, presumably as the result of selection, but that this did not reflect underlying biases in base composition. We also found that regions near repeats showed higher nonsynonymous substitution rates than the remainder of the gene and lower nonsynonymous rates in genes that contained a repeat in both the human and the mouse. Higher rates of nonsynonymous mutation in the neighborhood of repeats presumably reflect weaker purifying selection acting in these regions of the proteins, while the very low rate of nonsynonymous mutation in proteins containing a CAG repeat in both species presumably reflects a high level of purifying selection. Based on these observations, we propose that the mutational processes giving rise to polyglutamine repeats in human and murine proteins do not differ. Instead, we propose that the evolution of polyglutamine repeats in proteins results from an interplay between mutational processes and selection.  相似文献   

6.
Eyre-Walker A  Woolfit M  Phelps T 《Genetics》2006,173(2):891-900
The distribution of fitness effects of new mutations is a fundamental parameter in genetics. Here we present a new method by which the distribution can be estimated. The method is fairly robust to changes in population size and admixture, and it can be corrected for any residual effects if a model of the demography is available. We apply the method to extensively sampled single-nucleotide polymorphism data from humans and estimate the distribution of fitness effects for amino acid changing mutations. We show that a gamma distribution with a shape parameter of 0.23 provides a good fit to the data and we estimate that >50% of mutations are likely to have mild effects, such that they reduce fitness by between one one-thousandth and one-tenth. We also infer that <15% of new mutations are likely to have strongly deleterious effects. We estimate that on average a nonsynonymous mutation reduces fitness by a few percent and that the average strength of selection acting against a nonsynonymous polymorphism is approximately 9 x 10(-5). We argue that the relaxation of natural selection due to modern medicine and reduced variance in family size is not likely to lead to a rapid decline in genetic quality, but that it will be very difficult to locate most of the genes involved in complex genetic diseases.  相似文献   

7.
Evolutionary forces like Hill-Robertson interference and negative epistasis can lead to deleterious mutations being found on distinct haplotypes. However, the extent to which these forces depend on the selection and dominance coefficients of deleterious mutations and shape genome-wide patterns of linkage disequilibrium (LD) in natural populations with complex demographic histories has not been tested. In this study, we first used forward-in-time simulations to predict how negative selection impacts LD. Under models where deleterious mutations have additive effects on fitness, deleterious variants less than 10 kb apart tend to be carried on different haplotypes relative to pairs of synonymous SNPs. In contrast, for recessive mutations, there is no consistent ordering of how selection coefficients affect LD decay, due to the complex interplay of different evolutionary effects. We then examined empirical data of modern humans from the 1000 Genomes Project. LD between derived alleles at nonsynonymous SNPs is lower compared to pairs of derived synonymous variants, suggesting that nonsynonymous derived alleles tend to occur on different haplotypes more than synonymous variants. This result holds when controlling for potential confounding factors by matching SNPs for frequency in the sample (allele count), physical distance, magnitude of background selection, and genetic distance between pairs of variants. Lastly, we introduce a new statistic HR(j) which allows us to detect interference using unphased genotypes. Application of this approach to high-coverage human genome sequences confirms our finding that nonsynonymous derived alleles tend to be located on different haplotypes more often than are synonymous derived alleles. Our findings suggest that interference may play a pervasive role in shaping patterns of LD between deleterious variants in the human genome, and consequently influences genome-wide patterns of LD.  相似文献   

8.
Healthy males are likely to have higher mating success than unhealthy males because of differential expression of condition‐dependent traits such as mate searching intensity, fighting ability, display vigor, and some types of exaggerated morphological characters. We therefore expect that most new mutations that are deleterious for overall fitness may also be deleterious for male mating success. From this perspective, sexual selection is not limited to influencing those genes directly involved in exaggerated morphological traits but rather affects most, if not all, genes in the genome. If true, sexual selection can be an important force acting to reduce the frequency of deleterious mutations and, as a result, mutation load. We review the literature and find various forms of indirect evidence that sexual selection helps to eliminate deleterious mutations. However, direct evidence is scant, and there are almost no data available to address a key issue: is selection in males stronger than selection in females? In addition, the total effect of sexual selection on mutation load is complicated by possible increases in mutation rate that may be attributable to sexual selection. Finally, sexual selection affects population fitness not only through mutation load but also through sexual conflict, making it difficult to empirically measure how sexual selection affects load. Several lines of enquiry are suggested to better fill large gaps in our understanding of sexual selection and its effect on genetic load.  相似文献   

