首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
To clarify whether a single oncogene can transform primary cells in culture, we compared the transforming effect of a recombinant retrovirus (ZSV) containing the v-src gene in rat embryo fibroblasts (REFs) to that in the rat cell line 3Y1. In the focus assay, REFs exhibited resistance to transformation as only six foci were observed in the primary cultures as opposed to 98 in 3Y1 cells. After G418 selection, efficiency of transformation was again somewhat lower with REFs compared to that with 3Y1 cells, but the number of G418-resistant REF colonies was much greater than the number of foci in REF cultures. Furthermore, while 98% of G418-resistant colonies of ZSV-infected REFs were morphologically transformed, only 25% were converted to anchorage- independent growth, as opposed to 100% conversion seen in ZSV-infected 3Y1 cells. The poor susceptibility of REFs to anchorage-independent transformation did not involve differences in expression and subcellular distribution of p60v-src, or its kinase activity in vitro and in vivo. It rather reflected a property of the primary cultures, as cloning of REFs before ZSV infection demonstrated that only 2 out of 6 REF clones tested were permissive for anchorage-independent growth. The nonpermissive phenotype was dominant over the permissive one in somatic hybrid cells, and associated with organized actin filament bundles and a lower growth rate, both before and after ZSV infection. These results indicate that the poor susceptibility of REFs to anchorage-independent transformation by p60v-src reflects the heterogeneity of the primary cultures. REFs can be morphologically transformed by p60v-src with high efficiency but only a small fraction is convertible to anchorage- independent growth. REF resistance seems to involve the presence of a suppressor factor which may emerge from REF differentiation during embryonic development.  相似文献   

2.
FH3, a v-myc avian retrovirus with limited transforming ability.   总被引:4,自引:2,他引:2       下载免费PDF全文
We have isolated a new acute avian transforming virus which contains the oncogene myc. This virus, designated FH3, was isolated after injection of a 10-day-old chick embryo with avian leukosis virus. While FH3 shares many properties with other v-myc-containing avian retroviruses, it also has several unique properties. The primary target for transformation in vitro is chicken macrophages; infection of chicken fibroblasts does not lead to complete morphological transformation. FH3 also exhibits a limited host range, in that Japanese quail macrophages and fibroblasts are infected but are not completely transformed. FH3 induces in vivo a limited tumor type if injected into 10-day-old chick embryos; only a cranial myelocytoma, which does not appear to be metastatic, can be detected. The v-myc gene of FH3 is expressed predominantly as a P145 Gag-Myc protein which is encoded by a ca. 8-kilobase genomic RNA. This FH3-encoded polyprotein is localized in the nucleus of all infected cells, whether or not they are transformed.  相似文献   

3.
dlPA105 is a spontaneous variant of Rous sarcoma virus, subgroup E, which carries a deletion in the N-terminal portion of the v-src gene coding sequence. This virus was isolated on the basis of its ability to induce proliferation of quiescent quail neuroretina cells. The altered v-src gene encodes a phosphoprotein of 45,000 daltons which possesses tyrosine kinase activity. DNA sequencing of the mutant v-src gene has shown that deletion extends from amino acid 33 to 126 of wild-type p60v-src. We investigated the tumorigenic and transforming properties of this mutant virus. dlPA105 induced fibrosarcomas in quails with an incidence identical to that induced by wild-type virus. Quail neuroretina cells infected with the mutant virus were morphologically transformed and formed colonies in soft agar. In contrast, dlPA105 induced only limited morphological alterations in quail fibroblasts and was defective in promoting anchorage-independent growth of these cells. Synthesis and tyrosine kinase activity of the mutant p45v-src were similar in both cell types. These data indicate that the portion of the v-src protein deleted in p45v-src is dispensable for the mitogenic and tumorigenic properties of wild-type p60v-src, whereas it is required for in vitro transformation of fibroblasts. The ability of dlPA105 to induce different transformation phenotypes in quail fibroblasts and quail neuroretina cells is a property unique to this Rous sarcoma virus mutant and provides evidence for the existence of cell-type-specific response to v-src proteins.  相似文献   

