首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
M J Smerdon  I Isenberg 《Biochemistry》1976,15(19):4233-4242
This paper presents the first study of conformational changes in the subfractions of calf thymus H1. H1 was fractionated by the method of Kincade and Cole (Kincade, J. M., and Cole, R.D. (1966), J. Biol. Chem. 241. 5790) using a very shallow Gdn-HC1 gradient. A possible new H1 subfraction, about 5--8% of the H1, has been found and characterized by amino acid analysis and electrophoresis. The effects of salt concentration and pH on the conformation of each of the four major subfractions have been studied by measuring the fluorescence anisotropy of the tyrosine emission and the circular dichroism (CD) of the peptide bond. Upon the addition of salt to aqueous solutions at neutral pH, all four subfractions show an instantaneous change in fluorescence anisotropy, fluorescence intensity, tyrosine absorbance, and CD. The folding associated with this instantaneous change is highly cooperative, and involves the region of the molecule containing the lone tyrosine, which becomes buried in the folded form. The folding of subfraction 3a is more sensitive to salt than the other major subfractions. Upon folding, approximately 13% of the residues of subfractions 1b and 2 form alpha and beta structure; 3a and 3b have approximately 16% of the residues in alpha and beta structures. There is no evidence for interactions between the subfractions. In salt-free solutions, each of the four major subfractions show very little change in conformation in going from low to neutral pH, but each shows a very sharp transition near pH 9. This transition gives rise to a marked increase in fluorescence anisotropy and fluorescence intensity, and involves the formation of both alpha and beta strucute in a manner similar to that of the salt-induced state.  相似文献   

2.
α Lactalbumin exists as a partially folded conformer (U form) at acid pH. A second partially folded conformer (H form) is formed above 60°. Comparison of the changes in tryptophan fluorescence which occur on forming U and H for the bovine, goat, human and guinea pig proteins, as well as analysis of fluorescence properties for the bovine protein and an N bromo succinimide derivative of this protein, have made it possible to determine which tryptophan residues give rise to such changes in fluorescence, and to draw a distinction between the molecular structure of the U and H forms of the protein. Trp 28 and 109 in the native state transfer their excitation energy to trp 63 whose fluorescence is quenched by a pair of vicinal disulfide bridges. This process persists in the U form of the protein, but is absent in the H conformer. Most of the change in fluorescence seen in the N ? U conversion is due to increase in yield of trp 28, while the changes in fluorescence occurring on formation of the H form are due to exposure of trp 63 and elimination of its quenching and/or excited state transfer from 28 to 109.  相似文献   

3.
In wavelength-resolved steady state spectra we observe three different kinds of emission from histone H1, a class A protein with only a single tyrosine residue. Unfolded H1 emissions that peak at approximately 300 and 340 nm can both be excited maximally at approximately 280 nm. Another, peaking much further to the red at approximately 400 nm, can be excited maximally at approximately 320 nm. The 300-nm fluorescence can be resolved by lifetime measurements into three components with decay times of approximately 1, 2, and 4 ns. On sodium-chloride-induced refolding of H1, simplification of the emission properties occurs. The 340 and 400-nm components disappear while the two shorter lifetime components of the 300-nm band diminish in amplitude and are replaced by the 4-ns decay. We believe that the 340-nm emission is tyrosinate fluorescence resulting from excited-state proton transfer. The origin of the 400-nm emission remains uncertain. We assign the 1 and 2-ns components of the 300-nm emission to two states of tyrosine in denatured H1 and the 4-ns decay to fluorescence of the single tyrosine residue in the globular region of refolded H1. Our results support the contention that salt induced folding of H1 is a cooperative two state process, and permit us to better understand the previously reported increases in fluorescence intensity and anisotropy on salt-induced folding.  相似文献   

