首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A comparative histologic and chemical analysis was undertaken of adipose tissue treated in vivo with traditional, ultrasound-assisted, and external ultrasound-assisted lipoplasty. A series of six healthy women undergoing elective liposuction according to the superwet technique using a 1:1 infiltration ratio with the estimated quantity of fat to be removed was included in the study. Four separate regions on each patient were treated independently in vivo with traditional liposuction, internal ultrasound-assisted liposuction, or external ultrasound-assisted liposuction for 7 minutes. External massage was used as a control. Four separate specimens of adipose tissue from each patient were assessed for cellular disruption using blinded histologic evaluation. The remainder of tissue was centrifuged to separate the aqueous phase from the cellular components and then spectrophotometrically analyzed for creatinine kinase and glycerol 3-phosphate dehydrogenase activity as markers of cellular disruption. Histologic analysis confirmed 70 to 90 percent cellular disruption with internal ultrasound-assisted liposuction. Suction-assisted and external ultrasound-assisted liposuction showed 5 to 25 percent disruption, whereas massage controls showed only 5 percent. Only internal ultrasound-assisted liposuction showed 5 to 20 percent thermal liquefaction. Absorbance analysis showed creatine kinase activity (sigma units) greatest in ultrasound-exposed tissue. Both external and internal ultrasound-assisted liposuction gave creatine kinase levels 28 to 33 percent greater than suction-assisted liposuction, which varied only 10 percent from controls. Glycerol 3-phosphate dehydrogenase activity was 44 percent greater for internal ultrasound-assisted liposuction than that detected with suction-assisted liposuction. Glycerol 3-phosphate dehydrogenase activity with external ultrasound-assisted liposuction and massage did not vary much from each other, at only 14 percent and 11 percent activity compared with internal ultrasound-assisted liposuction, respectively. Histologic and enzyme analysis of the different types of liposuction and their effect on adipocyte cellular disruption revealed no significant effect of external ultrasound or massage on the adipocytes. Further experimental studies are necessary to evaluate the role and efficacy of alternative techniques for body contouring.  相似文献   

2.
Clinical reports of full-thickness skin necrosis have raised concern about the thermal and dermal ischemic effects of ultrasound-assisted liposuction. The purpose of this study was to evaluate skin perfusion in patients treated with ultrasound-assisted liposuction or suction-assisted liposuction. Patients (n = 75) were studied prospectively in the perioperative period surrounding their suction-assisted liposuction (31 patients) or ultrasound-assisted liposuction (64 patients). The laser Doppler flowmeter was used to monitor skin perfusion in the treated regions preoperatively, intraoperatively, and postoperatively at a series of time intervals. The effects of the anesthetic, wetting solution, and type of liposuction (suction-assisted liposuction or ultrasound-assisted liposuction) on skin perfusion were measured. Anesthetic induction significantly increased measured skin perfusion. Wetting solution infusion significantly decreased skin perfusion (-57.4 percent +/- 2.0) by 15 minutes postinfusion. Skin perfusion in the ultrasound-assisted liposuction group was significantly greater than that of the suction-assisted liposuction patients at 1 hour, 1 day, and 1 week postoperatively; however, by 2 to 5 weeks, no difference in skin perfusion was noted and skin perfusion had returned to preoperative levels in both groups. Although skin perfusion in the suction-assisted liposuction group was significantly lower than in the ultrasound-assisted liposuction group in the early postoperative period, no differences in skin perfusion between the groups were noted beyond 1 week postoperatively, suggesting that neither technique impairs perfusion.  相似文献   