4.
A potential substrate of p60v-src in Rous sarcoma virus-transformed cells was found to be a 130-kilodalton (kDa) glycoprotein which binds to lectin-Sepharose and can be immunoprecipitated by an anti-phosphotyrosine antibody. This glycoprotein was shown to be distinct from the fibronectin receptor and a cellular protein phosphorylated in p60v-src immune complexes. The protein was a transmembrane protein localized in the plasma membrane and resistant to extraction with Triton X-100. The 130-kDa protein was also highly phosphorylated in cells transformed by Fujinami sarcoma virus or Y73 but not in cells infected with Rous sarcoma virus mutants that encode p60v-src lacking myristoylated N termini. Phosphorylation of this glycoprotein was temperature dependent in cells infected with temperature-sensitive mutants. The good correlation between its phosphorylation and morphological transformation, together with its relative abundance among phosphorylated proteins and its subcellular localization, suggests that phosphorylation of the 130-kDa glycoprotein is one of the primary events important for cell transformation by p60v-src and related oncogene products.  相似文献   

5.
We demonstrate that the behavior of cells expressing v-src, a tyrosine kinase oncogene, differs profoundly between the embryonic and culture environments. V-src was introduced into avian embryo cells both in culture and in stage-24 embryo limbs, using replication-defective retroviral vectors. These vectors were used as single-hit, cellular markers to determine the environmental influences imposed by normal cells and tissues on clonal cell growth. The marker gene lacZ was coexpressed with v-src in order to locate the descendent cells. In culture, v-src induced rapid morphological transformation and anchorage-independent growth of embryo fibroblasts; the vectors were also tumorigenic in hatchling chickens. In contrast, most of the cell clones expressing v-src in the embryo grew normally without neoplasia. Expression of v-src vectors could be found in a wide range of cell types, demonstrating not only that neoplastic transformation is attenuated in ovo, but also that differentiation commitment in many lineages can be maintained concurrently with oncogene expression. Significantly, the embryonic control of cell growth could be perturbed by v-src under certain conditions. Rare, marked clones showed hyperplasia or dysplasia, and the primitive endothelium could succumb to rapid neoplasia; thus, these embryonic tissues are not inherently deficient in transformation factors. We propose that the environmental conditions imposed on cells in ovo are critical for the attenuation of neoplasia, while cultured cells lose this requisite environment.  相似文献   

6.
Epidemiologic studies have linked infection by the human T-lymphotropic virus type I (HTLV-I) with the development of adult T-cell leukemia. The low penetrance of the virus and the long latency for disease manifestation are factors that obscure the role of HTLV-I infection in oncogenesis. We have used an in vitro transformation assay system to determine directly whether the HTLV-I tax gene has transformation potential. Transfection of the tax gene alone into early-passage rat embryo fibroblasts did not induce morphological alterations. However, cotransfection of tax with the selectable marker plasmid pRSVneo gave rise to G418-resistant colonies that could be established as immortalized cell lines. Cotransfection of tax with the ras oncogene into rat embryo fibroblasts gave rise to foci of transformed cells that were highly tumorigenic in nude mice. These data represent a direct demonstration of the oncogenic potential of the tax gene in nonlymphoid cells and establish HTLV-I as a transforming virus.  相似文献   

7.
A murine retrovirus which expresses the avain v-myc OK10 oncogene was constructed. The virus, denoted MMCV, readily transforms fibroblasts of established lines, such as mouse NIH/3T3 and rat 208F cells, to anchorage-independent growth in agarose. The virus also transforms primary mouse cells: (i) virus-infected macrophages are induced to form large colonies in semi-solid media, and can easily be expanded into mass cultures; (ii) MMCV-infected fibroblastic cells from mouse limb buds undergo morphological transformation and grow in semi-solid medium. MMCV thus transforms both mouse fibroblastic cells and macrophages in vitro, in a fashion similar to the v-myc-containing avian viruses in chicken cells. The possibility of introducing a transforming myc gene into mammalian cells by virus infection provides a novel approach for studying the mechanism of myc transformation in cells from many lineages.  相似文献   