4.
Fluorescence ratio intrinsic basis states analysis (FRIBSTA) is a novel method allowing quantitative estimation of the stability of proteins in aqueous solution as a function of temperature. In FRIBSTA emission fluorescence spectra are repeatedly recorded while ramping temperature from < or =-15 to > or =100 degrees C. Subsets of these are identified as reference spectra of the protein in either its folded or in its heat denatured configuration. Each reference spectrum of both sets is normalized by its own integrated fluorescence intensity to give a fractional area spectrum. Linear extrapolations of these normalized reference spectral shapes over the entire temperature range of measurement are then used to deconvolute each experimental emission spectrum to give a fraction of emission from native state and a fraction from denatured state. Additionally, the integrated emission fluorescence intensity for the native configuration is fitted and extrapolated over the temperature range of measurement. Division of the deconvoluted native integrated fluorescence intensity by the fitted-extrapolated integrated emission fluorescence intensity yields the fraction folded. The free energy functions derived from fraction unfolded are presented for beta-lactoglobulin and phosphoglycerate kinase. According to these results both proteins are considerably less stable than heretofore assumed at ambient temperatures and partially denatured at temperatures < or =0 degrees C. The method is employed to study the effect of denaturants on these proteins as well. The major usefulness of FRIBSTA is that one can directly measure the protein stability at ambient and subambient temperatures in the absence of denaturants rather than predicting it by extrapolation from heat denaturation data.  相似文献   

5.
Tyr-72 is included in the hydrophobic cleft which is formed in the histone H1 globular head. Tyr-72 is screened against polar aqueous environment and its intramolecular mobility is sharply retarded. This microenvironment causes a red shift (lambda max = 279 nm) and a sharpening of the longer wavelength shoulder of absorption spectra, a high fluoresence anisotropy value (A = 0,11), high quantum yield of fluoresence (approximately 0.2) and a decrease of the Stern-Volmer Constant during quenching of histone H1 fluorescence by acrylamide. It has been found that the change in the intensity of histone fluorescence at lambda excit = 265 nm, but not at lambda excit = 280 nm, is due to the changes in the quantum yield of fluorescence. The increase of fluorescence intensity at lambda excit = 280 nm depends on the changes in the quantum yield and molar extinction coefficient of histone H1 tyrosyl chromophore. The change in the ratio of fluorescence intensity exited at 280 nm (F280) to the fluorescence intensity excited at 265 nm (F265) corresponds to the change of delta epsilon 286 in difference absorption spectra. The introduction of the parameter Cf = F280/F265 allows one to go over to studying excitation spectrum shifts instead of histone absorption spectrum shifts, which is much more convenient methodologically since in this case it is possible to carry out research using lower protein concentrations and turbid solutions. The results make it possible to designate Tyr-72 of histone H1 as a special class of fluorescent tyrosyls whose properties differ from those of tyrosyls of other tryptophane-free proteins: RNAase, insulin, core histones--H2A, H2B, H3, H4 and some others.  相似文献   

6.
Interaction of dipalmitoyl-phosphatidylcholine with calf thymus histone H1   总被引:1,自引:0,他引:1  
The interaction between dipalmitoyl-phosphatidylcholine and calf thymus histone H1 has been studied. A protein-phospholipid complex, resulting from this interaction, has been isolated by centrifugation in a sucrose gradient. The phospholipid-histone interaction causes an increase in the alpha-helix content of the protein; the corresponding conformational transition is observed by CD studies in the far-u.v. region. The only tyrosine residue of the protein can be advantageously used as an intrinsic fluorescent probe; thus, fluorescence spectra indicate that protein folding induced by phospholipids is concomitant with the tyrosine transfer into a more hydrophobic environment. The trypsin-resistant core of the histone is also folded in the presence of the phospholipid but the conformational transition occurs at lower lipid concentration than for the intact protein. Fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene indicates that the protein shifts the transition temperature of the phospholipid from 41.5 to 44.0 degrees. Secondary structure prediction of the trypsin-resistant core of the histone indicates the existence of an amphipathic helix that could be responsible for the lipid-protein interaction.  相似文献   

