首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Exposure to mustard gas causes inflammatory lung diseases including acute respiratory distress syndrome (ARDS). A defect in the lung surfactant system has been implicated as a cause of ARDS. A major component of lung surfactant is dipalmitoyl phosphatidylcholine (DPPC) and the major pathway for its synthesis is the cytidine diphosphocholine (CDP-choline) pathway. It is not known whether the ARDS induced by mustard gas is mediated by its direct effects on some of the enzymes in the CDP-choline pathway. In the present study we investigated whether mustard gas exposure modulates the activity of cholinephosphotransferase (CPT) the terminal enzyme by CDP-choline pathway. Adult guinea pigs were intratracheally infused with single doses of 2-chloroethyl ethyl sulfide (CEES) (0.5 mg/kg b.wt. in ethanol). Control animals were injected with vehicles only. The animals were sacrificed at different time and the lungs were removed after perfusion with physiological saline. CPT activity increased steadily up to 4 h and then decreased at 6 h and stabilized at 7 days in both mitochondria and microsomes. To determine the dose-dependent effect of CEES on CPT activity we varied the doses of CEES (0.5-6.0 mg/kg b.wt.) and sacrificed the animals at 1 h and 4 h. CPT activity showed a dose-dependent increase of up to 2.0 mg/kg b.wt. of CEES in both mitochondria and microsomes then decreased at 4.0 mg/kg b.wt. For further studies we used a fixed single dose of CEES (2.0 mg/kg b.wt.) and fixed exposure time (7 days). Lung injury was determined by measuring the leakage of iodinated-bovine serum albumin into lung tissue and expressed as the permeability index. CEES exposure (2.0 mg/kg b.wt. for 7 days) caused a significant decrease of both CPT gene expression (approximately 1.7-fold) and activity (approximately 1.5-fold) in the lung. This decrease in CPT activity was not associated with any mutation of the CPT gene. Previously we reported that CEES infusion increased the production of ceramides which are known to modulate PC synthesis. To determine whether ceramides affect microsomal CPT activity the lung microsomal fraction was incubated with different concentrations of C(2)-ceramide prior to CPT assay. CPT activity decreased significantly with increasing dose and time. The present study indicates that CEES causes lung injury and significantly decreases CPT gene expression and activity. This decrease in CPT activity was not associated with any mutation of the CPT gene is probably mediated by accumulation of ceramides. CEES induced ceramide accumulation may thus play an important role in the development of ARDS by modulating CPT enzyme.  相似文献   

2.
3.
We have studied in vitro the effects of ethanol on the different enzymes involved in the biosynthesis of phosphatidylcholine (PC) via CDP-choline. Ethanol alters neither choline kinase (CK) nor CTP:phosphocholine cytidylyltransferase (CT) activities but, at levels higher than 50 mM, it does significantly inhibit microsomal cholinephosphotransferase (CPT) activity concomitantly with an increase in the ethanol concentration. A study of the kinetics of the reaction catalysed by CPT shows that ethanol decreases Vmax without altering Km, indicating a non-competitive inhibitory effect. An analysis of the thermodependence of CPT activity in the absence of ethanol reveals a break in the Arrhenius plot and thus a straight relationship between enzyme activity and the physico-chemical state of the microsomal membrane. Incubation of microsomes in the presence of ethanol increased the transition temperature from 25.8–28.2°C. Microsomes were also incubated with n-alkanols with chain-lengths of fewer than five carbon atoms at concentrations which, according to their partition coefficients, produce equimolar levels in the membrane. Under these conditions all the alkanols caused the same inhibitory effect. All these results demonstrate that ethanol modulate the PC biosynthesis at the level of CPT activity and does not affect the CT enzyme. The inhibition found on CPT is clearly dependent on the alteration produced by ethanol on the hepatic microsomal membrane.  相似文献   