8.
R C Parker  H E Varmus  J M Bishop 《Cell》1984,37(1):131-139
The retroviral oncogene v-src arose by transduction of the cellular gene c-src. The similarity between these genes raised the possibility that c-src might be able to elicit neoplastic growth. We explored this by constructing a chimeric plasmid that allows the expression of chicken c-src. A rat cell line containing ten times the normal intracellular level of pp60c -src was isolated after transfecting rat-2 cells with the chimeric DNA. These cells produce the protein encoded by c-src ( pp60c -src) in quantities at least three times greater than required to achieve transformation by the product of v-src ( pp60v -src). The cells remain phenotypically normal, contain actin cables, and do not grow in soft agar. However, transfection of the cell line containing elevated cells of pp60c -src or Rat-2 cells with a molecular clone of v-src produces cells that exhibit properties of biologically transformed cells: round morphology, disrupted actin cables, and ability to grow in soft agar.  相似文献   

9.
Similarities between the mode of action of growth factors and the oncogene product (pp 60 src protein) of Rous Sarcoma virus have been described. However, a major difference is that addition of growth factors does not induce a malignant transformation of cells. The present work proposes a hypothesis concerning this difference. Various data suggest that density-dependent inhibition (DDI) of growth in non-transformed cells is due to the diffusion of growth inhibitory molecules. Inhibitory factors of 45 K (IDF 45) and 12 K have been fractionated. We assume that the stimulation of DNA synthesis induced by growth factor addition to dense quiescent cultures of non-transformed cells leads to an increase in the activity of autocrine inhibitory molecules in such a manner that the growth factor stimulatory effect is only transient, and cells re-enter the Go phase. On the contrary, the stimulation of DNA synthesis by v-src transformation would not be counterbalanced by inhibitory diffusing factors and cells would not enter Go phase. We present preliminary results which support this assumption. Dense quiescent cultures of chick embryo fibroblasts infected by Ny 68 virus (ts mutant for transformation of Rous Sarcoma virus) were stimulated to proliferate either by addition of growth factors in cultures maintained at 41 degrees C or by expression of transformation (by the cell transfer from 41 to 37 degrees C, the permissive temperature for expression of transformation). Stimulation of DNA synthesis by growth factors was totally inhibited by the inhibitory diffusing factors of 45 K (IDF45) whereas the stimulation of DNA synthesis produced by transformation was reproducibly not decreased by IDF45.  相似文献   

10.
We have previously shown that an intracellular mechanism down regulates epidermal growth factor (EGF) receptor levels in rodent fibroblasts transformed by the src oncogene (W. J. Wasilenko, L. K. Shawver, and M. J. Weber, J. Cell. Physiol. 131:450-457, 1987). We now report that this down regulation is due to an inhibition of EGF receptor biosynthesis. With Rat-1 (R1) cells infected with a temperature-sensitive src mutant, we found that 125I-labeled EGF binding to cells began to decrease soon after the activation of pp60v-src by shift down to the permissive temperature for transformation. This effect of src on EGF receptors was reversible. Pulse-chase studies with [35S]methionine-labeled cells revealed that the tyrosine protein kinase activity of pp60v-src had little if any effect on EGF receptor degradation rate. By contrast, the expression of pp60v-src caused a large reduction in the apparent rate of EGF receptor biosynthesis. Northern (RNA) blot analysis demonstrated that pp60v-src also caused marked reductions in the steady-state level of EGF receptor mRNA. These data indicate that one way the expression of the src oncogene can affect the machinery of growth control is by affecting the expression of specific genes for growth factor receptors.  相似文献   