7.
In order to examine how the stabilization of thermophilic proteins affects their folding, we have characterized the folding process of Thermus thermophilus ribonuclease H using circular dichroism, fluorescence, and pulse-labeling hydrogen exchange. Like its homolog from Escherichia coli, this thermophilic protein populates a partially folded kinetic intermediate within the first few milliseconds of folding. The structure of this intermediate is similar to that of E.coli RNase H and corresponds remarkably well to a partially folded form that is populated at low levels in the native state of the protein. Proline isomerization appears to partly limit the folding of the thermophilic but not the mesophilic protein. Lastly, unlike other thermophilic proteins, which unfold much more slowly than their mesophilic counterparts, T.thermophilus RNase H folds and unfolds with overall rates similar to those of E.coli RNase H.  相似文献   

8.
Dystrophin is assumed to act via the central rod domain as a flexible linker between the amino-terminal actin binding domain and carboxyl-terminal proteins associated with the membrane. The rod domain is made up of 24 spectrin-like repeats and has been shown to modify the physical properties of lipid membranes. The nature of this association still remains unclear. Tryptophan residues tend to cluster at or near to the water-lipid interface of the membrane. To assess dystrophin rod domain-membrane interactions, tryptophan residues properties of two recombinant proteins of the rod domain were examined by (1)H NMR and fluorescence techniques in the presence of membrane lipids. F114 (residues 439-553) is a partly folded protein as inferred from (1)H NMR, tryptophan fluorescence emission intensity, and the excited state lifetime. By contrast, F125 (residues 439-564) is a folded compact protein. Tryptophan fluorescence quenching shows that both proteins are characterized by structural fluctuations with their tryptophan residues only slightly buried from the surface. In the presence of negatively charged small vesicles, the fluorescence characteristics of F125 change dramatically, indicating that tryptophan residues are in a more hydrophobic environment. Interestingly, these modifications are not observed with F114. Fluorescence quenching experiments confirm that tryptophan residues are shielded from the solvent in the complex F125 lipids by a close contact with lipids. The use of membrane-bound quenchers allowed us to conclude that dystrophin rod domain lies along the membrane surface and may be involved in a structural array comprising membrane and cytoskeletal proteins as well as membrane lipids.  相似文献   

9.
The emission maximum of DPN-linked isocitrate dehydrogenase from bovine heart shifted from 316 nm to 324 nm as the excitation wavelength was varied from 265 nm to 300 nm. This shift was accompanied by a nonproportional change in fluorescence intensity. Comparisons of the emission spectra of model compounds in aqueous buffer at pH 7.07 and n-butanol showed that lowered solvent polarity led to a blue shift of the peak of free tryptophan without significant change of fluorescence intensity, whereas the fluorescence intensity of tyrosine amide increased markedly without change in emission maximum. The emission peak of mixtures of tryptophan and tyrosine amide shifted to shorter wavelengths as the proportion of tyrosine amide increased. The results suggest a major contribution of tyrosine to the overall fluorescence of the dehydrogenase. DPNH caused quenching and a blue shift of the protein fluorescence maximum when excited between 270 nm and 290 nm, indicating that the two tryptophan residues per subunit of enzyme are located in different microenvironments of the protein and that DPNH may interact preferentially with the residue emitting at the longer wavelength.  相似文献   

10.
We have examined the equilibrium unfolding of Escherichia coli ribonuclease HI (RNase H), a member of a family of enzymes that cleaves RNA from RNA:DNA hybrids. A completely synthetic gene was constructed that expresses a variant of the wild-type sequence with all 3 cysteines replaced with alanine. The resulting recombinant protein is active and folds reversibly. Denaturation studies monitored by circular dichroism and tryptophan fluorescence yield coincident curves that suggest the equilibrium unfolding reaction is a 2-state process. Acid denaturation, however, reveals a cooperative transition at approximately pH 1.8 to a partially folded state. This acid state can be further denatured in a reversible manner by the addition of heat or urea as monitored by either CD or tryptophan fluorescence. Analytical ultracentrifugation studies indicate that the acid state of RNase H is both compact and monomeric. Although compact, the acid state does not resemble the native protein: the acid state displays a near-UV CD spectrum similar to the unfolded state and binds to and enhances the fluorescence of the dye 1-anilinonaphthalene, 8-sulfonate much more than either the native or unfolded states. Therefore, the acid state of E. coli RNase H has the characteristics of a molten globule: it retains a high degree of secondary structure, remains compact, yet does not appear to contain a tightly packed core.  相似文献   

