首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A purified plasmalemma preparation from roots of Plantago major L. ssp. pleiosperma (Pilger) was obtained by the two-phase partitioning method, using 6.5% (w/w) of Dextran T-500 and polyethylene glycol 3350, respectively. The distribution of murker enzymes proved the purity of the plasmalemma fraction. The ATPase activity was characterized by determining its sensitivity to anions, cations and inhibitors. The Mg2+-dependent ATPase activity peaked at pH 7.25, K+-stimulation at pH 6.75, and the Cl -stimulation both at pH 6.75 and 7.5 (all in the presence of 3 m M MgSO4). The plasmalemma preparations hydrolyzed preferentially ATP (in the presence of Mg2+), although they were less specific for ATP at pH 7.5 than at pH 6.75. The Cl - stimulated ATPase is probably associated with and located on the plasmalemma. The question if the Cl -stimulated activity is due to an ATPase distinct from the classical K+-stimulated ATPase is considered.  相似文献   

2.
Plasmalemma from 8-day old oat ( Avena sativa L. cv. Brighton) and spring wheat ( Triticum aestivum L. cv. Drabant), grown in the dark at 18°C, was prepared from the 10000 g (10 min) – 30 000 g (60 min) root homogenate by two-phase separation in three steps with 6.5% (w/w) Dextran T 500 and 6.5% (w/w) polyethylene glycol 4 000. Biochemically and with respect to activation by Mg2+ as well as by (Mg2++ K+), the oat preparations clearly appeared as ATPase(s) in the pH range 5–8. They showed high specificity for ATP, temperature optima between 38 and 40°C, and were inhibited by vanadate, DCCD (dicyclohexylcarbodiimide) and SH-reagents, but not by oligomycin, ammonium molybdate or ouabain. In contrast, the preparations from wheat contained more than one type of MgATPase/ nucleotidase, as revealed by complex dependence on both pH and temperature as well as by comparatively low specificity towards nucleotides. However, no unspecific phosphatase was present, and the effect of K+ over and above that of Mg2+ was almost as specific as in oat by all criteria used. The data available from this and earlier investigations from our group would indicate that the complex reactions of preparations of wheat plasmalemma may not be due to contamination but, rather, expressions of the many biological functions that must be associated with the plasmalemma in vivo and which may be located in sub-units that are more firmly attached to wheat than to oat plasmalemma.  相似文献   

3.
Purified plasmalemma vesicles were isolated in the presence of 250 m M sucrose from roots of 14-day-old seedlings of winter wheat ( Triticum aestivum L. Martonvásári-8) by phase partitioning of salt-washed microsomal fractions in a Dextran-polyethylene glycol two-phase system, and both Mg2+- and Ca2+-ATPase activities were detected. Orthovanadate-sensitive Mg2+-ATPase activity associated with the inside of right side-out plasmalemma (PM) vesicles (latency 98%) was inhibited 76% by 0.3 m M Ca2+, Ca2+-dependent ATPase activity located partly on the inside and partly on the outside of plasmalemma vesicles (latency 47%) was not affected by Mg2+.
Mg2+-ATPase activity was inhibited by 68% and inhibition of Mg2+ activation by 0.3 m M Ca2+ partly disappeared in the presence of 10 p M tentoxin, a fungal phytotoxin. Mg2+-ATPase activity remained inhibited up to 10 n M tentoxin while at 1 μ M tentoxin Mg2+ activation was as high as without tentoxin. K+-stimulation and vanadate inhibition was increased and decreased, respectively, by 100 p M -10 n M tentoxin. Ca2+-dependent ATPase activity was continuously increased by 1 p M -10 n M tentoxin, but at 1 μ M tentoxin the stimulation disappeared. The effects of p M tentoxin on plasma-lemma Mg2+-ATPase are discussed in relation to its influence on K+ transport in wheat seedlings.  相似文献   