4.
Summary The mitochondrial fraction of adult rat lung contains choline phosphotransferase (EC 2.7.8.2) activity which can not be explained by microsomal contamination estimated on the basis of marker enzyme distribution. Mitochondrial (14C)glycerol-3-phosphate incorporation into PC (phosphatidylcholine) can be distinguished from the microsomal incorporation by different sensitivity to N-ethylmaleimide inhibition. The data indicate that rat lung mitochondria have the intrinsic capability to synthesize PC. Both synthesis of PC and PG (phosphatidylglycerol) are susceptible to isotonic tryptic attack against the cytoplasmic face of isolated rat lung mitochondria, suggesting the outer membrane location of crucial activities involved in the formation of these phospholipids. Rat liver mitochondria are different from rat lung mitochondria with respect to their capability to synthesize PC, their rate of (14C)glycerol-3-phosphate incorporation into PG as well as the submitochondrial site of PG formation.Abbreviations PC Phosphatidylcholine - PG Phosphatidylglycerol - PA Phosphatidic Acid - DPG Diphosphatidylglycerol (cardiolipin) - CPT Choline Phosphotransferase (EC 2.7.8.2) - SEM Standard Error of Mean  相似文献   

5.
Summary We have reported earlier that cholinephosphotransferase (EC 2.7.8.2) is present in both mitochondria and microsomes of fetal guinea pig lung. This study was designed to compare the properties of mitochondrial and microsomal cholinephosphotransferase in fetal guinea pig lung. Various parameters, such as substrate specificity, Km values, sensitivity to N-ethylmaleimide, dithiothreitol and trypsin were measured. Both showed significant preference for unsaturated diacylglycerols over saturated diacylglycerols. Data on Km and Vmax indicate that the affinity of this enzyme for different diacylglycerols varies between the two forms. The ID50 values for N-ethylmaleimide were 20 mM and 12.5 mM for the mitochondrial and microsomal form of the enzyme, respectively. Dithiothreitol showed an inhibitory effect on both; however, the mitochondrial form was inhibited less than the microsomal form. The effects of N-ethylmaleimide and dithiothreitol on both forms of enzyme indicated that the microsomal cholinephosphotransferase requires a higher concentration of -SH for its activity than the mitochondrial enzyme does. The enzyme was inhibited by trypsin in both mitochondria and microsome under isotonic condition suggesting that this enzyme is on the outside of the membrane in both endoplasmic reticulum and mitochondria.  相似文献   

6.
CPT1c is a carnitine palmitoyltransferase 1 (CPT1) isoform that is expressed only in the brain. The enzyme has recently been localized in neuron mitochondria. Although it has high sequence identity with the other two CPT1 isoenzymes (a and b), no CPT activity has been detected to date. Our results indicate that CPT1c is expressed in neurons but not in astrocytes of mouse brain sections. Overexpression of CPT1c fused to the green fluorescent protein in cultured cells demonstrates that CPT1c is localized in the endoplasmic reticulum rather than mitochondria and that the N-terminal region of CPT1c is responsible for endoplasmic reticulum protein localization. Western blot experiments with cell fractions from adult mouse brain corroborate these results. In addition, overexpression studies demonstrate that CPT1c does not participate in mitochondrial fatty acid oxidation, as would be expected from its subcellular localization. To identify the substrate of CPT1c enzyme, rat cDNA was overexpressed in neuronal PC-12 cells, and the levels of acylcarnitines were measured by high-performance liquid chromatography-mass spectrometry. Palmitoylcarnitine was the only acylcarnitine to increase in transfected cells, which indicates that palmitoyl-CoA is the enzyme substrate and that CPT1c has CPT1 activity. Microsomal fractions of PC-12 and HEK293T cells overexpressing CPT1c protein showed a significant increase in CPT1 activity of 0.57 and 0.13 nmol.mg(-1).min(-1), respectively, which is approximately 50% higher than endogenous CPT1 activity. Kinetic studies demonstrate that CPT1c has similar affinity to CPT1a for both substrates but 20-300 times lower catalytic efficiency.  相似文献   