3.
The increasing frequency of obesity is important because of its accompanying related health problems. The effects of obesity on peripheral nerves have not been elucidated. We investigated the effects of obesity on sciatic nerve regeneration using electrophysiology, stereology, immunohistochemistry, histopathology and functional tests. We used control, obese, control injured and obese injured groups of rats. Electrophysiological results showed that nerve conduction velocity and EMG were same in the experimental groups, but the amplitude of the compound action potential of the control group was significantly higher than that of the obese group. Examination of the nerves showed that the control and obese groups had both larger axon diameters and thicker myelin sheaths. The number of myelinated axons was decreased in both of the injured groups. Axon diameters and myelin sheath thicknesses of the control injured group were significantly greater those of the obese injured group. There were no significant differences in functional tests among the groups. Although growth associated protein 43 immunostaining in the control injured group was significantly greater than that of the obese injured group, no significant difference was observed between the control and obese groups. There was no significant difference in immunohistochemical staining for transforming growth factor beta 3 between the control injured and obese injured groups. Our results suggest that obesity may affect peripheral nerve regeneration negatively after crush injury.  相似文献   

4.
Ultrasound-assisted liposuction has become an important tool in body-contouring surgery. Although ultrasound frequency is by definition outside the range of normal human hearing, an audible sound is heard during ultrasound-assisted liposuction. This study measured sound intensity during ultrasound-assisted liposuction performed with two commercially available systems. Sound intensity was measured at the surgeon's ear, surgical site, and patient's glabella. All measurements obtained with both machines fell within acceptable standards as defined by the Occupational Safety and Health Administration. Use of ultrasound-assisted liposuction does not pose a risk to the patient, the surgeon, or operating room personnel.  相似文献   

5.
In this report, we have identified two apolipoproteins (apo), apoD and apoA-IV, that, together with the previously identified apoA-I and apoE, accumulate in the regenerating peripheral nerve. These four apolipoproteins were identified in regenerating rat sciatic nerves by their molecular weights, their isoelectric points, and their recognition by specific antibodies. Antibodies were also used to document the changing concentrations of these apolipoproteins in homogenates of regenerating sciatic nerves collected 1 day to 6 weeks after a denervating crush injury. By 3 weeks after injury, at their peak accumulation, apoA-IV and apoA-I had increased 14- and 26-fold, respectively, relative to their concentrations in the normal nerve. Apolipoproteins D and E, in contrast, increased over 500- and 250-fold, respectively, by 3 weeks. These same apolipoproteins also accumulated in the regenerating sciatic nerves of two other species, the rabbit and the marmoset monkey. Immunocytochemistry showed that apoD was produced by astrocytes and oligodendrocytes in the normal central nervous system, and by neurolemmal or fibroblastic cells in the normal peripheral nervous system. Metabolic labeling of both apoD and apoE by [35S]methionine during an in vitro incubation of regenerating rat sciatic nerve segments confirmed that these apolipoproteins are synthesized by the nerve. Neither apoA-IV nor apoA-I was metabolically labeled, however, suggesting that they enter the nerve from the plasma. The results from this study provide evidence that several different apolipoproteins from various sources may play a role in lipid transport within neural tissues.  相似文献   

6.
ABSTRACT: BACKGROUND: Nerve conduits provide a promising strategy for peripheral nerve injury repair. However, the efficiency of nerve conduits to enhance nerve regeneration and functional recovery is often inferior to that of autografts. Nerve conduits require additional factors such as cell adhesion molecules and neurotrophic factors to provide a more conducive microenvironment for nerve regeneration. METHODS: In the present study, poly{(lactic acid)-co-[(glycolic acid)-alt-(L-lysine)]} (PLGL) was modified by grafting Gly-Arg-Gly-Asp-Gly (RGD peptide) and nerve growth factor (NGF) for fabricating new PLGL-RGD-NGF nerve conduits to promote nerve regeneration and functional recovery. PLGL-RGD-NGF nerve conduits were tested in the rat sciatic nerve transection model. Rat sciatic nerves were cut off to form a 10 mm defect and repaired with the nerve conduits. All of the 32 Wistar rats were randomly divided into 4 groups: group PLGL-RGD-NGF, group PLGL-RGD, group PLGL and group autograft. At 3 months after surgery, the regenerated rat sciatic nerve was evaluated by footprint analysis, electrophysiology, and histologic assessment. Experimental data were processed using the statistical software SPSS 10.0. RESULTS: The sciatic function index value of groups PLGL-RGD-NGF and autograft was significantly higher than those of groups PLGL-RGD and PLGL. The nerve conduction velocities of groups PLGL-RGD-NGF and autograft were significantly faster than those of groups PLGL-RGD and PLGL. The regenerated nerves of groups PLGL-RGD-NGF and autograft were more mature than those of groups PLGL-RGD and PLGL. There was no significant difference between groups PLGL-RGD-NGF and autograft. CONCLUSIONS: PLGL-RGD-NGF nerve conduits are more effective in regenerating nerves than both PLGL-RGD nerve conduits and PLGL nerve conduits. The effect is as good as that of an autograft. This work established the platform for further development of the use of PLGL-RGD-NGF nerve conduits for clinical nerve repair.  相似文献   

