首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Shigella spp. have transport systems for both ferric and ferrous iron. The iron can be taken up as free iron or complexed to a variety of carriers. All Shigella species have both the Feo and Sit systems for acquisition of ferrous iron, and all have at least one siderophore-mediated system for transport of ferric iron. Several of the transport systems, including Sit, Iuc/IutA (aerobactin synthesis and transport), Fec (ferric di-citrate uptake), and Shu (heme transport) are encoded within pathogenicity islands. The presence and the genomic locations of these islands vary considerably among the Shigella species, and even between isolates of the same species. The expression of the iron transport systems is influenced by the concentration of iron and by environmental conditions including the level of oxygen. ArcA and FNR regulate iron transport gene expression as a function of oxygen tension, with the sit and iuc promoters being highly expressed in aerobic conditions, while the feo ferrous iron transporter promoter is most active under anaerobic conditions. The effects of oxygen are also seen in infection of cultured cells by Shigella flexneri; the Sit and Iuc systems support plaque formation under aerobic conditions, whereas Feo allows plaque formation anaerobically.  相似文献   

2.
Actinobacillus actinomycetemcomitans requires iron to grow under limiting conditions imposed by synthetic and natural chelators. Although none of the strains tested used hemoglobin, lactoferrin or transferrin, all of them used FeCl3 and hemin as iron sources under chelated conditions. Dot-blot binding assays showed that all strains bind lactoferrin, hemoglobin, and hemin but not transferrin. When compared with smooth strains, the rough isolates showed higher hemin binding activity, which was sensitive to proteinase K treatment. A. actinomycetemcomitans harbors the Fur-regulated afeABCD locus coding for iron acquisition in isogenic and non-isogenic cell backgrounds. The genome of this oral pathogen also harbors several other predicted iron uptake genes including the hitABC locus, which restored iron acquisition in the E. coli 1017 ent mutant. However, the disruption of this locus in the parental strain did not affect iron acquisition as drastically as the inactivation of AfeABCD, suggesting that the latter system could be more involved in iron transport than the HitABC system. The genome of this oral pathogen also harbors an active copy of the exbBexbDtonB operon, which could provide the energy needed for hemin acquisition. However, inactivation of each coding region of this operon did not affect the hemin and iron acquisition phenotypes of isogenic derivatives. This observation suggests that the function of these proteins could be replaced by those coded for by tolQ, tolR and tolA as it was described for other bacterial transport systems. Interruption of a hasR homolog, an actively transcribed gene that is predicted to code for an outer membrane hemophore receptor protein, did not affect the ability of an isogenic derivative to bind and use hemin under chelated conditions. This result also indicates that A. actinomycetemcomitans could produce more than one outer membrane hemin receptor as it was described in other human pathogens. All strains tested formed biofilms on plastic under iron-rich and iron-chelated conditions. However, smooth strains attached poorly and formed weaker biofilms when compared with rough isolates. The incubation of rough cells in the presence of FeCl3 or hemin resulted in an increased number of smaller aggregates and microcolonies as compared to the fewer but larger aggregates formed when cells were grown in the presence of dipyridyl.  相似文献   

3.
Francisella tularensis subsp. tularensis is a highly infectious bacterium causing acute disease in mammalian hosts. Mechanisms for the acquisition of iron within the iron-limiting host environment are likely to be critical for survival of this intracellular pathogen. FslE (FTT0025) and FupA (FTT0918) are paralogous proteins that are predicted to form β-barrels in the outer membrane of virulent strain Schu S4 and are unique to Francisella species. Previous studies have implicated both FupA, initially identified as a virulence factor and FslE, encoded by the siderophore biosynthetic operon, in iron acquisition. Using single and double mutants, we demonstrated that these paralogs function in concert to promote growth under iron limitation. We used a (55)Fe transport assay to demonstrate that FslE is involved in siderophore-mediated ferric iron uptake, whereas FupA facilitates high affinity ferrous iron uptake. Optimal replication within J774A.1 macrophage-like cells required at least one of these uptake systems to be functional. In a mouse model of tularemia, the ΔfupA mutant was attenuated, but the ΔfslE ΔfupA mutant was significantly more attenuated, implying that the two systems of iron acquisition function synergistically to promote virulence. These studies highlight the importance of specific iron acquisition functions, particularly that of ferrous iron, for virulence of F. tularensis in the mammalian host.  相似文献   