4.
The effect of Mg2+, Na+, K+, ouabain and pH on ATPase activity of purified membrane fractions enriched in plasmalemma fragments from Hordeum vulgare L. (glycophyte) and Halocnemum strobilaceum L. (halophyte) was studied. Membrane ATPases from both plants were synergistically activated by K+ and Na+ in the presence of Mg2+. The maximum activity of the enzymes were observed at the ratio Na/K = 2–3. Ouabain (10-4 M) almost completely eliminated the (Na++ K+)-stimulated component of the ATPase activity. The Na, K, Mg-ATPase of Hordeum had a single pH optimum (pH 8), but that of the Halocnemum had two optima(pH 6 and 8). It appears that similar enzymes operate in the cells of both plants studied. The higher Na, K, Mg-ATPase activity of the halophyte compared to that of the glycophyte suggests the involvement of the enzyme in the extrusion of Na+ from the cytoplasm of cells of both plants.  相似文献   

5.
Plasmalemma was isolated from the roots of 2-week-old cucumber plants ( Cucumis sativus L. cv. Rhensk druv) by utilizing an aqueous polymer two-phase system with 6.5%:6.5% (w/w) Dextran T500 and polyethylene glycol (PEG) 3350 at pH 7.8. The plasmalemma fraction comprised ca 6% of the membrane proteins contained in the microsomal fraction. The specific activity of the plasma membrane marker enzyme (K+, Mg2+-ATPase) was 14- to 17-times higher in the upper (PEG-rich) than in the lower (Dextran-rich) phase, and the reverse was true for marker enzymes (cytochrome c oxidase, EC 1.9.3.1, and antimycin A-resistant NADPH cytochrome c reductase) of intracellular membranes. The ATPase was highly stimulated by the addition of detergent (Triton X-100), so that the isolated plasmalemma vesicles appear tightly sealed and in a right-side-out orientation. Further characterization of the ATPase activities showed a pH optimum at 6.0 in the presence of Mg2+. This optimum was shifted to pH 5.8 after addition of K+. K+ stimulated the ATPase activity below pH 6 and inhibited above pH 6. The ATPase activity was specific for ATP and sensitive to N,N-dicyclohexylcarbodiimide and sodium vanadate, with K+ enhancing the vanadate inhibition. The enzyme was insensitive to sodium molybdate, NO3, azide and oligomycin. No Ca2+-ATPase was detected, and even as little as 0.05 m M Ca2+ inhibited the Mg2+-ATPase activity.  相似文献   

6.
Six cultivars of barley ( Hordeum vulgare L., cvs Salve, Nürnberg II, Bomi, Risø 1508, Mona and Sv 73 608) were exposed for three weeks to combinations of high and low mineral supply and differential root/shoot temperature. For all the parameters tested [fresh and dry weights, contents and levels of N, K+, Ca2+ and Mg2+, and influx of Rb+(86Rb)] the cultivar differences were influenced by the mineral supply, the root temperature and the age of the plants.
The cultivar differences in N nutrition of three-week-old plants could partly be attributed to variation in root size, uptake of N and in use-efficiency of the element. The cultivar variation in root-shoot partitioning of N was small, except when low mineral supply was combined with a low root temperature. Similarly, cultivar differences in contents of K+, Ca2+ and Mg2+ were influenced by variation in uptake, use-efficiency and root/shoot partitioning of the elements. Low root temperature increased cultivar variation in K+, Ca2+ and Mg2+ partitioning.
The modern cultivar Salve was compared with Nürnberg II, which is derived from a German land race. Nürnberg II performed better than Salve when low root temperature and restricted mineral supply were combined. Otherwise Salve grew better, partly due to a more efficient use of N.
Two high-lysine lines, Risø 1508 and Sv 73 608, were compared with their mother lines Bomi and Mona. The differences obtained revealed no general effect of the high-lysine genes on growth and mineral nutrition of up to three-week-old barley plants.  相似文献   