7.
Summary The effects of chronic lesions of rat lumbar spinal or sciatic nerves on the binding of Glycine max (soybean) agglutinin to galacto-conjugates, in small-and medium-size primary sensory neurons of the L4 and L5 dorsal root ganglia, were examined over a 580-day period. Spinal nerve section resulted in a marked decrease in the population of stained neurons within 7 days. However, despite some retrograde morphological changes triggered by axonal injury, the proportion of stained nerve cells was normalized 180 days postoperatively. This temporary decrease in perikaryal lectin reactivity was initially associated with a marked accumulation of stained material in the nerve, proximal and distal to the site of section, with similar accumulations also being noticeable at each level of injury in sciatic nerves subjected to double ligature. This may reflect the presence of glycocompounds linked to the autolysis of nerve fibers during the phase of retrograde dying-back and Wallerian degeneration. At later stages, stained deposits could be seen scattered along central and peripheral axonal processes of the dorsal root ganglion neurons in the vicinity of the cell body. They may indicate a disturbance in the peripheral turnover of glycoproteins in chronically-transected nerves, with piling up of neuronal products. Sciatic nerve injury caused similar but less severe effects which, except for the L4 ganglion cells, were rapidly reversible.  相似文献   

8.
The surgical technique of ultrasound-assisted liposuction has become a standard procedure for the treatment of lipodystrophy. However, little is known about the impact of this therapy on fatty tissue on the molecular level. There are concerns about possible adverse effects related to the high-intensity ultrasound energy, because in vitro studies have shown a substantial generation of free radicals. In this study, the authors investigated whether ultrasound waves can create an excessive free radical production in vivo by measuring lipid peroxidation products in the form of malondialdehyde equivalents. For this purpose, the thiobarbituric acid-reactive substances (TBARS) assay was chosen. In this test, malondialdehyde, a major product of lipid peroxidation, reacts with thiobarbituric acid to produce a pink adduct that can be measured spectrophotometrically. The authors determined oxidation products in 28 aspirates of 17 treated patients before ultrasound-assisted liposuction (0 minutes) to establish a baseline concentration and at 2, 5, and 10 minutes after the treatment was begun. Median malondialdehyde concentration of the control group (conventional liposuction, 0 minutes) was 3.40 nmol of malondialdehyde per gram of adipose tissue. Median concentrations after 2, 5, and 10 minutes of ultrasound-assisted liposuction were 7.45 (n = 28), 8.84 (n = 21), and 4.07 (n = 8) nmol malondialdehyde per gram adipose tissue, respectively. The differences were not statistically significant. The data suggest that there is no excessive formation of lipid oxidation products in response to free radicals. The antioxidative capacity of adipose tissue does not seem to be overwhelmed by the standard application regimen of ultrasound-assisted liposuction.  相似文献   