11.
The structural properties of EspB, a virulence factor of the Escherichia coli O157 type III secretion system, were characterized. Far-UV and near-UV CD spectra, recorded between pH 1.0 and pH 7.0, show that the protein assumes alpha-helical structures and that some tyrosine tertiary contacts may exist. All tyrosine side-chains are exposed to water, as determined by acrylamide fluorescence quenching spectroscopy. An increase in the fluorescence intensity of 8-anilinonaphthalene-1-sulfonate was observed at pH 2.0 in the presence of EspB, whereas no such increase in fluorescence was observed at pH 7.0. These data suggest the formation of a molten globule state at pH 2.0. Destabilization of EspB at low pH was shown by urea-unfolding transitions, monitored by far-UV CD spectroscopy. The result from a sedimentation equilibrium study indicated that EspB assumes a monomeric form at pH 7.0, although its Stokes radius (estimated by multiangle laser light scattering) was twice as large as expected for a monomeric globular structure of EspB. These data suggest that EspB, at pH 7.0, assumes a relatively expanded conformation. The chemical shift patterns of EspB 15N-1H heteronuclear single quantum correlation spectra at pH 2.0 and 7.0 are qualitatively similar to that of urea-unfolded EspB. Taken together, the properties of EspB reported here provide evidence that EspB is a natively partially folded protein, but with less exposed hydrophobic surface than traditional molten globules. This structural feature of EspB may be advantageous when EspB interacts with various biomolecules during the bacterial infection of host cells.  相似文献   

12.
13.
The C(H)3 domain of antibodies is characterized by two antiparallel beta-sheets forming a disulfide-linked sandwich-like structure. At acidic pH values and low ionic strength, C(H)3 becomes completely unfolded. The addition of salt transforms the acid-unfolded protein into an alternatively folded state exhibiting a characteristic secondary structure. The transition from native to alternatively folded C(H)3 is a fast reaction. Interestingly, this reaction involves the formation of a defined oligomer consisting of 12-14 subunits. Association is completely reversible and the native dimer is quantitatively reformed at neutral pH. This alternatively folded protein is remarkably stable against thermal and chemical denaturation and the unfolding transitions are highly cooperative. With a t(m) of 80 degrees C, the stability of the alternatively folded state is comparable to that of the native state of C(H)3. The defined oligomeric structure of C(H)3 at pH 2 seems to be a prerequisite for the cooperative unfolding transitions.  相似文献   

14.
Tyrosine ring dynamics of the gastrointestinal hormone motilin was studied using two independent physical methods: fluorescence polarization anisotropy decay and NMR relaxation. Motilin, a 22-residue peptide, was selectively (13)C labeled in the ring epsilon-carbons of the single tyrosine residue. To eliminate effects of differences in peptide concentration, the same motilin sample was used in both experiments. NMR relaxation rates of the tyrosine ring C(epsilon)-H(epsilon) vectors, measured at four magnetic field strengths (9.4, 11.7, 14.1, and 18.8 Tesla) were used to map the spectral density function. When the data were analyzed using dynamic models with the same number of components, the dynamic parameters from NMR and fluorescence are in excellent agreement. However, the estimated rotational correlation times depend on the choice of dynamic model. The correlation times estimated from the two-component model-free approach and the three-component models were significantly different (1.7 ns and 2.2 ns, respectively). Various earlier studies of protein dynamics by NMR and fluorescence were compared. The rotational correlation times estimated by NMR for samples with high protein concentration were on average 18% longer for folded monomeric proteins than the corresponding times estimated by fluorescence polarization anisotropy decay, after correction for differences in viscosity due to temperature and D(2)O/H(2)O ratio.  相似文献   

