首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stable nanosized bilayer disks were prepared from either 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) and cholesterol, or lipid mixtures with a composition reflecting that of the porcine brush border membrane. Two different polyethylene glycol (PEG)-grafted lipids, the negatively charged 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy (polyethylene glycol)-5000] (DSPE-PEG(5000)) and the neutral N-palmitoyl-sphingosine-1-[succinyl (methoxy (polyethylene glycol) 5000] (Ceramide-PEG(5000)), were used to stabilize the disks. The disks were employed as model membranes in drug partition studies based on a fast chromatography method. Results show that the lipid composition, as well as the choice of PEG-lipid, have an important influence on the partition behavior of charged drugs. Comparative studies using multilamellar liposomes indicate that bilayer disks have the potential to generate more accurate partition data than do liposomes. Further, initial investigations using bacteriorhodopsin suggest that membrane proteins can be reconstituted into the bilayer disks. This fact further strengthens the potential of the bilayer disk as an attractive model membrane.  相似文献   

2.
Stable nanosized bilayer disks were prepared from either 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) and cholesterol, or lipid mixtures with a composition reflecting that of the porcine brush border membrane. Two different polyethylene glycol (PEG)-grafted lipids, the negatively charged 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy (polyethylene glycol)-5000] (DSPE-PEG5000) and the neutral N-palmitoyl-sphingosine-1-[succinyl (methoxy (polyethylene glycol) 5000] (Ceramide-PEG5000), were used to stabilize the disks. The disks were employed as model membranes in drug partition studies based on a fast chromatography method. Results show that the lipid composition, as well as the choice of PEG-lipid, have an important influence on the partition behavior of charged drugs. Comparative studies using multilamellar liposomes indicate that bilayer disks have the potential to generate more accurate partition data than do liposomes. Further, initial investigations using bacteriorhodopsin suggest that membrane proteins can be reconstituted into the bilayer disks. This fact further strengthens the potential of the bilayer disk as an attractive model membrane.  相似文献   

3.
Isothermal titration calorimetry was used to characterize and quantify the partition of indomethacin and acemetacin between the bulk aqueous phase and the membrane of egg phosphatidylcholine vesicles. Significant electrostatic effects were observed due to binding of the charged drugs to the membrane, which implied the use of the Gouy-Chapman theory to calculate the interfacial concentrations. The binding/partition phenomenon was quantified in terms of the partition coefficient (K(p)), and/or the equilibrium constant (K(b)). Mathematical expressions were developed, either to encompass the electrostatic effects in the partition model, or to numerically relate partition coefficients and binding constants. Calorimetric titrations conducted under a lipid/drug ratio >100:1 lead to a constant heat release and were used to directly calculate the enthalpy of the process, DeltaH, and indirectly, DeltaG and DeltaS. As the lipid/drug ratio decreased, the constancy of reaction enthalpy was tested in the fitting process. Under low lipid/drug ratio conditions simple partition was no longer valid and the interaction phenomenon was interpreted in terms of binding isotherms. A mathematical expression was deduced for quantification of the binding constants and the number of lipid molecules associated with one drug molecule. The broad range of concentrations used stressed the biphasic nature of the interaction under study. As the lipid/drug ratio was varied, the results showed that the interaction of both drugs does not present a unique behavior in all studied regimes: the extent of the interaction, as well as the binding stoichiometry, is affected by the lipid/drug ratio. The change in these parameters reflects the biphasic behavior of the interaction-possibly the consequence of a modification of the membrane's physical properties as it becomes saturated with the drug.  相似文献   