9.
Sexual dimorphism results from sex-biased gene expression, which evolves when selection acts differently on males and females. While there is an intimate connection between sex-biased gene expression and sex-specific selection, few empirical studies have studied this relationship directly. Here we compare the two on a genome-wide scale in humans and flies. We find a distinctive “Twin Peaks” pattern in humans that relates the strength of sex-specific selection, quantified by genetic divergence between male and female adults at autosomal loci, to the degree of sex-biased expression. Genes with intermediate degrees of sex-biased expression show evidence of ongoing sex-specific selection, while genes with either little or completely sex-biased expression do not. This pattern apparently results from differential viability selection in males and females acting in the current generation. The Twin Peaks pattern is also found in Drosophila using a different measure of sex-specific selection acting on fertility. We develop a simple model that successfully recapitulates the Twin Peaks. Our results suggest that many genes with intermediate sex-biased expression experience ongoing sex-specific selection in humans and flies.  相似文献   

10.
Recent genome sequencing studies with large sample sizes in humans have discovered a vast quantity of low-frequency variants, providing an important source of information to analyze how selection is acting on human genetic variation. In order to estimate the strength of natural selection acting on low-frequency variants, we have developed a likelihood-based method that uses the lengths of pairwise identity-by-state between haplotypes carrying low-frequency variants. We show that in some nonequilibrium populations (such as those that have had recent population expansions) it is possible to distinguish between positive or negative selection acting on a set of variants. With our new framework, one can infer a fixed selection intensity acting on a set of variants at a particular frequency, or a distribution of selection coefficients for standing variants and new mutations. We show an application of our method to the UK10K phased haplotype dataset of individuals.  相似文献   

11.
Two genetic models exist to explain the evolution of ageing – mutation accumulation (MA) and antagonistic pleiotropy (AP). Under MA, a reduced intensity of selection with age results in accumulation of late‐acting deleterious mutations. Under AP, late‐acting deleterious mutations accumulate because they confer beneficial effects early in life. Recent studies suggest that the mitochondrial genome is a major player in ageing. It therefore seems plausible that the MA and AP models will be relevant to genomes within the cytoplasm. This possibility has not been considered previously. We explore whether patterns of covariation between fitness and ageing across 25 cytoplasmic lines, sampled from a population of Drosophila melanogaster, are consistent with the genetic associations predicted under MA or AP. We find negative covariation for fitness and the rate of ageing, and positive covariation for fitness and lifespan. Notably, the direction of these associations is opposite to that typically predicted under AP.  相似文献   

12.
Recent studies have suggested that selective forces and constraints acting on genes varied during human evolution depending on the organ in which they are expressed. To gain insight into the evolution of organ determined negative selection forces, we compared the non-synonymous SNP diversity of genes expressed in different organs. Based on a HAPMAP dataset, we determined for each SNP its frequency in 11 human populations and, in each case, predicted whether or not the change it produces is deleterious. We have shown that, for all organs under study, SNPs predicted to be deleterious are present at a significantly lower frequency than SNPs predicted to be tolerated. However, testis-specific genes contain a higher proportion of deleterious SNPs than other organs. This study shows that negative selection is acting on the whole human genome, but that the action of negative selection is relaxed on testis-specific genes. This result adds to and expands the hypothesis of a recent evolutionary change in the human male reproductive system and its behavior.  相似文献   