4.
铁是绝大多数细菌生存所必需的营养物质,参与了许多重要的生命过程。病原菌为了在宿主体内生长繁殖建立感染,进化出了多种从宿主体内摄取铁元素的机制。但过量的铁也会通过Fenton反应对细胞产生毒性,所以铁的摄取必须受到严格的调控。宿主为抵抗感染采取多种手段限制病原菌对于自身铁的利用,同时铁摄取系统也可以作为抗菌治疗的靶点。  相似文献   

5.
Iron is essential for the normal functioning of cells but since it is also capable of generating toxic reactive oxygen species, the metabolism of iron is tightly regulated. The present article advances the view that astrocytes are largely responsible for distributing iron in the brain. Capillary endothelial cells are separated from the neuropil by the endfeet of astrocytes, so astrocytes are ideally positioned to regulate the transport of iron to other brain cells and to protect them if iron breaches the blood-brain barrier. Astrocytes do not appear to have a high metabolic requirement for iron yet they possess transporters for transferrin, haemin and non-transferrin-bound iron. They store iron efficiently in ferritin and can export iron by a mechanism that involves ferroportin and ceruloplasmin. Since astrocytes are a common site of abnormal iron accumulation in ageing and neurodegenerative disorders, they may represent a new therapeutic target for the treatment of iron-mediated oxidative stress.  相似文献   

6.
Iron is frequently a growth-limiting nutrient due to its propensity to interact with oxygen to form insoluble precipitates and, therefore, biological systems have evolved specialized uptake mechanisms to obtain this essential nutrient. Many pathogenic bacteria are capable of obtaining stringently sequestered iron from animal hosts by one or both of the following mechanisms: extraction of heme from host erythrocyte and serum hemoproteins, or through the use of high affinity, iron-scavenging molecules termed siderophores. This review summarizes our current knowledge of siderophore-mediated iron acquisition systems in the genus Staphylococcus.  相似文献   

7.
Iron is critical for many aspects of cellular function, but it can also generate reactive oxygen species that can damage biological macromolecules. To limit oxidative stress, iron acquisition and its distribution must be tightly regulated. In the lungs, which are continuously exposed to the atmosphere, the risk of oxidative damage is particularly high because of the high oxygen concentration and the presence of significant amounts of catalytically active iron in atmospheric particulates. An effective system of metal detoxification must exist to minimize the associated generation of oxidative stress in the lungs. Here we summarize the evidence that a number of specific proteins that control iron uptake in the gastrointestinal tract are also employed in the lung to transport iron into epithelial cells and sequester it in a catalytically inactive form in ferritin. Furthermore, these and other proteins facilitate ferritin release from lung cells to the epithelial and bronchial lining fluids for clearance by the mucociliary system or to the reticuloendothelial system for long-term storage of iron. These pathways seem to be the primary mechanism for control of oxidative stress presented by iron in the respiratory tract.  相似文献   

8.
9.
Bacterial iron homeostasis   总被引:36,自引:0,他引:36  
Iron is essential to virtually all organisms, but poses problems of toxicity and poor solubility. Bacteria have evolved various mechanisms to counter the problems imposed by their iron dependence, allowing them to achieve effective iron homeostasis under a range of iron regimes. Highly efficient iron acquisition systems are used to scavenge iron from the environment under iron-restricted conditions. In many cases, this involves the secretion and internalisation of extracellular ferric chelators called siderophores. Ferrous iron can also be directly imported by the G protein-like transporter, FeoB. For pathogens, host-iron complexes (transferrin, lactoferrin, haem, haemoglobin) are directly used as iron sources. Bacterial iron storage proteins (ferritin, bacterioferritin) provide intracellular iron reserves for use when external supplies are restricted, and iron detoxification proteins (Dps) are employed to protect the chromosome from iron-induced free radical damage. There is evidence that bacteria control their iron requirements in response to iron availability by down-regulating the expression of iron proteins during iron-restricted growth. And finally, the expression of the iron homeostatic machinery is subject to iron-dependent global control ensuring that iron acquisition, storage and consumption are geared to iron availability and that intracellular levels of free iron do not reach toxic levels.  相似文献   