9.
Pulsed magnetic fields (PMFs) have well‐known beneficial effects on nerve regeneration. However, little research has examined the nerve conduction characteristics of regenerating peripheral nerves under PMF. The main goal of this study was to examine the conduction characteristics of regenerating peripheral nerves under PMFs. The sucrose‐gap recording technique was used to examine the conduction properties of injured sciatic nerves of rats exposed to PMF. Following the injury, peripheral nerves were very sensitive to repetitive stimulation. When the stimulation frequency was increased, the amplitude of the compound action potential (CAP) decreased more at 15 days post‐crush injury (dpc) than at 38 dpc. PMF treatment for 38 days after injury caused significant differences in the conduction of CAPs. Moreover, application of PMF ameliorated the abnormal electrophysiological activities of nerves such as hyperpolarizing afterpotentials and delayed depolarizations that were revealed by 4‐aminopyridine (4‐AP). Consequently, characteristic findings in impulse conduction of recovered nerves under PMF indicate that the observed abnormalities in signaling or aberrant ion channel functions following injury may be restored by PMF application. Bioelectromagnetics 32:200–208, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

10.
This study aimed to evaluate whether combination therapy of bone marrow stromal cells (BMSCs) transplantation and chondroitinase ABC (ChABC) treatment further enhances axonal regeneration and functional recovery after acellular nerve allograft repair of the sciatic nerve gap in rats. Eight Sprague–Dawley rats were used as nerve donors, and 32 Wistar rats were randomly divided into four groups: Group I: acellular rat sciatic nerve (ARSN) group; Group II: ChABC treatment; Group III: BMSCs transplantation; and Group IV: ChABC treatment and BMSCs transplantation. The results showed that compared with ARSN control group, BMSC transplantation promoted axonal regeneration, the secretion of neural trophic factors NGF, BDNF and axon angiogenesis in nerve graft. ChABC treatment degraded chondroitin sulfate proteoglycans in ARSN in vitro and in vivo and improved BMSCs survival in ARSN. The combination therapy caused much better beneficial effects evidenced by increasing sciatic function index, nerve conduction velocity, restoration rate of tibialis anterior wet muscle weight, and myelinated nerve number, but did not further boost the therapeutic effects on neurotrophic factor production, axon angiogenesis, and sensory functional recovery by BMSC transplantation. Taken together, for the first time, we demonstrate the synergistic effects of BMSC transplantation and BMSCs treatment on peripheral nerve regeneration, and our findings may help establish novel strategies for cell transplantation therapy for peripheral nerve injury.  相似文献   

11.
Granulocyte colony-stimulating factor (G-CSF) demonstrates neuroprotective effects through different mechanisms, including mobilization of bone marrow cells. However, the influence of G-CSF-mediated mobilization of bone marrow-derived cells on injured sciatic nerves remains to be elucidated. The administration of G-CSF promoted a short-term functional recovery 7 days after crush injury in sciatic nerves. A double-immunofluorescence study using green fluorescent protein-chimeric mice revealed that bone marrow-derived CD34+ cells were predominantly mobilized and migrated into injured nerves after G-CSF treatment. G-CSF-mediated beneficial effects against sciatic nerve injury were associated with increased CD34+ cell deposition, vascular endothelial growth factor (VEGF) expression, and vascularization/angiogenesis as well as decreased CD68+ cell accumulation. However, cell differentiation and VEGF expression were not demonstrated in deposited cells. The results suggest that the promotion of short-term functional recovery in sciatic nerve crush injury by G-CSF involves a paracrine modulatory effect and a bone marrow-derived CD34+ cell mobilizing effect.  相似文献   

12.
With the development of tissue engineering and the shortage of autologous nerve grafts in nerve reconstruction, cell transplantation in a conduit is an alternative strategy to improve nerve regeneration. The present study evaluated the effects and mechanism of brain-derived neural stem cells (NSCs) on sciatic nerve injury in rats. At the transection of the sciatic nerve, a 10-mm gap between the nerve stumps was bridged with a silicon conduit filled with 5?×?105 NSCs. In control experiments, the conduit was filled with nerve growth factor (NGF) or normal saline (NS). The functional and morphological properties of regenerated nerves were investigated, and expression of hepatocyte growth factor (HGF) and NGF was measured. One week later, there was no connection through the conduit. Four or eight weeks later, fibrous connections were evident between the proximal and distal segments. Motor function was revealed by measurement of the sciatic functional index (SFI) and sciatic nerve conduction velocity (NCV). Functional recovery in the NSC and NGF groups was significantly more advanced than that in the NS group. NSCs showed significant improvement in axon myelination of the regenerated nerves. Expression of NGF and HGF in the injured sciatic nerve was significantly lower in the NS group than in the NSCs and NGF groups. These results and other advantages of NSCs, such as ease of harvest and relative abundance, suggest that NSCs could be used clinically to enhance peripheral nerve repair.  相似文献   