13.
A major question in evolutionary biology is how natural selection has shaped patterns of genetic variation across the human genome. Previous work has documented a reduction in genetic diversity in regions of the genome with low recombination rates. However, it is unclear whether other summaries of genetic variation, like allele frequencies, are also correlated with recombination rate and whether these correlations can be explained solely by negative selection against deleterious mutations or whether positive selection acting on favorable alleles is also required. Here we attempt to address these questions by analyzing three different genome-wide resequencing datasets from European individuals. We document several significant correlations between different genomic features. In particular, we find that average minor allele frequency and diversity are reduced in regions of low recombination and that human diversity, human-chimp divergence, and average minor allele frequency are reduced near genes. Population genetic simulations show that either positive natural selection acting on favorable mutations or negative natural selection acting against deleterious mutations can explain these correlations. However, models with strong positive selection on nonsynonymous mutations and little negative selection predict a stronger negative correlation between neutral diversity and nonsynonymous divergence than observed in the actual data, supporting the importance of negative, rather than positive, selection throughout the genome. Further, we show that the widespread presence of weakly deleterious alleles, rather than a small number of strongly positively selected mutations, is responsible for the correlation between neutral genetic diversity and recombination rate. This work suggests that natural selection has affected multiple aspects of linked neutral variation throughout the human genome and that positive selection is not required to explain these observations.  相似文献   

14.
Early modern and archaic humans are associated with similar lithic industries in the Middle Paleolithic of the southern Levant, but new data suggest that they used the environment in different ways. Evidence from analyses of seasonally deposited increments of the teeth of the animals they hunted suggests that modern humans primarily practiced a strategy ofcirculating seasonal mobility, while archaic humans in the same region 30,000 years later were more residentially mobile. Analyses of their lithic hunting technology further suggest that archaic humans hunted more frequently than did modern humans. We argue that this greater hunting intensity may have been a strategy for coping with the consequences of resource biodepletion resulting from long-term, multiseasonal occupation of sites. These behavioral contrasts may be related to some of the morphological differences between early modern and archaic humans.  相似文献   

15.
Although genomic studies suggest that natural selection in humans is ongoing, the strength of selection acting on particular characteristics in human populations has rarely been measured. Positive selection on male wealth appears to be a recurrent feature of human agrarian and pastoralist societies, and there is some evidence of it in industrial populations, too. Here we investigate the strength of selection on male wealth, first in contemporary Britain using data from the National Child Development Study and then across seven other varied human societies. The British data show positive selection on male income driven by increased childlessness among low-income men but a negative association between personal income and reproductive success for women. Across cultures, selection gradients for male wealth are weakest in industrial countries and strongest in subsistence societies with extensive polygyny. Even the weakest selection gradients observed for male wealth in humans are as strong as or stronger than selection gradients reported from field studies of other species. Thus, selection on male wealth in contemporary humans appears to be ubiquitous and substantial in strength.  相似文献   

16.
对近代—现代非洲和中国人群26项颅骨特征的观测和分析显示非洲人具有一些显示其特异性的颅骨特征,但多数特征的表现与东亚人类非常接近,提示现代人群体质特征的趋同性。作者认为非洲人在多数颅骨特征的表现方式上较中国人更为多样化,表明现代非洲人群在体质特征的表现上较东亚人类具有更宽广的形态变异谱。作者基于许多东亚、欧洲及澳洲人类的颅骨特征在非洲人群具有较高的出现率或明显的表现等现象提出一些未来研究中有待解决的问题。  相似文献   

17.
The Rickettsia genus is a group of obligate intracellular α-proteobacteria representing a paradigm of reductive evolution. Here, we investigate the evolutionary processes that shaped the genomes of the genus. The reconstruction of ancestral genomes indicates that their last common ancestor contained more genes, but already possessed most traits associated with cellular parasitism. The differences in gene repertoires across modern Rickettsia are mainly the result of differential gene losses from the ancestor. We demonstrate using computer simulation that the propensity of loss was variable across genes during this process. We also analyzed the ratio of nonsynonymous to synonymous changes (Ka/Ks) calculated as an average over large sets of genes to assay the strength of selection acting on the genomes of Rickettsia, Anaplasmataceae, and free-living γ-proteobacteria. As a general trend, Ka/Ks were found to decrease with increasing divergence between genomes. The high Ka/Ks for closely related genomes are probably due to a lag in the removal of slightly deleterious nonsynonymous mutations by natural selection. Interestingly, we also observed a decrease of the rate of gene loss with increasing divergence, suggesting a similar lag in the removal of slightly deleterious pseudogene alleles. For larger divergence (Ks > 0.2), Ka/Ks converge toward similar values indicating that the levels of selection are roughly equivalent between intracellular α-proteobacteria and their free-living relatives. This contrasts with the view that obligate endocellular microorganisms tend to evolve faster as a consequence of reduced effectiveness of selection, and suggests a major role of enhanced background mutation rates on the fast protein divergence in the obligate intracellular α-proteobacteria.  相似文献   