7.
Lamellar inclusion bodies in the type II alveolar epithelial cell are believed to be involved in pulmonary surfactant production. However, it is not clear whether their role is that of synthesis, storage, or secretion. We have examined the phospholipid composition and fatty acid content of rabbit lung wash, lamellar bodies, mitochondria, and microsomes. Phosphatidylcholine and phosphatidylglycerol, the surface-active components of pulmonary surfactant, accounted for over 80% of the total phospholipid in lung wash and lamellar bodies but for only about 50% in mitochondria and microsomes. Phosphatidylethanolamine, phosphatidylinositol, phosphatidylserine, and sphingomyelin accounted for over 40% of the total in mitochondria and microsomes but for only 6% in lung wash and 15% in lamellar bodies. The fatty acid composition of lamellar body phosphatidylcholine was similar to that of lung wash, but different from that of mitochondria and microsomes, in containing palmitic acid as a major component with little stearic acid and few fatty acids of chain length greater than 18 carbon atoms. The biosynthesis of phosphatidylcholine and phosphatidylglycerol was examined in the mitochondrial, microsomal, and lamellar body fractions from rat lung. Cholinephosphotransferase was largely microsomal. The activity in the lamellar body fraction could be attributed to microsomal contamination. The activity of glycerolphosphate phosphatidyltransferase, however, was high in the lamellar body fraction, although it was highest in the mitochondria and was also active in the microsomes. These data suggest that the lamellar bodies are involved both in the storage of the lipid components of surfactant and in the synthesis of at least one of those components, phosphatidylglycerol.  相似文献   

8.
The release of carnitine palmitoyltransferase (CPT) activity from rat liver mitochondria by increasing concentrations of digitonin was studied for mitochondrial preparations from fed, 48 h-starved and diabetic animals. A bimodal release of activity was observed only for mitochondria isolated from starved and, to a lesser degree, from diabetic rats, and it appeared to result primarily from the enhanced release of approx. 40% and 60%, respectively, of the total CPT activity. This change in the pattern of release was specific to CPT among the marker enzymes studied. For all three types of mitochondria there was no substantial release of CPT concurrently with that of the marker enzyme for the soluble intermembrane space, adenylate kinase. These results illustrate that the bimodal pattern of release of CPT reported previously for mitochondria from starved rats [Bergstrom & Reitz (1980) Arch. Biochem. Biophys. 204, 71-79] is not an immutable consequence of the localization of CPT activity on either side of the mitochondrial inner membrane. Sequential loss of CPT I (i.e. the overt form) from the mitochondrial inner membrane did not affect the concentration of malonyl-CoA required to effect fractional inhibition of the CPT I that remained associated with the mitochondria. The results are discussed in relation to the possibility that altered enzyme-membrane interactions may account for some of the altered regulatory properties of CPT I in liver mitochondria of animals in different physiological states.  相似文献   

9.
The cytochrome P-450-dependent 20-monooxygenation of ecdysone is catalyzed both by mitochondria and microsomes isolated from Musca domestica (L.) larvae; however, about 50% of the activity is associated with mitochondria, and 37% is associated with microsomes. Pretreatment of larvae with ecdysone results in an increase in Vmax and a decrease in Km values in mitochondria but not in microsomes. Phenobarbital, a known cytochrome P-450 inducer, increases the cytochrome P-450 levels in microsomes without affecting the 20-monooxygenase activity, but both the cytochrome P-450 levels and monooxygenase activity are depressed in mitochondria from phenobarbital-pretreated larvae. The ecdysone 20-monooxygenase activity is equally distributed between mitochondria and microsomes in adult insects. Pretreatment of the insects with ecdysone does not significantly modify the 20-monooxygenase activity of either mitochondrial or microsomal fractions, but the cytochrome P-450 levels are reduced in mitochondria. Phenobarbital also depresses the mitochondrial cytochrome P-450 levels while markedly increasing the microsomal cytochrome P-450 levels. However, no significant changes in ecdysone 20-monooxygenase activity are produced by phenobarbital pretreatment. The effects of ecdysone on adult cytochrome P-450 are mostly evidenced in mitochondria isolated from females, whereas in males the changes are not statistically significant. It is concluded that the mitochondrial ecdysone 20-monooxygenase is under regulatory control by ecdysone in the larval stage, which suggests that only the mitochondrial activity has a physiological role during insect development in M. domestica. In adults, both the mitochondrial and microsomal ecdysone 20-monooxygenase activities are not responsive to ecdysone, which, coupled to their high Km values, indicates that the reaction may not be of physiological importance in adult insects and that the mitochondrial cytochrome P-450 species being depressed by ecdysone in females are possibly not involved in ecdysone metabolism.  相似文献   