4.
The binding of the charged form of two local anesthetics, dibucaine and etidocaine, to bilayers composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) was measured simultaneously with ultraviolet spectroscopy and deuterium magnetic resonance. Because of their amphiphilic molecular structure, both drugs intercalate between the lipid molecules, increasing the surface area and imparting a positive electric charge onto the membrane. The ultraviolet (UV) binding isotherms were therefore analyzed in terms of a model which specifically took into account the bilayer expansion as well as the charge-induced concentration variations near the membrane surface. By formulating a quantitative expression for the change in surface area upon drug intercalation and combining it with the Gouy-Chapman theory, the binding of charged dibucaine and etidocaine to the lipid membrane was best described by a partition equilibrium, with surface partition coefficients of 660 +/- 80 M-1 and 11 +/- 2 M-1 for dibucaine and etidocaine, respectively (pH 5.5, 0.1 M NaCl/50 mM buffer). Deuterium magnetic resonance demonstrated further that the binding of drug changed the head-group conformation of the lipid molecules. Invoking the intercalation model, a linear variation of the deuterium quadrupole splittings of the choline segments with the surface charge density was observed, suggesting that the phosphocholine head-group may act as a 'molecular electrometer' with respect to surface charges.  相似文献   

5.
Recently, the covalent binding of a cholesterol moiety to a classical HIV-1 fusion inhibitor peptide, C34, was shown to potentiate its antiviral activity. Our purpose was to evaluate the interaction of cholesterol-conjugated and native C34 with membrane model systems and human blood cells to understand the effects of this derivatization. Lipid vesicles and monolayers with defined compositions were used as model membranes. C34-cholesterol partitions more to fluid phase membranes that mimic biological membranes. Importantly, there is a preference of the conjugate for liquid ordered membranes, rich in cholesterol and/or sphingomyelin, as observed both from partition and surface pressure studies. In human erythrocytes and peripheral blood mononuclear cells (PBMC), C34-cholesterol significantly decreases the membrane dipole potential. In PBMC, the conjugate was 14- and 115-fold more membranotropic than T-1249 and enfuvirtide, respectively. C34 or cholesterol alone did not show significant membrane activity. The enhanced interaction of C34-cholesterol with biological membranes correlates with its higher antiviral potency. Higher partitions for lipid-raft like compositions direct the drug to the receptor-rich domains where membrane fusion is likely to occur. This intermediary membrane binding step may facilitate the drug delivery to gp41 in its pre-fusion state.  相似文献   

6.
Interaction of enkephalin peptides with anionic model membranes.   总被引:2,自引:0,他引:2  
According to the model for passive transport across the membranes, the total flow of permeant molecules is related to the product of the water-membrane partition coefficient and the diffusion coefficient, and to the water-membrane interfacial barrier. The effect of membrane surface charge on the permeability and interaction of analgesic peptide ligands with model membranes was investigated. A mixture of zwitterionic phospholipids with cholesterol was used as a model membrane. The lipid membrane charge density was controlled by the addition of anionic 1-palmitoyl-2-oleoylphosphatidylserine. Two classes of highly potent analgesic peptides were studied, c[D-Pen(2),D-Pen(5)]enkephalin (DPDPE) and biphalin, a dimeric analog of enkephalin. The effect of increased surface charge on the permeability of the zwitterionic DPDPE is a relatively modest decrease, that appears to be due to a diminished partition coefficient. On the other hand the binding of the dicationic biphalin ligands to membranes increases proportionally with increased negative surface charge. This effect translates into a significant reduction of biphalin permeability by reducing the diffusion of the peptide across the bilayer. These experiments show the importance of electrostatic effects on the peptide-membrane interactions and suggest that the negative charge naturally present in cell membranes may hamper the membrane transport of some peptide drugs, especially cationic ones, unless there are cationic transporters present.  相似文献   