11.
12.
The ability of cloned Rous sarcoma virus (RSV) DNA encoding the v-src oncogene to neoplastically transform normal, diploid Syrian hamster embryo (SHE) cells was examined. Transfection of RSV DNA into early passage SHE cells resulted in a low but significant number of tumors when treated cells were injected into nude mice. Tumors formed with a low frequency (two tumors out of ten sites injected) and only after a long latency period (14 weeks). In contrast to the normal SHE cells, several different carcinogen-induced preneoplastic immortal SHE cell lines were highly susceptible to transformation by the v-src oncogene to the neoplastic phenotype. Tumors formed with high efficiency and a short latency period (less than 3 weeks). Further studies were performed to determine the basis for the inefficient transformation of the normal SHE cells. NeoR clones isolated after cotransfection of SHE cells with pSV2-neo and RSV DNAs were neither morphologically altered nor immortal and did not contain detectable levels of the v-src gene product. These results suggest that neoplastic transformation by v-src DNA in the normal cells is initially suppressed. However, cells from a v-src-induced tumor expressed v-src RNA, and antibody to v-src protein precipitated from the tumor cells a 60,000-molecular-weight protein which displayed protein kinase activity. Karyotypic analyses confirmed that the tumor was derived from Syrian hamster cells and suggested that it was clonal in nature. These results indicate that the v-src oncogene was primarily responsible for neoplastic transformation of SHE cells. In contrast to the results with the v-src oncogene, our previous studies showed that v-Ha-ras oncogene alone is unable to induce neoplastic transformation of SHE cells. Furthermore, the v-myc oncogene was able to compliment v-Ha-ras to neoplastically transform SHE cells, while cotransfection with v-src plus v-myc did not increase the incidence of tumors.  相似文献   

13.
N-Myristoyl glycinal diethylacetal strongly inhibited morphological transformation of chick embryo fibroblasts infected with a temperature-sensitive mutant (tsNY68) of Rous sarcoma virus. Myristoylated or nonmyristoylated pp60v-src, which were expressed in tsNY68-infected cells in the absence or presence of the compound, were identified separately by fluorography or immunoblotting analysis after sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the [3H]myristate-labeled cell lysate. The results taken together suggest that the blockage of morphological transformation was caused by prevention of protein myristoylation of the transforming protein pp60v-src.  相似文献   

14.
The retroviral oncogene v-erbB encodes a truncated form of the receptor for epidermal growth factor, an integral membrane protein-tyrosine kinase. By contrast, the oncogene v-src encodes a protein-tyrosine kinase that is a peripheral membrane protein. The morphologies and spectra of cells transformed by these two oncogenes differ. In an effort to identify the functional determinant(s) of these differences, we constructed and tested first deletion mutants of v-erbB and then chimeras between v-src and v-erbB. As reported previously, the absence of any membrane anchorage eliminated transformation by v-erbB. Anchorage of the cytoplasmic kinase domain of v-erbB to membranes with amino-terminal portions of the v-src protein permitted transformation. The phenotype and spectrum of transformation were those expected for v-erbB rather than for v-src. The transforming chimeras lost their biological activity if the signal for myristylation at the amino terminus of v-src was compromised by mutation. Biochemical fractionations revealed a correlation between transforming activity and the association of chimeric gene products with the membrane fraction of the cell. For reasons not yet apparent, the combined presence of membrane anchorage domains of v-src, and the transmembrane domain of v-erbB in the same chimera typically (but not inevitably) impeded transformation. Our results suggest that the specificity of transformation by v-erbB resides in the selection of substrates by the cytoplasmic domain of the gene product. The protein retains access to those substrates even when anchored to the membrane in the manner of a peripheral rather than a transmembrane protein.  相似文献   