10.
11.
Iron is essential for the growth and proliferation of cells, as well as for many biological processes that are important for the maintenance and survival of the human body. However, excess iron is associated with the development of cancer and other pathological conditions, due in part to the pro-oxidative nature of iron and its damaging effects on DNA. Current studies suggest that iron depletion may be beneficial for patients that have diseases associated with iron overload or other iron metabolism disorders that may increase the risk for cancer. On the other hand, studies suggest that cancer cells are more vulnerable to the effects of iron depletion and oxidative stress in comparison to normal cells. Therefore, cancer patients might benefit from treatments that alter both iron metabolism and oxidative stress. This review highlights the pro-oxidant effects of iron, the relationship between iron and cancer development, the vulnerabilities of the iron-dependent cancer phenotype, and how these characteristics may be exploited to prevent or treat cancer.  相似文献   

12.
Reactive oxygen species (ROS) display cytotoxicity that can be exacerbated by iron. Paradoxically, HeLa cells treated with the ROS-generators menadione and 2,3-dimethoxy-1,4-naphthoquinone display increased free labile iron. HeLa cells exposed to ROS undergo apoptosis but iron chelation limits the extent of cell death suggesting the rise in intracellular iron plays a signaling role in this pathway. This idea is supported by the fact that iron chelation also alters the pattern of ROS-induced phosphorylation of stress-activated protein kinases SAPK/JNK and p38 MAPK. Thus, ROS-induced increases in cellular free iron contribute to signaling events triggered during oxidative stress response.  相似文献   

13.
Human iron transporters manage iron carefully because tissues need iron for critical functions, but too much iron increases the risk of reactive oxygen species. Iron acquisition occurs in the duodenum via divalent metal transporter (DMT1) and ferroportin. Iron trafficking depends largely on the transferrin cycle. Nevertheless, non-digestive tissues have a variety of other iron transporters that may render DMT1 modestly redundant, and DMT1 levels exceed those needed for the just-mentioned tasks. This review begins to consider why and also describes advances after 2008 that begin to address this challenge.  相似文献   

14.
The cause of the neurodegenerative process in Parkinson's disease (PD) remains unclear, but evidence suggests that failure of the ubiquitin-proteasome system may play a major role in the pathogenesis of the disease. Iron is believed to be a key contributor to PD pathology by inducing aggregation of alpha-synuclein and by generating oxidative stress. Our present studies have shown that micro-injection of the proteasome inhibitor lactacystin into the substantia nigra (SN) of C57BL/6 mice causes significant loss of dopaminergic cells and induces intracellular inclusion body formation. We have also found that co-injection of the iron chelator desferrioxamine not only attenuates the lactacystin-induced dopamine neuron loss, but also reduces the presence of ubiquitin-positive intracellular inclusions in the SN, whereas use of iron-deficient diet has no such protective effects. These results may support that iron plays a key role in proteasome inhibitor-induced nigral pathology and that reducing iron reactivity may prevent dopaminergic neuron degeneration and reduce abnormal protein aggregation.  相似文献   

15.
Aspergillus parasiticus (255), a non-toxigenic isolate showed the presence of secondary metabolites-aflatoxins (B1, B2, G1, G2) when grown in yeast extract sucrose media but not in basal media, thus demonstrating its toxigenic potential. Native PAGE of the crude protein isolated at different growth periods of A. parasiticus in yeast extract sucrose media containing iron showed prominent expression of mycoferritin from day four onwards. The production of aflatoxins was also maximal on day four, both in the presence and absence of iron. Indicators of oxidative stress metabolites such as reactive oxygen species, thiobarbituric acid reactive species, reduced and oxidized glutathione and antioxidant enzymes like superoxide dismutase and glutathione peroxidase were analyzed both in the presence and absence of iron and the experimental data suggest oxidative stress as a pre-requisite for aflatoxin production. The pro-oxidant role of iron was minimized by induction of mycoferritin and the concomitant alterations in oxidative stress parameters imply an antioxidant role to mycoferritin in secondary metabolism, a finding of significance that has not been reported previously in fungal systems.  相似文献   