18.
Frequency‐dependent selection should drive dioecious populations toward a 1:1 sex ratio, but biased sex ratios are widespread, especially among plants with sex chromosomes. Here, we develop population genetic models to investigate the relationships between evolutionarily stable sex ratios, haploid selection, and deleterious mutation load. We confirm that when haploid selection acts only on the relative fitness of X‐ and Y‐bearing pollen and the sex ratio is controlled by the maternal genotype, seed sex ratios evolve toward 1:1. When we also consider haploid selection acting on deleterious mutations, however, we find that biased sex ratios can be stably maintained, reflecting a balance between the advantages of purging deleterious mutations via haploid selection, and the disadvantages of haploid selection on the sex ratio. Our results provide a plausible evolutionary explanation for biased sex ratios in dioecious plants, given the extensive gene expression that occurs across plant genomes at the haploid stage.  相似文献   

19.
Saunders MA  Hammer MF  Nachman MW 《Genetics》2002,162(4):1849-1861
Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common enzymopathy in humans. Deficiency alleles for this X-linked disorder are geographically correlated with historical patterns of malaria, and the most common deficiency allele in Africa (G6PD A-) has been shown to confer some resistance to malaria in both hemizygous males and heterozygous females. We studied DNA sequence variation in 5.1 kb of G6pd from 47 individuals representing a worldwide sample to examine the impact of selection on patterns of human nucleotide diversity and to infer the evolutionary history of the G6PD A- allele. We also sequenced 3.7 kb of a neighboring locus, L1cam, from the same set of individuals to study the effect of selection on patterns of linkage disequilibrium. Despite strong clinical evidence for malarial selection maintaining G6PD deficiency alleles in human populations, the overall level of nucleotide heterozygosity at G6pd is typical of other genes on the X chromosome. However, the signature of selection is evident in the absence of genetic variation among A- alleles from different parts of Africa and in the unusually high levels of linkage disequilibrium over a considerable distance of the X chromosome. In spite of a long-term association between Plasmodium falciparum and the ancestors of modern humans, patterns of nucleotide variability and linkage disequilibrium suggest that the A- allele arose in Africa only within the last 10,000 years and spread due to selection.  相似文献   

20.
Mallet MA  Chippindale AK 《Heredity》2011,106(6):994-1002
Stronger selection on males has the potential to lower the deleterious mutation load of females, reducing the cost of sex. However, few studies have directly quantified the strength of selection for both sexes. As the magnitude of inbreeding depression (ID) is related to the strength of selection, we measured the cost of inbreeding for both males and females in a laboratory population of Drosophila melanogaster. Using a novel technique for inbreeding, we found significant ID for both juvenile viability and adult fitness in both sexes. The genetic variation responsible for this depression in fitness appeared to be recessive for adult fitness (h=0.11) and partially additive for juvenile viability (h=0.29). ID was identical across the sexes in terms of juvenile viability but was significantly more deleterious for males than females as adults, even though female X-chromosome homogamety should predispose them to a higher inbreeding load. We estimated the strength of selection on adult males to be 1.24 greater than on adult females, and this appears to be a consequence of selection arising from competition for mates. Combined with the generally positive intersexual genetic correlation for inbred lines, our results suggest that the mutation load of sexual females could be meaningfully reduced by stronger selection acting on males.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号