7.
A direct method using derivative spectrophotometry was developed for determining membrane-water molar partition coefficients (Kp) of the anticancer drugs tamoxifen (TAM) and 4-hydroxytamoxifen (OHTAM). This method explores a shift in the absorption spectra of the drugs when removed from the aqueous phase to a hydrophobic environment. Partition of TAM and OHTAM depends on membrane composition and on drug concentration, temperature and presence of cholesterol. Unlike OHTAM, partition of TAM in DMPC bilayers, liposomes of sarcoplasmic reticulum (SR) lipids and native membranes of SR and mitochondria decreases linearly with drug concentration. Additionally, the partition of these drugs is higher in SR native membranes than in liposomes of SR lipids. The partition also depends on membrane type, being higher in mitochondria than in SR membranes. Maximal partitionings in DMPC are observed at temperatures in the range of the main phase transition. Cholesterol strongly affects the incorporation of drugs and maximal inhibition was observed in DMPC bilayers.  相似文献   

8.
According to the model for passive transport across the membranes, the total flow of permeant molecules is related to the product of the water-membrane partition coefficient and the diffusion coefficient, and to the water-membrane interfacial barrier. The effect of membrane surface charge on the permeability and interaction of analgesic peptide ligands with model membranes was investigated. A mixture of zwitterionic phospholipids with cholesterol was used as a model membrane. The lipid membrane charge density was controlled by the addition of anionic 1-palmitoyl-2-oleoylphosphatidylserine. Two classes of highly potent analgesic peptides were studied, c[D-Pen2,D-Pen5]enkephalin (DPDPE) and biphalin, a dimeric analog of enkephalin. The effect of increased surface charge on the permeability of the zwitterionic DPDPE is a relatively modest decrease, that appears to be due to a diminished partition coefficient. On the other hand the binding of the dicationic biphalin ligands to membranes increases proportionally with increased negative surface charge. This effect translates into a significant reduction of biphalin permeability by reducing the diffusion of the peptide across the bilayer. These experiments show the importance of electrostatic effects on the peptide-membrane interactions and suggest that the negative charge naturally present in cell membranes may hamper the membrane transport of some peptide drugs, especially cationic ones, unless there are cationic transporters present.  相似文献   

9.
The action of beta-adrenergic blockers (propranolol, exprenolol, metoprolol, sotalol, atenolol, timolol) and calcium-channel blockers (verapamil, diltiazem) on the electrical properties and fluidity of bilayer lipid membranes (BLM and liposomes) has been investigated. When antibiotic ionophore substances were used as a probe, the electrical measurements showed that many of the drugs inhibited the cation transport across the membrane facilitated by the mobile carrier valinomycin, while having no significant effect on the cation transport through channels formed by gramicidin. The ability of the drugs to decrease the carrier-dependent membrane conductance was correlated to their partition into the lipid bilayer and the magnitude of transmembrane potential induced by them. In the TEMPO ESR spectral measurements, a number of beta-adrenergic and calcium blockers showed the fluidizing effect on liposomes composed of different lipids. The drug concentration required for a detectable change in TEMPO spectra parameter (f) was rather high (0.01 M verapamil), and the variation of pH from 6.5 to 3.0 did not affect the fluidizing effect of the drugs.  相似文献   

10.
The effect of four dopamine antagonists (spiperone, haloperidol, pimozide, and domperidone) on the lipid order of caudate nucleus microsomal membranes and on liposomes from membrane lipid extracts was evaluated and related to the partition coefficients (Kp) of the drugs. Lipid membrane order was determined by fluorescence polarization using 1,6-diphenyl-1,3,5-hexatriene (DPH) as a probe of the membrane core and 1-[4-(trimethylammonium)phenyl]-6-phenyl-1,3,5-hexatriene (TMA-DPH) as a probe of the membrane surface. Dopamine antagonists decrease the fluorescence polarization of both probes, indicating that they disorder the membrane lipids at different depths. Pimozide and domperidone, the drugs with higher Kp values, are more effective at decreasing the polarization of DPH, a probe of the membrane core, than that of TMA-DPH. In contrast, spiperone and haloperidol, which have lower values for Kp, induce more significant decreases in TMA-DPH depolarization, a probe of the membrane surface. These findings indicate that higher partition coefficients of the drugs are directly correlated with an increase of fluidity in the hydrophobic core of brain membranes. Ascorbate/Fe(2+)-induced membrane lipid peroxidation increases membrane order. Membrane lipid peroxidation decreases the partition coefficients of the dopamine antagonists tested. Increasing temperature (4-37 degrees C) decreases membrane order, but temperature effect is less evident after lipid peroxidation. The disordering effect of dopamine antagonists increases with increasing drug concentrations (1-15 microM), a maximum being observed at 10 microM. However, this effect is also less evident after membrane lipid peroxidation. We can conclude that dopamine antagonists and membrane lipid peroxidation affect membrane lipid order and that the action of these drugs is dependent on initial bilayer fluidity. Membrane lipid peroxidation increases membrane order while dopamine antagonists show a disordering effect of membrane phospholipids. This disordering effect can indirectly influence the activity of membrane proteins and it is one of the mechanisms through which membrane function can be altered by these drugs.  相似文献   