15.
The v-src oncogene of Rous sarcoma virus (RSV) is able to transform both avian and mammalian cells, but the mutant allele v-src-L displays a host range dependence for transformation, transforming chicken but not rat cells with wild-type efficiency. This host range restriction can be detected by measuring growth in low serum, saturation density, and anchorage independent growth. In addition, rat cells expressing v-src-L do not form tumors in syngeneic rats or nude mice, but RSV carrying the mutant allele causes tumors in chicks, although at a reduced efficiency and with increased latency. To determine the lesion responsible for this phenotype, we sequenced the entire v-src gene from the parental B77 strain of RSV, as well as the mutant allele. v-src-L is missing 3 nucleotides present in the wild-type parent, RSV B31, eliminating Phe-172, an invariant residue in a conserved region of src-related proteins known as SH-2. The kinase activity of pp60v-src-L was indistinguishable from that of the wild type in chicken cells but was significantly reduced in rat cells as assayed by an in vitro immune complex assay; in vivo phosphorylation of one specific substrate, p36 (calpactin I heavy chain); and total phosphotyrosine-containing proteins. In addition, the pattern of phosphotyrosine-containing proteins in rat cells was qualitatively different when cells containing pp60v-src-L were compared with cells with wild-type pp60v-src, even though both pp60v-src proteins were membrane associated. The data are consistent with a role for the SH-2 region in substrate specificity.  相似文献   

16.
To study the relationship between oncogenesis by v-src and normal cellular signalling pathways, we determined the effects of v-src on 3T3-TNR9 cells, a Swiss 3T3 variant which does not respond mitogenically to tumor promoters such as 12-O-tetradecanoyl-phorbol-13-acetate (TPA). We found that src was unable to transform these variant cells, whether the oncogene was introduced by infection with a murine retrovirus vector or by transfection with plasmid DNA. 3T3-TNR9 cells were not inherently resistant to transformation, since infection with similar recombinant retroviruses containing either v-ras or v-abl did induce transformation. Further analysis of Swiss 3T3 and 3T3-TNR9 cell populations infected with the v-src-containing retrovirus revealed that although the amount of v-src DNA in each was approximately the same, the level of the v-src message and protein and the overall level of phosphotyrosine expressed in the infected variants was much less than in infected parental cells. Cotransfection experiments using separate v-src and neo plasmids revealed a decrease in the number of G418-resistant colonies when transfections of TNR9 cells occurred in the presence of the src-containing plasmid, suggesting a growth inhibitory effect of v-src on 3T3-TNR9 cells, as has also been found for TPA itself. Since v-src cannot transform this variant cell line, which does not respond mitogenically to the protein kinase C agonist TPA, we suggest that src makes use of the protein kinase C pathway as part of its signalling activities.  相似文献   

17.
The selective retention and expression of the E6-E7 region of human papillomavirus (HPV) types 16 and 18 in cervical carcinomas suggests that these viral sequences play a role in the development of genital neoplasia. Each of three possible gene products, E6, E6*, and E7, from this region of HPV-18 were examined for transforming properties in several types of rodent cells. We have found that in immortalized fibroblasts, both E6 and E7 (but not E6*) are capable of inducing anchorage-independent growth. In rat embryo cells, the HPV-18 E7 open reading frame was an effective immortalizing agent and complemented an activated ras oncogene for transformation. In both immortalized and primary cells, transformation was observed when the HPV-18 sequences were expressed from either the HPV-18 promoter or a heterologous promoter. The E6-E7 region is not, however, the sole transforming domain of HPV-18, since another portion of the early region, possibly E5, also exhibited transforming capability in immortalized fibroblasts. The development of human cervical carcinomas may therefore involve a series of steps involving multiple viral and cellular gene products.  相似文献   