13.
Peripheral nerve injury is often followed by incomplete and unsatisfactory functional recovery and may be associated with sensory and motor impairment of the affected limb. Therefore, a novel method is needed to improve the speed of recovery and the final functional outcome after peripheral nerve injuries. This report investigates the effect of lentiviral-mediated transfer of conserved dopamine neurotrophic factor (CDNF) on regeneration of the rat peripheral nerve in a transection model in vivo. We observed notable overexpression of CDNF protein in the distal sciatic nerve after recombinant CDNF lentiviral vector application. We evaluated sciatic nerve regeneration after surgery using light and electron microscopy and the functional recovery using the sciatic functional index and target muscle weight. HE staining revealed better ordered structured in the CDNF-treated group at 8 weeks post-surgery. Quantitative analysis of immunohistochemistry of NF200 and S-100 in the CDNF group revealed significant improvement of axonal and Schwann cell regeneration compared with the control groups at 4 weeks and 8 weeks after injury. The thickness of the myelination around the axons in the CDNF group was significantly higher than in the control groups at 8 weeks post-surgery. The CDNF group displayed higher muscle weights and significantly increased sciatic nerve index values. Our findings suggest that CDNF gene therapy could provide durable and stable CDNF protein concentration and has the potential to enhance peripheral nerve regeneration, morphological and functional recovery following nerve injury, which suggests a promising strategy for peripheral nerve repair.  相似文献   

14.
The polysialic acid (PSA) moiety of the neural cell adhesion molecule (NCAM) has been shown to support dynamic changes underlying peripheral nerve regeneration. Using transgenic mice expressing polysialyltransferase ST8SiaIV under control of a glial-specific (proteolipid protein, PLP) promoter (PLP-ST8SiaIV-transgenic mice), we tested the hypothesis that permanent synthesis of PSA in Schwann cells impairs functional recovery of lesioned peripheral nerves. After sciatic nerve crush, histomorphometric analyses demonstrated impaired remyelination of regenerated axons at the lesion site and in target tissue of PLP-ST8SiaIV-transgenic mice, though the number and size of regenerating unmyelinated axons were not changed. This was accompanied by slower mechanosensory recovery in PLP-ST8SiaIV-transgenic mice. However, the proportion of successfully mono-(re)innervated motor endplates in the foot pad muscle was significantly increased in PLP-ST8SiaIV-transgenic mice when compared with wild-type littermates, suggesting that long-term increase in PSA levels in regenerating nerves may favor selective motor target reinnervation. The combined negative and positive effects of a continuous polysialyltransferase overexpression observed during peripheral nerve regeneration suggest that an optimized time- and differentiation-dependent control of polysialyltransferase expression in Schwann cells may further improve recovery after peripheral nerves injury.  相似文献   

15.
Experimental autoimmune neuritis (EAN) is a T cell-mediated autoimmune inflammatory demyelinating disease of the peripheral nervous system and widely-used animal model of human inflammatory demyelinating polyradiculoneuropathies. Doxycycline is a well-known antibiotic and has been reported to have neuroprotective and anti-inflammatory effects. Here we investigated the effects of doxycycline on rat EAN. Therapeutic treatment with doxycycline (40 mg/kg body weight daily from the Day 9 to Day 14 post immunization) significantly attenuated the severity of EAN, decreased inflammatory infiltration of macrophages, B- and T-cells and demyelination in sciatic nerves of EAN rats. Pro-inflammatory molecules including matrixmetalloproteinase-9, inducible nitric oxide synthase and interleukin-17 were greatly decreased in sciatic nerves by administration of doxycycline as well. Taken together, our data showed that doxycycline could effectively suppress the peripheral inflammation to improve outcome of EAN, which suggests that doxycycline may be considered as a potential candidate of pharmacological treatment for neuropathies.  相似文献   