7.
Isolated epidermal protoplasts of Commelina communis L. increase in volume in the presence of KCl. Since this swelling is an osmotic phenomenon it reflects K+ influx. ATP slightly decreased the volume of the protoplasts, pointing towards the possibility that K+ uptake is passive. On the other hand abscisic acid (ABA) and sodium orthovanadate increased the swelling, and their effect was reversed by ATP. This may support the suggestion that ABA inhibits the active and ATPase-mediated relase of K+ from epidermal cells. Mg2+-dependent, K+-stimulated ATPase activity was found in the microsomal fraction from epidermal cells. This activity was vandadate sensitive. ABA increased the basal activity in the presence of Mg2+ but inhibited the K+ stimulation.  相似文献   

8.
To clarify the reaction mechanism of a (Na++ K++ Mg2+)ATPase activity in sugar beet roots ( Beta vulgaris L. cv. Monohill) phloridzin, oligomycin (inhibitors of animal ATPases) and metavanadate (NH4VO3) have been used. Kinetic studies showed that: 1) Phloridzin inhibition is uncompetitive with respect to MgATP and not influenced by Na+ or K+. 2) This inhibition is only found in preparations made in the absence of sucrose. 3) Oligomycin and vanadate inhibit the ATPase in different ways. Omission of sucrose from the preparation medium favours vanadate inhibition but suppresses oligomycin inhibition. 4) The kinetic pattern of the Na+ activation of the ATPase differs in preparations made in the absence and presence of sucrose, but that of K+ activation is the same. – These results indicate that inclusion as against omission of sucrose from the preparation medium causes a conformational change of the membrane fragments/vesicles, which then expose different surfaces to the surrounding medium.  相似文献   

9.
The effects of abscisic acid (ABA) on growth, uptake and translocation of potassium ions, K+,Mg2+-ATPase activity and transpiration were investigated in young wheat ( Triticum aestivum L. cv. Martonvásári-8) plants grown at different K+ supplies. Long-term treatment with ABA (10 μ M ) reduced growth in high-K+ plants, but had less effect under low-K+ conditions. K+(86Rb) uptake was inhibited by about 70 and 40% in low- and high-K+ plants, respectively. The stimulation by K+ of the Mg2+-ATPase activity in the root microsomal fraction was lost with ABA treatment. It is suggested that the inhibitory effect of ABA on K+ uptake may be related to this effects on the K+,Mg2+-ATPase. Translocation of K+ to the shoot was inhibited in low-K+ plants only, and it was not affected in high-K+ plants. In parallel to this, ABA treatment reduced transpiration by about 50% in low-K+ plants, whereas a much smaller effect was seen in high-K+ plants. These observations suggest that the regulation by ABA of the stomatal movements is strongly counteracted by high-K+ status.  相似文献   

10.
Mg2+- and Ca2+-uptake was measured in dark-grown oat seedlings ( Avena sativa L. cv. Brighton) cultivated at two levels of mineral nutrition. In addition the stimulation of the ATPase activity of the microsomal fraction of the roots by Mg2+ was measured. Ca2+-uptake by the roots was mainly passive. Mg2+-uptake mainly active; the passive component of Mg2+-uptake was accompanied by Ca2+-efflux up to 60% of the Ca2+ present in the roots.
In general Mg2+ -uptake of oat roots was biphasic. The affinity of the second phase correspond well with that of the Mg2+-stimulation of the ATPase activity, in low-salt roots as well as in high-salt roots and in roots of plants switched to the other nutritional condition. Linear relationships were observed when [phase 2] Mg2+-uptake was plotted against Mg2+-stimulation of the ATPase activity of the microsomal fraction of the roots. In 5 days old high-salt plants 1 ATP (hydrolysed in the presence of Mg2+ J corresponded with active uptake of a single Mg2+ ion, but in older high-salt roots and in low-salt roots more ATP was hydrolysed per net uptake of a Mg2+ ion. The results are discussed against the background of regulation of the Mg2+-level of the cytoplasm of root cells by transport of Mg2+ by a Mg2+-ATPase to the vacuole, to the xylem vessels, and possibly outwards.  相似文献   