18.
Recent work has implicated the activated ras oncogene, whose gene product is a G-protein located in the plasma membrane, as well as the activated raf oncogene, whose gene product is a membrane-associated protein kinase, in contributing to radioresistance. Another transforming oncogene whose gene product is localized to the plasma membrane is v-src. We have examined a rat fibroblast line (RAT-1) infected with an avian sarcoma virus carrying a temperature-sensitive mutation in the v-src tyrosine kinase domain (LA-24). At 40 degrees C, LA-24 cells have a flat morphology and grow as a contact-inhibited monolayer, while at 35 degrees C, LA-24 cells have a transformed morphology, lose contact inhibition, grow in soft agar, and exhibit 3.5-fold higher tyrosine kinase activity. The parental RAT-1 line, not infected by the virus, grows at both temperatures as a contact-inhibited monolayer. This well-characterized system represents a good model for examining the effect of v-src transformation on radiosensitivity. RAT-1 and LA-24 cells grown at 35 and 40 degrees C were irradiated with graded doses of radiation, and clonogenic survival was assayed. For LA-24 cells grown at 35 and 40 degrees C, and for RAT-1 cells grown at 35 and 40 degrees C, calculated D0, n, alpha, and beta values did not differ significantly. To determine whether there might be differences in radiation damage repair capacity too subtle to detect by comparing radiation survival curves, sublethal damage repair capacity was assessed. There was no difference in sublethal damage repair capacity for LA-24 cells grown at 35 or 40 degrees C. Other studies have associated multidrug resistance with radioresistance. We have examined the radiation sensitivity of two colchicine-resistant LA-24 clones with four- to fivefold amplification of the P-glycoprotein gene, which are four-to fivefold more resistant to colchicine than the parental LA-24 line. In these multidrug-resistant clones, v-src activation does appear to increase radiation resistance. This did not appear to be due to alteration in cell cycle kinetics. We conclude that oncogene activation, or even protein kinase activity per se, does not necessarily lead to radiation resistance. Rather, radiation resistance following oncogene activation depends upon the oncogene and cell line studied, and perhaps upon specific protein phosphorylation.  相似文献   

19.
Down-modulation of EGF receptors in cells transformed by the src oncogene   总被引:2,自引:0,他引:2  
The effects of src oncogene expression on epidermal growth factor (EGF) receptors have been investigated in mouse 3T3 and rat-1 fibroblasts. Transformation of both cell types with src resulted in marked reductions in cellular EGF receptor levels, as assayed by either 125I-EGF binding or immunoprecipitation of receptor protein from radiolabeled cell lysates. In contrast to cells transformed by other types of retroviral oncogenes, the loss of EGF receptors in the src-transformed cells did not appear to be due to secreted transforming growth factor-alpha (TGF-alpha), since such factors were undetectable in culture fluids from the src-transformed cells. By several criteria of transformation, an EGF-receptorless cell line infected with src was shown to be transformed, suggesting that EGF receptors themselves are not obligatory to the src transformation process. We suggest that pp60src down-modulates EGF receptors by an intracellular mechanism and that the loss of the receptors is symptomatic of more general effects of pp60src on the machinery of growth regulation.  相似文献   

20.
The cytolytic effect of the autonomous parvovirus minute virus of mice, prototype strain (MVMp), was studied in cultures of ts 339/NRK rat cells that display a temperature-sensitive transformed phenotype as a result of their transformation with a Rous sarcoma virus strain matured in the v-src oncogene. A shift from restrictive (39.5 degrees C) to permissive (34.5 degrees C) temperature was associated with a marked sensitization of these cells to killing by MVMp. In contrast, ts 339/NRK cell derivatives supertransformed with a wild-type src oncogene were sensitive to MVMp at both temperatures, suggesting that the expression of a functional oncogene product may determine, at least in part, the extent of the parvoviral cytopathic effect. Although ts 339/NRK cells were quite resistant to parvoviral attack at 39.5 degrees C, they were similarly proficient in MVMp uptake, viral DNA and protein synthesis, and infectious particle production at both permissive and restrictive temperatures. Consistently, electron microscopic examination of infected ts 339/NRK cultures incubated at 39.5 degrees C revealed the presence, in the majority of the cells, of numerous full and empty virions that were predominantly located in autophagic-type vacuoles. Thus, in this system, the reversion of transformed and MVMp-sensitive phenotypes appears to correlate with the setting up of a noncytocidal mode of parvovirus production. These results raise the possibility that the physiological state of host cells may affect their susceptibility to parvoviruses by modulating not only their capacity for virus replication but also cellular processes controlling the cytopathic effect of viral products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号