16.
Peripheral nerve injury (PNI) is a common disease that often results in axonal degeneration and the loss of neurons, ultimately leading to limited nerve regeneration and severe functional impairment. Currently, there are no effective treatments for PNI. In the present study, we transduced conserved dopamine neurotrophic factor (CDNF) into mesenchymal stem cells (MSCs) in collagen tubes to investigate their regenerative effects on rat peripheral nerves in an in vivo transection model. Scanning electron microscopy of the collagen tubes demonstrated their ability to be resorbed in vivo. We observed notable overexpression of the CDNF protein in the distal sciatic nerve after application of CDNF-MSCs. Quantitative analysis of neurofilament 200 (NF200) and S100 immunohistochemistry showed significant enhancement of axonal and Schwann cell regeneration in the group receiving CDNF-MSCs (CDNF-MSCs group) compared with the control groups. Myelination thickness, axon diameter and the axon-to fiber diameter ratio (G-ratio) were significantly higher in the CDNF-MSCs group at 8 and 12 weeks after nerve transection surgery. After surgery, the sciatic functional index, target muscle weight, wet weight ratio of gastrocnemius muscle and horseradish peroxidase (HRP) tracing demonstrated functional recovery. Light and electron microscopy confirmed successful regeneration of the sciatic nerve. The greater numbers of HRP-labeled neuron cell bodies and increased sciatic nerve index values (SFI) in the CDNF-MSCs group suggest that CDNF exerts neuroprotective effects in vivo. We also observed higher target muscle weights and a significant improvement in muscle atrophism in the CDNF-MSCs group. Collectively, these findings indicate that CDNF gene therapy delivered by MSCs is capable of promoting nerve regeneration and functional recovery, likely because of the significant neuroprotective and neurotrophic effects of CDNF and the superior environment offered by MSCs and collagen tubes.  相似文献   

17.
Fry EJ  Ho C  David S 《Neuron》2007,53(5):649-662
We report a role for Nogo receptors (NgRs) in macrophage efflux from sites of inflammation in peripheral nerve. Increasing numbers of macrophages in crushed rat sciatic nerves express NgR1 and NgR2 on the cell surface in the first week after injury. These macrophages show reduced binding to myelin and MAG in vitro, which is reversed by NgR siRNA knockdown and by inhibiting Rho-associated kinase. Fourteen days after sciatic nerve crush, regenerating nerves with newly synthesized myelin have fewer macrophages than cut/ligated nerves that lack axons and myelin. Almost all macrophages in the cut/ligated nerves lie within the Schwann cell basal lamina, while in the crushed regenerating nerves the majority migrate out. Furthermore, crush-injured nerves of NgR1- and MAG-deficient mice and Y-27632-treated rats show impaired macrophage efflux from Schwann cell basal lamina containing myelinated axons. These data have implications for the resolution of inflammation in peripheral nerve and CNS pathologies.  相似文献   