10.
A 20-year-old man was shown to have a deficiency of carnitine palmitoyltransferase (CPT) II in skeletal muscle. The evidence was: (i) there was no significant oxidation of [9,10-3H]-palmitate or of [1-14C]palmitate in mitochondrial fractions from fresh skeletal muscle from the patient; (ii) all the CPT activity in a homogenate of fresh muscle from the patient was overt (CPT I) with no increase in activity after the inner membrane was disrupted; (iii) all the CPT activity in the patient's muscle was inhibited by malonyl-CoA; and (iv) an immunoreactive peptide of 67 kDa corresponding to CPT II, present in mitochondria from controls, was absent in those from the patient.  相似文献   

11.
A microsomal protein having N-terminal amino acid sequence SDVLELTDEN, was initially described as a phosphatidyl inositol-specific phospholipase C when its cDNA was cloned (Bennettet al., Nature, 334, 268, 1988). Later, this protein, with an estimated molecular mass of 54 to 60 kDa, was shown to lack the phospholipase activity and instead a protein disulfide oxidoreductase and a thiol protease activities were ascribed to it. Following evidences indicated that the protein in question is the carnitine medium/long chain acyltransferase (CPT) of microsomes that was recently purified as a 54 kDa protein (Murthy and Bieber, Protein Exp. Purif. 3, 75, 1992). First, the N-terminal amino acids of the microsomal CPT showed 100% homology to the sequence described above. Second, during purification of this CPT, the oxidoreductase and the thiol protease activities of the microsomes became separated from the CPT and these other activities were not found in the 900 fold enriched CPT preparations. Third, an antibody to this protein did not immunoprecipitate oxidoreductase of the solubilized microsomal extract but precipitated the CPT. This same protein has been studied by others as the ERp61 (endoplasmic reticulum protein), GRP58 (glucose regulated protein), and HIP-70 (hormone induced protein) but its function was not identified.  相似文献   

12.
Carnitine-dependent transport of fatty acids into mitochondria is believed to require participation of two carnitine palmitoyltransferase (CPT) activities, one outer, overt (CPTo) and the other inner, latent (CPTi). For exposing the CPTi and monitoring of the total CPT activity, freeze-thawing and sonication have been frequently employed as membrane-disruptive procedures, particularly when examining for CPT-deficiency diseases. Our evaluations have shown, however, that freeze-thawing and sonication yield misleading data for both the CPT activities owing to their previously unrecognized masking and unmasking effects on CPT activities. Formation of vesicular/sheath structures with mixed membrane orientation that prevents the access of medium substrate to enzymes on both aspects of the membrane at the same time appears responsible for these results. That such procedures can yield inexact data when monitoring the latency and sidedness of other membrane-bound biocatalysts as well needs to be recognized. We show that in muscle mitochondria also, a malonyl-CoA-inhibitable CPTo activity resides in the outer membrane, while a malonyl-CoA-insensitive, CPTi, activity is present in the inner membrane. Our results rationalize why Zierz and Engel ((1987) Neurology 37, 1785) were unable to obtain evidences for a latent CPT activity in mitochondria particularly of muscles. Although simple methods to allow an unambiguous quantitation of the two CPT activities in tissue extracts remain unavailable, evaluation of the possibility that two different CPT deficiencies occur appears justified.  相似文献   