15.
Human apolipoprotein A-II (apo A-II) in solution and associated with 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) was investigated by a combination of absorbance and fluorescence methods. Each apo A-II polypeptide chain contains four tyrosine residues but no tryptophan residues. Two and three tyrosine residues, respectively, appear to be buried for apo A-II in aqueous solution and in the lipid-associated protein. The spectroscopic properties of the tyrosine residues of lipid-associated apo A-II were also investigated. Plots of fluorescence intensity against temperature revealed a discontinuity in the region of the phase transition; however, over the same temperature range, there was no change in the exposure of tyrosine residues to the aqueous environment or in their mobility as measured by fluorescence polarization. Near-ultraviolet circular dichroic measurements demonstrated that the environments of the tyrosine residues of lipid-associated apo A-II and nitrated apo A-II were different from that of the apo A-II in solution or in a denatured state. Similar measurements also revealed that the microenvironments around tyrosines of apo A-II bound to DMPC in the gel phase are different from those observed in the liquid crystalline phase. Using environmentally sensitive fluorescence lipid probes, we have previously demonstrated that the polarity of the lipid/water interface of DMPC changes through a phase transition. The observations presented here indicate that these environmental changes also occur at the lipid/protein interface.  相似文献   

16.
Acid-induced unfolding of the tetrameric glucose/xylose isomerase (GXI) from Streptomyces sp. NCIM 2730 has been investigated using intrinsic fluorescence, fluorescence quenching, second derivative spectroscopy, hydrophobic dye (1-anilino-8-naphthalene-sulfonate) binding and CD techniques. The pH dependence of tryptophanyl fluorescence of GXI at different temperatures indicated the presence of two stable intermediates at pH 5.0 and pH 3.0. The pH 3.2 intermediate was a dimer and exhibited molten globule-like characteristics, such as the presence of native-like secondary structure, loss of tertiary structure, increased exposure of hydrophobic pockets, altered microenvironment of tyrosine residues and increased accessibility to quenching by acrylamide. Fluorescence and CD studies on GXI at pH 5.0 suggested the involvement of a partially folded intermediate state in the native to molten globule state transition. The partially folded intermediate state retained considerable secondary and tertiary structure compared to the molten globule state. This state was characterized by its hydrophobic dye binding capacity, which is smaller than the molten globule state, but was greater than that of the native state. This state shared the dimeric status of the molten globule state but was prone to aggregate formation as evident by the Rayleigh light scattering studies. Based on these results, the unfolding pathway of GXI can be illustrated as: N-->PFI-->MG-->U; where N is the native state at pH 7.5; PFI is the partially folded intermediate state at pH 5.0; MG is the molten globule state at pH 3.2 and U is the monomeric unfolded state of GXI obtained in the presence of 6 M GdnHCl. Our results demonstrate the existence of a partially folded state and molten globule state on the unfolding pathway of a multimeric alpha/beta barrel protein.  相似文献   

17.
Talbott M  Hare M  Nyarko A  Hays TS  Barbar E 《Biochemistry》2006,45(22):6793-6800
Equilibrium analyses have been performed to elucidate the role of dimerization in folding and stability of dynein light chain Tctex-1. The equilibrium unfolding transition was monitored by intrinsic fluorescence intensity, fluorescence anisotropy, and circular dichroism and was modeled as a two-state mechanism where a folded dimer dissociates to two unfolded monomers without populating thermodynamically stable monomeric or dimeric intermediates. Sedimentation equilibrium and chemical cross-linking experiments performed at increasing concentrations of denaturants show no change in the association state before the unfolding transition and are consistent with the two-state model of dissociation coupled to unfolding. A linear dependence on denaturant concentration is observed by fluorescence intensity and anisotropy before unfolding in the 0-2 M GdnCl, and 0-4 M urea concentration range. This change is not protein concentration-dependent and possibly reflects relief of quenching associated with premelting conformational disorder in the vicinity of Trp 83. The data clearly show that the dissociation-coupled unfolding mechanism of Tctex-1 is different from the three-state denaturation mechanism of its structural homologue light chain LC8. The absence of a stable monomer in Tctex-1 offers insight into its functional differences from LC8.  相似文献   