16.
17.
Increased iron indices have been associated with the development of diabetes and its complications. In the present study, we have investigated the glucose-induced alteration of iron transporters, divalent metal transporter-1 (DMT-1), iron regulated transporter protein-1 (IREG-1), and transferrin receptor (TfR), in endothelial cell iron accumulation and oxidative stress. Cells were exposed to high glucose levels and subjected to gene expression, protein expression, iron measurement and assessment of oxidative stress. Our results show, for the first time, expression of DMT-1 and IREG-1 in vascular endothelial cells. Our data further indicates upregulation of DMT-1 and IREG-1 mRNA and protein in response to high levels of glucose. TfR, however, exhibited a modest decrease in response to high levels of glucose. Increased expression of DMT-1 and IREG-1 was associated with iron accumulation and oxidative stress. Furthermore, our results show differential expression of iron transporters with treatment of high glucose-exposed cells with two different iron chelators. In conclusion, our study suggests that glucose-induced alteration of iron transporters may arbitrate iron accumulation and oxidative stress in endothelial cells.  相似文献   

18.
Increased iron indices have been associated with the development of diabetes and its complications. In the present study, we have investigated the glucose-induced alteration of iron transporters, divalent metal transporter-1 (DMT-1), iron regulated transporter protein-1 (IREG-1), and transferrin receptor (TfR), in endothelial cell iron accumulation and oxidative stress. Cells were exposed to high glucose levels and subjected to gene expression, protein expression, iron measurement and assessment of oxidative stress. Our results show, for the first time, expression of DMT-1 and IREG-1 in vascular endothelial cells. Our data further indicates upregulation of DMT-1 and IREG-1 mRNA and protein in response to high levels of glucose. TfR, however, exhibited a modest decrease in response to high levels of glucose. Increased expression of DMT-1 and IREG-1 was associated with iron accumulation and oxidative stress. Furthermore, our results show differential expression of iron transporters with treatment of high glucose-exposed cells with two different iron chelators. In conclusion, our study suggests that glucose-induced alteration of iron transporters may arbitrate iron accumulation and oxidative stress in endothelial cells.  相似文献   

19.
Iron uptake mechanisms of pathogenic bacteria   总被引:31,自引:0,他引:31  
Abstract: Most of the iron in a mammalian body is complexed with various proteins. Moreover, in response to infection, iron availability is reduced in both extracellular and intracellular compartments. Bacteria need iron for growth and successful bacterial pathogens have therefore evolved to compete successfully for iron in the highly iron-stressed environment of the host's tissues and body fluids. Several strategies have been identified among pathogenic bacteria, including reduction of ferric to ferrous iron, occupation of intracellular niches, utilisation of host iron compounds, and production of siderophores. While direct evidence that high affinity mechanisms for iron acquisition function as bacterial virulence determinants has been provided in only a small number of cases, it is likely that many if not all such systems play a central role in the pathogenesis of infection.  相似文献   

20.
The primary role of cellular gamma glutamyltransferase (GGT) is to metabolize extracellular reduced glutathione (GSH), allowing for precursor amino acids to be assimilated and reutilized for intracellular GSH synthesis. Paradoxically, recent experimental studies indicate that cellular GGT may also be involved in the generation of reactive oxygen species in the presence of iron or other transition metals. Although the relationship between cellular GGT and serum GGT is not known and serum GGT activity has been commonly used as a marker for excessive alcohol consumption or liver diseases, our series of epidemiological studies consistently suggest that serum GGT within its normal range might be an early and sensitive enzyme related to oxidative stress. For example, serum and dietary antioxidant vitamins had inverse, dose-response relations to serum GGT level within its normal range, whereas dietary heme iron was positively related to serum GGT level. More importantly, serum GGT level within its normal range positively predicted F2-isoprostanes, an oxidative damage product of arachidonic acid, and fibrinogen and C-reactive protein, markers of inflammation, which were measured 5 or 15 years later, in dose-response manners. These findings suggest that strong associations of serum GGT with many cardiovascular risk factors and/or events might be explained by a mechanism related to oxidative stress. Even though studies on serum and/or cellular GGT is at a beginning stage, our epidemiological findings suggest that serum GGT might be useful in studying oxidative stress-related issues in both epidemiological and clinical settings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号