11.
Fluoroquinolones (FQ) are antibiotics widely used in clinical practise, but the development of bacterial resistance to these drugs is currently a critical public health problem. In this context, ternary copper complexes of FQ (CuFQPhen) have been studied as a potential alternative. In this study, we compared the passive diffusion across the lipid bilayer of one of the most used FQ, ciprofloxacin (Cpx), and its ternary copper complex, CuCpxPhen, that has shown previous promising results regarding antibacterial activity and membrane partition. A combination of spectroscopic studies and molecular dynamics simulations were used and two different model membranes tested: one composed of anionic phospholipids, and the other composed of zwitterionic phospholipids. The obtained results showed a significantly higher membrane permeabilization activity, larger partition, and a more favourable free energy landscape for the permeation of CuCpxPhen across the membrane, when compared to Cpx. Furthermore, the computational results indicated a more favourable translocation of CuCpxPhen across the anionic membrane, when compared to the zwitterionic one, suggesting a higher specificity towards the former. These findings are important to decipher the influx mechanism of CuFQPhen in bacterial cells, which is crucial for the ultimate use of CuFQPhen complexes as an alternative to FQ to tackle multidrug-resistant bacteria.  相似文献   

12.
Quantification of membrane partition potential of drug compounds is of great pharmaceutical interest. Here, a novel approach combining liquid-state NMR diffusion measurements and fast-tumbling lipid/detergent bicelles is used to measure accurately the partition coefficient K(p) of amantadine in phospholipid bilayers. Amantadine is found to have a strong membrane partition potential, with K(p) of 27.6 in DMPC and 37.8 in POPC lipids. Electrostatic interaction also plays a major role in the drug's affinity towards biological membrane as introduction of negatively charged POPG dramatically increases its K(p). Saturation transfer difference experiments in small bicelles indicate that amantadine localizes near the negatively charged phosphate group and the hydrocarbon chain of bilayer lipid. The approach undertaken in this study is generally applicable for characterizing interactions between small molecules and phospholipid membranes.  相似文献   

13.
Assay conditions were established to screen a panel of drugs for binding to liposome surfaces using a surface plasmon resonance (SPR) biosensor. Drugs were found to bind negligibly or reversibly or were retained on the liposome surface. Cationic amphiphilic drugs fell into the last class and correlated with drugs that induce phospholipidosis in vivo. To a first approximation, a single-site model yielded apparent binding affinities that adequately described a drug's dose-dependent binding to liposome surfaces. Affinities ranged at least 1000-fold within the drug panel. A liposome's drug-binding capacity and affinity depended on both the lipid headgroup and the drug's structure. Although a drug's charge state generally dominated whether or not it remained bound to the liposome, subtle structural differences between members of certain drug families led to them having widely differing binding affinities. A comparison between the dissociation of drugs from liposome surfaces by Biacore and the lipid retention measurements determined by a parallel artificial membrane permeability assay was drawn. The results from this study demonstrate the potential of using SPR-based assays to characterize drug/liposome-binding interactions.  相似文献   