13.
The degree of inhibition of CPT I (carnitine palmitoyltransferase, EC 2.3.1.21) in isolated rat liver mitochondria by malonyl-CoA was studied by measuring the activity of the enzyme over a short period (15s) after exposure of the mitochondria to malonyl-CoA for different lengths of time. Inhibition of CPT I by malonyl-CoA was markedly time-dependent, and the increase occurred at the same rate in the presence or absence of palmitoyl-CoA (80 microM), and in the presence of carnitine, such that the time-course of acylcarnitine formation deviated markedly from linearity when CPT I activity was measured in the presence of malonyl-CoA over several minutes. The initial rate of increase in degree of inhibition with time was independent of malonyl-CoA concentration. CPT I in mitochondria from 48 h-starved rats had a lower degree of inhibition by malonyl-CoA at zero time, but was equally capable of being sensitized to malonyl-CoA, as judged by an initial rate of increase of inhibition identical with that of the enzyme in mitochondria from fed rats. Double-reciprocal plots for the degree of inhibition produced by different malonyl-CoA concentrations at zero time for the enzyme in mitochondria from fed or starved animals indicated that the enzyme in the latter mitochondria was predominantly in a state with low affinity for malonyl-CoA (concentration required to give 50% inhibition, I0.5 congruent to 10 microM), whereas that in mitochondria from fed rats displayed two distinct sets of affinities: low (congruent to 10 microM) and high (less than 0.3 microM). Plots for mitochondria after incubation for 0.5 or 1 min with malonyl-CoA indicated that the increased sensitivity observed with time was due to a gradual increase in the high-affinity state in both types of mitochondria. These results suggest that the sensitivity of CPT I in rat liver mitochondria in vitro had two components: (i) an instantaneous sensitivity inherent to the enzyme which depends on the nutritional state of the animal from which the mitochondria are isolated, and (ii) a slow, malonyl-CoA-induced, time-dependent increase in sensitivity. It is suggested that the rate of malonyl-CoA-induced sensitization of the enzyme to malonyl-CoA inhibition is limited by a slow first-order process, which occurs after the primary event of interaction of malonyl-CoA with the mitochondria.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
Carnitine palmitoyltransferase I (CPT I) is considered the rate-limiting enzyme in the transfer of long-chain fatty acids (LCFA) into the mitochondria and is reversibly inhibited by malonyl-CoA (M-CoA) in vitro. In rat skeletal muscle, M-CoA levels decrease during exercise, releasing the inhibition of CPT I and increasing LCFA oxidation. However, in human skeletal muscle, M-CoA levels do not change during moderate-intensity exercise despite large increases in fat oxidation, suggesting that M-CoA is not the sole regulator of increased CPT I activity during exercise. In the present study, we measured CPT I activity in intermyofibrillar (IMF) and subsarcolemmal (SS) mitochondria isolated from human vastus lateralis (VL), rat soleus (Sol), and red gastrocnemius (RG) muscles. We tested whether exercise-related levels ( approximately 65% maximal O2 uptake) of calcium and adenylate charge metabolites (free AMP, ADP, and Pi) could override the M-CoA-induced inhibition of CPT I activity and explain the increased CPT I flux during exercise. Protein content was approximately 25-40% higher in IMF than in SS mitochondria in all muscles. Maximal CPT I activity was similar in IMF and SS mitochondria in all muscles (VL: 282 +/- 46 vs. 280 +/- 51; Sol: 390 +/- 81 vs. 368 +/- 82; RG: 252 +/- 71 vs. 278 +/- 44 nmol.min-1.mg protein-1). Sensitivity to M-CoA did not differ between IMF and SS mitochondria in all muscles (25-31% inhibition in VL, 52-70% in Sol and RG). Calcium and adenylate charge metabolites did not override the M-CoA-induced inhibition of CPT I activity in mitochondria isolated from VL, Sol, and RG muscles. Decreasing pH from 7.1 to 6.8 reduced CPT I activity by approximately 34-40% in both VL mitochondrial fractions. In summary, this study reports no differences in CPT I activity or sensitivity to M-CoA between IMF and SS mitochondria isolated from human and rat skeletal muscles. Exercise-induced increases in calcium and adenylate charge metabolites do not appear responsible for upregulating CPT I activity in human or rat skeletal muscle during moderate aerobic exercise.  相似文献   

15.
1. The kinetic properties of overt carnitine palmitoyltransferase (CPT I, EC 2.3.1.21) were studied in rat liver mitochondria isolated from untreated, diabetic and insulin-treated diabetic animals. A comparison was made of the time courses required for the changes in these properties of CPT I to occur and for the development of ketosis during the induction of chronic diabetes and its reversal by insulin treatment. 2. The development of hyperketonaemia over the first 5 days of insulin withdrawal from streptozotocin-treated rats was accompanied by parallel increases in the activity of CPT I and in the I0.5 (concentration required to produce 50% inhibition) of the enzyme for malonyl-CoA. 3. The rapid reversal of the ketotic state by treatment of chronically diabetic rats with 6 units of regular insulin was not accompanied by any change in the properties of CPT I over the first 4 h. Higher doses of insulin (15 units), delivered throughout a 4 h period, resulted in an increase in the affinity of CPT I for malonyl-CoA, but the sensitivity of the enzyme to the inhibitor was still significantly lower than in mitochondria from normal animals. 4. Conversely, when insulin treatment was continued over a 24 h period, full restoration of the sensitivity of the enzyme to malonyl-CoA was achieved. However, the activity of the enzyme was only decreased marginally. 5. These results are discussed in terms of the possibility that the major regulatory sites of the rate of hepatic oxidation may vary in different phases of the induction and reversal of chronic diabetes.  相似文献   