18.
By optical methods it has been previously shown that the globular "head" of histone H1 forms a hydrophobic cavity containing Tyr72. The latter is screened from the polar water surrounding and its intramolecular mobility is drastically hindered. As a consequence of the alteration in the micromilieu are a long wave shift (lambda max = 279,5 nm) and a more pronounced longwave absorption spectra, higher anisotropy (A = 0,11), augmented quantum yield of fluorescence (approximately 0,2) and a decrease of the Stern-Volmer constant for Hl at fluorescence quenching by acrylamide. It was found that changes in fluorescence intensity of histones are connected with alterations in the quantum yield of fluorescence at lambda exc = = 265 nm, but not at lambda exc = 280 nm. The changes in fluorescence intensity at light excitation 280 nm (F280) and 265 nm (F265) are in good accordance with shift delta E286 in differential absorption spectra. Introduction of parameter Cf = F280/F265 allows to study shifts of excitation spectra instead of shifts in absorption spectra of histones. This method has certain advantages, since it permits investigations with lower protein concentrations and in turbid solutions. The data obtained allow to draw out Tyr72 of histone Hl into a special class of fluorescent-tyrosyls, that differ in properties from those of other tryptophandevoided proteins: RNAse, insulin and core-histones H2A, H2B, H3 and H4.  相似文献   

19.
To further understand oligomeric protein assembly, the folding and unfolding kinetics of the H3-H4 histone tetramer have been examined. The tetramer is the central protein component of the core nucleosome, which is the basic unit of DNA compaction into chromatin in the eukaryotic nucleus. This report provides the first kinetic folding studies of a protein containing the histone fold dimerization motif, a motif observed in several protein-DNA complexes. Previous equilibrium unfolding studies have demonstrated that, under physiological conditions, there is a dynamic equilibrium between the H3-H4 dimer and tetramer species. This equilibrium is shifted predominantly toward the tetramer in the presence of the organic osmolyte trimethylamine-N-oxide (TMAO). Stopped-flow methods, monitoring intrinsic tyrosine fluorescence and far-UV circular dichroism, have been used to measure folding and unfolding kinetics as a function of guanidinium hydrochloride (GdnHCl) and monomer concentrations, in 0 and 1 M TMAO. The assignment of the kinetic phases was aided by the study of an obligate H3-H4 dimer, using the H3 mutant, C110E, which destabilizes the H3-H3' hydrophobic four-helix bundle tetramer interface. The proposed kinetic folding mechanism of the H3-H4 system is a sequential process. Unfolded H3 and H4 monomers associate in a burst phase reaction to form a dimeric intermediate that undergoes a further, first-order folding process to form the native dimer in the rate-limiting step of the folding pathway. H3-H4 dimers then rapidly associate with a rate constant of > or =10(7) M(-1)sec(-1) to establish a dynamic equilibrium between the fully assembled tetramer and folded H3-H4 dimers.  相似文献   

20.
Abstract

Histone H5 contains three tryosines in the central, a polar region of the molecule. All three tryosines can be spin labeled at low ionic strength. When the central globular domain is folded at high ionic strength, only one tyrosine becomes accessible to the imidazole spin label. Spin labeling the buried tyrosines prevents the folding of the globular structure, which, in turn, affects the proper binding of the H5 molecule to stripped chromatin. Chromatin complexes reconstituted from such an extensively modified H5 molecule show a weaker protection of the 168 base pair chromatosome during nuclease digestion. However, when only the surface tyrosine of the H5 molecule is labeled, such a molecule can still bind correctly to stripped chromatin, yielding a complex very similar to that of native chromatin. Our data supports the idea that not just the presence of the linker histone H5, but the presence of an intact H5 molecule with a folded, globular central domain is essential in the recognition of its specific binding sites on the nucleosomes. Our data also show that during the chromatin condensation process, the tumbling environment of the spin label attached to the surface tyrosine in the H5 molecule is not greatly hindered but remains partially mobile. This suggests that either the labeled domain of the H5 molecule is not directly involved in the condensation process or the formation of the higher-order chromatin structure does not result in a more viscous or tighter environment around the spin label. The folded globular domain of H5 molecule serves in stabilizing the nucleosome structure, as well as the higherorder chromatin structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号