11.
Low-K+, high-Na+ cells of strain RL21a of Neurospora crassa , in steady state with 25 m M Na+, were used to study K+/Na+ exchanges in the presence or absence of Ca2+ and Mg2+. In the presence of Ca2+ and Mg2+, a low concentration of K+ (0.3 m M ) triggered a rapid exchange, but in the absence of the divalents, a high K+ concentration (30 m M ) was required to initiate the exchange at a rapid rate. In the absence of Ca2+ and Mg2+, K+ uptake did not occur at low K+ concentration, internal K+ did not regulate Na+ influx in the presence of external K+, and the efflux of Na+ proceeded at maximum activity at very low-K+ contents.  相似文献   

12.
Kinetic studies of a microsomal (Na++ K++ Mg2+)ATPase from sugar beet roots ( Beta vulgaris L. cv. Monohill) show that sucrose influences the MgATPase in different ways depending on the presence of K+ and/or Na+ 1) In the presence of the substrate MgATP and Na+ the effect of sucrose follows simple Michaelis-Menten kinetics. 2) In the presence of substrate together with K+ or (K++ Na+), sucrose has little effect on the ATPase activity. 3) In the presence of Na+, onabain acts as an uncompetitive inhibitor with respect to MgATP. 4) In the presence of K+ or (K++ Na+), the inhibition by ouabain is somewhat depressed and shows non-linearity when 1/v is plotted versus 1/MgATP. 5) Sucrose and Na+ activate in a competitive way, so that a successive increase of the Na+ level decreases the activation by sucrose. Both Km and V-values are thereby changed. 6) The sucrose activation in the presence of Na+ is also influenced by ouabain. It is, therefore, suggested that Na+ may regulate the interference between the Na+/K+ pump and a sucrose sensitive system.  相似文献   

13.
Uptake and distribution of Ca+, Mg2+ and K2+ were investigated in plants of cucumber ( Cucumis sativus L. var. Cila) which had been cultivated for 12, 19, 32, or 53 days in complete nutrient solution with 1.0 m M Ca2+, 2.0 m M Mg2+ and 2.0 m M K+. The + concentration was about the same in roots and shoots, while the Ca2+ and Mg2+ concentrations were low in roots compared to shoots. The K+ concentration decreased with increasing leaf age, while the Ca2+ and Mg2+ concentrations increased, except in older plants with flowers and fruits, where an increased concentration was found in the youngest leaves. This is discussed in connection with increased indoleacetic acid (IAA) synthesis in the shoot. Excision of leaves at different levels from 21-day-old plants, followed by uptake for 24 h from the nutrient solution on days 22 and 23, resulted in no immediate reduction in Ca2+ (45Ca) uptake. Transport of Ca2+ increased to leaves above and below the excision point and total Ca2+ uptake remained at the same level as for the intact plant. It is suggested that regulation of Ca2+ uptake is primarily achieved in the root while the distribution in the shoot is regulated by the accessability of negative binding sites.  相似文献   

14.
Red beet ( Beta vulgaris L., cv. Detroit Dark Red) plasma membrane ATPase solubilized from a deoxycholate-extracted plasma membrane fraction with Zwittergent 3–14 was reconstituted into liposomes. Detergent removal and reconstitution was carried out by column chromatography on Sephadex G-200 followed by centrifugation at 100 000 g for I h. Prior to reconstitution, optimal activity in the solubilized preparation was observed when dormant red beet tissue was used in the extraction/solubilization procedure. Following reconstitution into liposomes, ATP-dependent proton transport could be demonstrated by measuring the quenching of acridine orange fluorescence. Proton transport and ATPase activity in the reconstituted enzyme preparation were inhibited by orthovandate but stimulated by KNO3. This stimulation most likely results from a reduction in the membrane potential generated during electrogenic proton transport by the reconstituted ATPase. The ATPase activity of the reconstituted ATPase was further characterized and found to have a pH optimum of 6.5 in the presence of both Mg2+ and K+. The activity was specific for ATP, insensitive to ouabain and azide but inhibited by N;N-dicyclohexylcarbodiimide and diethylstilbestrol. Stimulation of ATP hydrolytic activity occurred in the sequence: K+ Rb+ Na+ Cs+ Li+ and the kinetics of K+ stimulation of ATPase activity followed non-Michaelis-Menten kinetics as observed for both the membrane-bound and solubilized forms of the enzyme. Reconstitution of the plasma membrane ATPase from red beet allowed a substantial purification of the enzyme and resulted in the enrichment of a 100 kDa polypeptide representing the ATPase catalytic subunit.  相似文献   