16.
Carnitine palmitoyltransferase 1 (CPT1) catalyzes the first step in long-chain fatty acid import into mitochondria, and it is believed to be rate limiting for β-oxidation of fatty acids. However, in muscle, other proteins may collaborate with CPT1. Fatty acid translocase/CD36 (FAT/CD36) may interact with CPT1 and contribute to fatty acid import into mitochondria in muscle. Here, we demonstrate that another membrane-bound fatty acid binding protein, fatty acid transport protein 1 (FATP1), collaborates with CPT1 for fatty acid import into mitochondria. Overexpression of FATP1 using adenovirus in L6E9 myotubes increased both fatty acid oxidation and palmitate esterification into triacylglycerides. Moreover, immunocytochemistry assays in transfected L6E9 myotubes showed that FATP1 was present in mitochondria and coimmunoprecipitated with CPT1 in L6E9 myotubes and rat skeletal muscle in vivo. The cooverexpression of FATP1 and CPT1 also enhanced mitochondrial fatty acid oxidation, similar to the cooverexpression of FAT/CD36 and CPT1. However, etomoxir, an irreversible inhibitor of CPT1, blocked all these effects. These data reveal that FATP1, like FAT/CD36, is associated with mitochondria and has a role in mitochondrial oxidation of fatty acids.  相似文献   

17.
Abo-Hashema KA  Cake MH  Lukas MA  Knudsen J 《Biochemistry》1999,38(48):15840-15847
Mitochondrial carnitine palmitoyltransferase I (CPT I) and microsomal carnitine acyltransferase I (CAT I) regulate the entry of fatty acyl moieties into their respective organelles. Thus, CPT I and CAT I occupy prominent positions in the pathways responsible for energy generation in mitochondria and the assembly of VLDL in the endoplasmic reticulum, respectively. Previous attempts to determine the intrinsic kinetic properties of CPT I and CAT I have been hampered by the occurrence of sigmoidal velocity curves. This was overcome, in this study, by the inclusion of recombinant acyl-CoA binding protein in the assay medium. For the first time, we have determined the concentrations of total functional enzyme (E(t)) by specific radiolabeling of the active site, the dissociation constants (K(d)) and the turnover numbers of CPT I and CAT I toward the CoA esters of oleic acid (C18:1) and docosahexaenoic acid (C22:6). The data show that carnitine inhibits CAT I at physiological concentrations which are not inhibitory to CPT I. Thus, carnitine concentration is likely to be a significant factor in determining the partitioning of acyl-CoAs between mitochondria and microsomes, a role which has not been previously recognized. Moreover, the finding that CAT I elicits a lower turnover toward the CoA ester of C22:6 (25 s(-)(1)) than toward that of C18:1 (111 s(-)(1)), while having similar K(d) values, suggests the use of this polyunsaturated fatty acid to inhibit VLDL biosynthesis.  相似文献   