14.
The partition coefficients (K(p)) between lipid bilayers of dimyristoyl-L-alpha-phosphatidylglycerol (DMPG) unilamellar liposomes and water were determined using derivative spectrophotometry for chlordiazepoxide (benzodiazepine), isoniazid and rifampicin (tuberculostatic drugs) and dibucaine (local anaesthetic). A comparison of the K(p) values in water/DMPG with those in water/DMPC (dimyristoyl-L-alpha-phosphatidylcholine) revealed that for chlordiazepoxide and isoniazid, neutral drugs at physiological pH, the partition coefficients are similar in anionic (DMPG) and zwitterionic (DMPC) liposomes. However, for ionised drugs at physiological pH, the electrostatic interactions are different with DMPG and DMPC, with the cationic dibucaine having a stronger interaction with DMPG, and the anionic rifampicin having a much larger K(p) in zwitterionic DMPC. These results show that liposomes are a better model membrane than an isotropic two-phase solvent system, such as water-octanol, to predict drug-membrane partition coefficients, as they mimic better the hydrophobic part and the outer polar charged surface of the phospholipids of natural membranes.  相似文献   

15.
Interactions of membrane anchored molecules such as glycolipids with a membrane surface are important in determining headgroup conformation. It is therefore essential to represent these membrane surface interactions in molecular modeling studies of glycolipids and other membrane bound molecules. We introduce here an energy term that represents the interaction of molecules with a membrane bilayer. This membrane interaction energy term has been added to the potential energy function of a molecular dynamics and mechanics program and has been parameterized using partition coefficients between an aqueous solution and a vesicular membrane for two model glycolipids.  相似文献   

16.
A small, highly aqueous soluble, deuterated, cationic spin label, 4-trimethylammonium-2,2,6,6-tetramethylpiperidine-d17-1-oxyl iodide (dCAT1), was used to directly monitor the negatively charged DMPG vesicle surface in order to test a recent suggestion (Riske et al., Chem. Phys. Lipids, 89 (1997) 31-44) that alterations in the surface potential accompanied apparent phase transitions observed by light scattering. The temperature dependence of the label partition between the lipid surface and the aqueous medium indicated an increase in the surface potential at the gel to liquid-crystal transition, supporting the previous suggestion. Results at the phase transition occurring at a higher temperature were less definitive. Although some change in the dCAT1 ESR spectra was observed, the interpretation of the phenomena is still rather unclear. DMPG surface potentials were estimated from the dCAT1 partition ratios (surface label moles/total label moles), using a simple two-sites model, where the electrostatic potential is zero everywhere but at the vesicle surface, and the interaction between the spin label and the membrane surface is chiefly electrostatic. The Gouy-Chapman-Stern model predicts surface potentials similar to those observed, although the measured decrease in the surface potential with ionic strength is somewhat steeper than that predicted by the model.  相似文献   

17.
Drug permeability determines the oral availability of drugs via cellular membranes. Poor permeability makes a drug unsuitable for further development. The permeability may be estimated as the free energy change that the drug should overcome through crossing membrane. In this paper the drug permeability was simulated using molecular dynamics method and the potential energy profile was calculated with potential of mean force (PMF) method. The membrane was simulated using DPPC bilayer and three drugs with different permeability were tested. PMF studies on these three drugs show that doxorubicin (low permeability) should pass higher free energy barrier from water to DPPC bilayer center while ibuprofen (high permeability) has a lower energy barrier. Our calculation indicates that the simulation model we built is suitable to predict drug permeability.  相似文献   