15.
The Mg2+- and Ca2+-stimulated ATPase activities of the microsomal fractions of the roots of four inbred lines of Plantago major L. were followed at two levels of mineral nutrition. In addition the response of a transfer of plants from one condition to the other was studied. Kinetic properties of the ATPases (Km and Vmax) were calculated and used to differentiate between genetic differences among the inbred lines and the plasticity within each inbred line. The Vmax values of the ATPase activity differed significantly between the lines and were directly related to seed number per capsule (low Vmax→ 11 seeds per capsule, high Vmax→ 33 seeds per capsule). In addition, the Vmax values of the ATPase acitivty may be related to ecological strategy. Plasticity of enzyme activity is expressed in differences in the Vmax values of the ATPase activity, as a response to nutritional level or changes of the strength of the nutrient solution. Differences in this plasticity in the four selected lines and in rapidity of response to a change in mineral nutrition were directly related to the ecological strategy. These results are discussed in relation to the strategy of the genotypes for survival in the field. The presence of plasticity in line 4 (ssp. pleiospema ) makes this genotype behave like an annual plant, following a ruderal strategy. The absence of plasticity in line 1 (ssp. major ) fits a more competitive strategy.  相似文献   

16.
The goal of this study was to test the hypothesis that the plasma membrane-bound ATPase activity is influenced by the redox poise of the cytoplasm. Purified plasma membrane vesicles from leaves of Elodea canadensis Michx. and E. nuttallii (Planch.) St. John were isolated using an aqueous polymer two-phase batch procedure. The distribution of marker enzyme activities confirmed the plasma membrane origin of the vesicles. The vesicles exhibited NADH-ferricyanide reductase activity, indicating the presence of a redox chain in the plasma membrane. The K+, Mg2+-ATPase activity associated with these vesicles was inhibited by the sulfhydryl reagents N-ethylmaleimide and glutathione (GSSG). Furthermore the activity was inhibited by NAD+. This inhibition by NAD+ was relieved by increasing the NADH/NAD+ ratio. The possibility that the ATPase activity is regulated by the cytoplasmic NAD(P)H/ NAD(P)+ ratio is discussed, as well as the role of a plasma membrane-bound redox chain.  相似文献   

17.
The distribution of divalent cation stimulated ATPase activity in relation to the distribution of other enzyme activities was studied for membrane fractions from wheat roots ( Tritium aestivum L . cv. Svenno). A homogenate from dark grown plants was fractionated by differential centrifugation at 1000 g , 10,000 g , 30,000 g and 60,000 g (1, 10, 30 and 60 KP fractions), followed by partition in an aqueous polymer two-phase system, using polyethylene glycol 4000/dextran T500 concentrations of 5.7/5.7, 5.9/5.9, 6.1/6.1, 6.3/6.3 and 6.5/6.5% (w/w). The 30 KP fraction was also separated by counter-current distribution id a 6.3/6.3% two-phase system. Protein and activities of Ca2+, Mg2+, and Mn2+ stimulated ATPases. cytochrome oxidase, light induced absorbance change (LIAC) related to cyt b reductions, inosine diphosphatase and NADH dependent antimycin A insensitive cytochrome c reductase were measured.
The partition of ATPase activities stimulated by Ca2+, Mg2+ or Mn2+ was similar at all polymer concentrations tested, indicating: a low cation specificity of the dominating ATPases. The distribution of ATPases. agreed with different marker enzymes in different centrifuge fractions. Divalent cation stimulated ATPases were evidently related to several of the organelles. In the different fractions the distribution of ATPase activity should then follow that of the marker enzyme of the dominant organelle. From studies with different polymer concentrations the 6.3/6.3-system was selected for further separation of the membranes in the 30 KP fraction by counter-current distribution. By this method one fraction was obtained, which probably consisted of plasmalemma and was free from mitochondrial material. Indications for plasmalemma in this fraction were a) similar partition as protoplasts and b) high LIAC activity.  相似文献   