18.
Previous data have suggested that galectin-1 is expressed widely in nervous tissues at embryonic stages but becomes restricted mainly to peripheral nervous tissues with maturation. Though the expression is intense in adult mammalian peripheral neurons, there had been no report about functions of galectin-1 there. Recently we discovered a factor that enhanced peripheral axonal regeneration. The factor was identified as oxidized galectin-1 with three intramolecular disulfide bonds and showed no lectin activity. Oxidized recombinant human galectin-1 (rhGAL-1/Ox) showed the same nerve growth promoting activity at very low concentrations (pg/ml). rhGAL-1/Ox at similarly low concentration was also effective in in vivo experiments of axonal regeneration. Moreover, the application of functional anti-rhGAL-1 antibody strongly inhibited the axonal regeneration in vivo as well as in vitro. Since galectin-1 is expressed in the regenerating sciatic nerves as well as in both sensory neurons and motor neurons, these results suggest that galectin-1 is secreted into the extracellular space to be oxidized, and then, in its oxidized form, to regulate initial repair after axotomy. The administration of oxidized galectin-1 effectively promoted functional recovery after sciatic nerve injury in vivo. Oxidized galectin-1, hence, appears to play an important role in promoting axonal regeneration, working as a kind of cytokine, not as a lectin. Recent reports indicated additional roles of cytosolic galectin-1 in neural diseases, such as ALS. Furthermore galectin-1 has been proved to be a downstream target of DeltaFosB. In hippocampus of rat brain, expression of DeltaFosB is induced immediately after ischemia-reperfusion, suggesting that galectin-1 may also play important roles in central nervous system after injury.  相似文献   

19.

Background

Though retrograde neuronal death and vascular insufficiency have been well established in plegics following intracerebral hemorrhage, the effects of plegia on arterial nervorums of peripheral nerves have not been reported. In this study, the histopathological effects of the intracerebral hemorrhage on the dorsal root ganglions and sciatic nerves via affecting the arterial nervorums were investigated.

Methods

This study was conducted on 13 male hybrid rabbits. Three animals were taken as control group and did not undergo surgery. The remaining 10 subjects were anesthetized and were injected with 0.50 ml of autologous blood into their right sensory-motor region. All rabbits were followed-up for two months and then sacrificed. Endothelial cell numbers and volume values were estimated a three dimensionally created standardized arterial nervorums model of lumbar 3. Neuron numbers of dorsal root ganglions, and axon numbers in the lumbar 3 nerve root and volume values of arterial nervorums were examined histopathologically. The results were analyzed by using a Mann-Whitney-U test.

Results

Left hemiplegia developed in 8 animals. On the hemiplegic side, degenerative vascular changes and volume reduction in the arterial nervorums of the sciatic nerves, neuronal injury in the dorsal root ganglions, and axonal injury in the lumbar 3 were detected. Statistical analyses showed a significant correlation between the normal or nonplegic sides and plegic sides in terms of the neurodegeneration in the dorsal root ganglions (p < 0.005), axonal degeneration in the lumbar 3 nerve roots (p < 0.005), endothelial cell degeneration in the arterial nervorums (p < 0.001), and volume reduction in the arterial nervorums (p < 0.001).

Conclusion

Intracerebral hemorrhage resulted in neurodegeneration in the dorsal root ganglion and axonolysis in the sciatic nerves, endothelial injury, and volume reduction of the arterial nervorums in the sciatic nerves. The interruption of the neural network connection in the walls of the arterial nervorums in the sciatic nerves may be responsible for circulation disorders of the arterial nervorums, and arterial nervorums degeneration could result in sciatic nerves injury.  相似文献   

20.
徐爱丽  王华  周岩  刘红霞 《生物磁学》2009,(14):2649-2651
目的:观察七叶莲水煎液对蟾蜍离体坐骨神经复合动作电位的幅度及传导速度的影响,研究其对坐骨神经电生理特性的作用。方法:将制备的蟾蜍坐骨神经干分为4组,分别在任氏液和浓度为10%,20%,40%的七叶莲水煎液中浸泡,用MedLab生物信号采集处理系统引导神经干复合双相动作电位,并分别测定各组不同浸泡时间的坐骨神经干动作电位的幅度和传导速度两项电生理指标。记录不同浓度的七叶莲水煎液对蟾蜍离体坐骨神经复合动作电位的幅度和传导速度的影响。结果:10%,20%,40%3种浓度的七叶莲水煎液均使坐骨神经复合动作电位的幅度变小(P〈0.01),传导速度变慢(P〈0.01)并最终使坐骨神经动作电位消失,且经过一段时间后动作电位的幅度和传导速度均能恢复。结论:七叶莲能可逆地阻滞神经动作电位的传导。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号