18.
Lung mitochondria were isolated by differential centrifugation from pentobarbital-anesthetized male rats. One to three millimolar Mg2+-ATP increased the consumption of oxygen of lung mitochondria oxidizing 10 mM succinate > fourfold (P < 0.01) whereas ATP increased the respiration of liver mitochondria by < 35%. ATP also hyperpolarized partially uncoupled lung mitochondria in the presence of the mitochondria-specific antagonist, oligomycin. However, only 20% of the ATPase activity in the lung mitochondria was blocked by oligomycin compared to a blockade of 91% for liver mitochondria. We investigated the effect of reducing the non-mitochondrial ATPase activity in the lung preparation. A purer suspension of lung mitochondria from a Percoll gradient was inhibited 95% by oligomycin. The volume fraction identified as mitochondria by electron microscopy in this suspension (73.6± 3.5%) did not differ from that for liver mitochondria (69.1± 4.9%). ATP reduced the mean area of the mitochondrial profiles in this Percoll fraction by 15% (P <0.01) and increased its state 3 respiration with succinate as substrate by 1.5-fold (P < 0.01) with no change in the state 4 respiration measured after carboxyatractyloside. Hence, ATP increased the respiratory control ratio (state 3/state 4, P <0.01). In contrast, state 3 respiration with the complex 1-selective substrates, glutamate and malate, did not change with addition of ATP. The acceleration of respiration by ATP was accompanied by decreased production of H2O2. Thus ATP-dependent processes that increase respiration appear to improve lung mitochondrial function while minimizing the release of reactive oxygen species.  相似文献   

19.
Carnitine palmitoyltransferase 1 (CPT1) C was the last member of the CPT1 family of genes to be discovered. CPT1A and CPT1B were identified as the gate-keeper enzymes for the entry of long-chain fatty acids (as carnitine esters) into mitochondria and their further oxidation, and they show differences in their kinetics and tissue expression. Although CPT1C exhibits high sequence similarity to CPT1A and CPT1B, it is specifically expressed in neurons (a cell-type that does not use fatty acids as fuel to any major extent), it is localized in the endoplasmic reticulum of cells, and it has minimal CPT1 catalytic activity with l-carnitine and acyl-CoA esters. The lack of an easily measurable biological activity has hampered attempts to elucidate the cellular and physiological role of CPT1C but has not diminished the interest of the biomedical research community in this CPT1 isoform. The observations that CPT1C binds malonyl-CoA and long-chain acyl-CoA suggest that it is a sensor of lipid metabolism in neurons, where it appears to impact ceramide and triacylglycerol (TAG) metabolism. CPT1C global knock-out mice show a wide range of brain disorders, including impaired cognition and spatial learning, motor deficits, and a deregulation in food intake and energy homeostasis. The first disease-causing CPT1C mutation was recently described in humans, with Cpt1c being identified as the gene causing hereditary spastic paraplegia. The putative role of CPT1C in the regulation of complex-lipid metabolism is supported by the observation that it is highly expressed in certain virulent tumor cells, conferring them resistance to glucose- and oxygen-deprivation. Therefore, CPT1C may be a promising target in the treatment of cancer. Here we review the molecular, biochemical, and structural properties of CPT1C and discuss its potential roles in brain function, and cancer.  相似文献   

20.
Carnitine palmitoyltransferase I (CPT I), which is expressed as two distinct isoforms in liver (alpha) and muscle (beta), catalyzes the rate-limiting step in the transport of fatty acid into the mitochondria. Malonyl-CoA, a potent inhibitor of CPT I, is considered a key regulator of fatty acid oxidation in both tissues. Still unanswered is how muscle beta-oxidation proceeds despite malonyl-CoA concentrations that exceed the IC(50) for CPT Ibeta. We evaluated malonyl-CoA-suppressible [(14)C]palmitate oxidation and CPT I activity in homogenates of red (RG) and white (WG) gastrocnemius, soleus (SOL), and extensor digitorum longus (EDL) muscles. Adding 10 microM malonyl-CoA inhibited palmitate oxidation by 29, 39, 60, and 89% in RG, SOL, EDL, and WG, respectively. Thus malonyl-CoA resistance, which correlated strongly (0.678) with absolute oxidation rates (RG > SOL > EDL > WG), was greater in red than in white muscles. Similarly, malonyl-CoA-resistant palmitate oxidation and CPT I activity were greater in mitochondria from RG compared with WG. Ribonuclease protection assays were performed to evaluate whether our data might be explained by differential expression of CPT I splice variants. We detected the presence of two CPT Ibeta splice variants that were more abundant in red compared with white muscle, but the relative expression of the two mRNA species was unrelated to malonyl-CoA resistance. These results provide evidence of a malonyl-CoA-insensitive CPT I activity in red muscle, suggesting fiber type-specific expression of distinct CPT I isoforms and/or posttranslational modulations that have yet to be elucidated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号