18.
Abstract— The hypothesis that the ATPase and phosphatidyhnositol (PI) kinase activities of chromaffin vesicle membranes are catalysed by same enzyme was investigated. The two activities exhibited entirely different responses to variations in Mg2+ or Mn2+ concentrations. In the presence of 1 mM ATP, maximal ATPase activity occurred with 1 mM Mg2+ while maximal PI kinase activity required 100 mM Mg2+ Similar differences were observed with Mn2+ with the exception that maximal ATPase activity occurred with 0.5 mM Mn2+ and maximal PI kinase activity occurred with 5 mM Mn2+ Mn2+ was more effective than Mg2+ in stimulating PI kinase activity at low concentrations, but at optimal concentrations of each, the maximal activity obtained with Mg2+ was 5-fold greater than the maximal activity obtained with Mn2+ The heat stabilities of the two enzymes are vastly different. At 50°C the ATPase activity of the intact membranes was stable for up to 20 min while the t l/2 of PI kinase was less than 2 min. After solubilization in Lubrol PX or at higher temperatures both enzymes were less heat stable, but PI kinase was still inactivated at a much greater rate than the ATPase. The evidence suggests that the ATPase and the PI kinase are different proteins.
The major phosphorylated product was diphosphatidylinositol and once formed, it was stable. Phosphorylation of membrane protein accounted for less than 10% of the total 32P-incorporated into chromaffin vesicles. SDS gel electrophoresis of the solubilized membranes showed the presence of at least 2 major phosphorylated high molecular weight components.  相似文献   

19.
Freezing and thawing may alter element turnover and solute fluxes in soils by changing physical and biological soil properties. We simulated soil frost in replicated snow removal plots in a mountainous Norway spruce stand in the Fichtelgebirge area, Germany, and investigated N net mineralization, solute concentrations and fluxes of dissolved organic carbon (DOC) and of mineral ions (NH4+, NO3, Na+, K+, Ca2+, Mg2+). At the snow removal plots the minimum soil temperature was −5 °C at 5 cm depth, while the control plots were covered by snow and experienced no soil frost. The soil frost lasted for about 3 months and penetrated the soil to about 15 cm depth. In the 3 months after thawing, the in situ N net mineralization in the forest floor and upper mineral soil was not affected by soil frost. In late summer, NO3 concentrations increased in forest floor percolates and soil solutions at 20 cm soil depth in the snow removal plots relative to the control. The increase lasted for about 2–4 months at a time of low seepage water fluxes. Soil frost did not affect DOC concentrations and radiocarbon signatures of DOC. No specific frost effect was observed for K+, Ca2+ and Mg2+ in soil solutions, however, the Na+ concentrations in the upper mineral soil increased. In the 12 months following snowmelt, the solute fluxes of N, DOC, and mineral ions were not influenced by the previous soil frost at any depth. Our experiment did not support the hypothesis that moderate soil frost triggers solute losses of N, DOC, and mineral ions from temperate forest soils.  相似文献   

20.
Channel catfish, Ictalurus punctatus Rafinesque, injected intraperitoneally with 2-methyl-quinoline sulphate (QdSO4) or 3-trifluoromethyl-4-nitrophenol (TFM) eliminate most of the dose of these compounds by extra-renal routes. Patterns of renal excretion of Na+, K+, Ca2+, Mg2+, and Cl (ρEq kg−1 h−1) appeared to be associated with the 'stress' of the urine collection technique rather than with the elimination of either compound. Concentrations of Na+, K+, Ca2+, Mg2+, and Cl (mEq/1) were determined in urine, plasma and gall bladder bile.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号