18.
Changes in membrane surface properties of hepatic peroxisomes of rats under several conditions were observed by aqueous polymer two-phase systems, which contained 6% (w/w) dextran T 500, 6% (w/w) polyethyleneglycol 4000, 250 mmol sucrose/kg and various concentrations of sodium phosphate buffer. The partition of peroxisomes into the upper phase depended to a large extent on their membrane surface charge. The cross-points of peroxisomes shifted from 5.55 to 5.25 and 5.2 after the administration of clofibrate and aspirin for 2 weeks, respectively, although that of alloxan-diabetic rat peroxisomes was not altered. The hydrophobic properties of peroxisomes, examined by means of a partition containing polyethyleneglycol monostearate, were altered by diabetes and starvation, but no change occurred in rats treated with clofibrate or aspirin. In the liver of rats fed a high-fat diet, the partition of peroxisomes was the same as that of the control. These findings indicate that hypolipidemic drugs such as clofibrate and aspirin induce the proliferation of peroxisomes and lead to the alteration of the surface charge of peroxisomal membranes. Diabetes or fasting lead to an alteration mainly of the hydrophobic properties. Both changes are probably due to alteration of content and/or composition of the proteins and the phospholipids in peroxisomal membrane under the conditions used.  相似文献   

19.
Broad substrate specificity of human P-glycoprotein (ABCB1) is an essential feature of multidrug resistance. Transport substrates of P-glycoprotein are mostly hydrophobic and many of them have net positive charge. These compounds partition into the membrane. Utilizing the energy of ATP hydrolysis, P-glycoprotein is thought to take up substrates from the cytoplasmic leaflet of the plasma membrane and to transport them to the outside of the cell. We examined this model by molecular dynamics simulation of the lipid bilayer, in the presence of transport substrates together with an atomic resolution structural model of P-glycoprotein. Taken together with previous electron paramagnetic resonance studies, the results suggest that most transported drugs are concentrated near the surface zone of the inner leaflet of the plasma membrane. Here the drugs can easily diffuse laterally into the drug-binding site of P-glycoprotein through an open cleft. It was concluded that the initial high-affinity drug-binding site was located in the interfacial surface area of P-glycoprotein in contact with the membrane interface. Based on these results and our recent kinetic studies, a “solvation exchange” drug transport mechanism of P-glycoprotein is discussed. A molecular basis for the improved colchicine transport efficiency by the much-studied colchicine-resistance G185V mutant human P-glycoprotein is also provided.  相似文献   

20.
Y Romsicki  F J Sharom 《Biochemistry》1999,38(21):6887-6896
The P-glycoprotein multidrug transporter functions as an ATP-driven efflux pump for a large number of structurally unrelated hydrophobic compounds. Substrates are believed to gain access to the transporter after partitioning into the membrane, rather than from the extracellular aqueous phase. The binding of drug substrates to P-glycoprotein may thus be modulated by the properties of the lipid bilayer. The interactions with P-glycoprotein of two drugs (vinblastine and daunorubicin) and a chemosensitizer (verapamil) were characterized by quenching of purified fluorescently labeled protein in the presence of various phospholipids. Biphasic quench curves were observed for vinblastine and verapamil, suggesting that more than one molecule of these compounds may bind to the transporter simultaneously. All three drugs bound to P-glycoprotein with substantially higher affinity in egg phosphatidylcholine (PC), compared to brain phosphatidylserine (PS) and egg phosphatidylethanolamine (PE). The nature of the lipid acyl chains also modulated binding, with affinity decreasing in the order egg PC > dimyristoyl-PC (DMPC) > dipalmitoyl-PC (DPPC). Following reconstitution of the transporter into DMPC, all three compounds bound to P-glycoprotein with 2-4-fold higher affinity in gel phase lipid relative to liquid-crystalline phase lipid. The P-glycoprotein ATPase stimulation/inhibition profiles for the drugs were also altered in different lipids, in a manner consistent with the observed changes in binding affinity. The ability of the drugs to partition into bilayers of phosphatidylcholines was determined. All of the drugs partitioned much better into egg PC relative to DMPC and DPPC. The binding affinity increased (i.e., the value of Kd decreased) as the drug-lipid partition coefficient increased, supporting the proposal that the effective concentration of the drug substrate in the membrane is important for interaction with the transporter. These results provide support for the vacuum cleaner model of P-glycoprotein action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号