首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is believed that habitat heterogeneity can change the extent of predator-prey interactions. Therefore, in this study we examined the effect of habitat heterogeneity (characterized here as an addition of refuge) on D. ater predation on M. domestica. Predation of D. ater on M. domestica larvae was carried out in experimental habitats with and without refuge, and examined at different prey densities. The number of prey eaten by beetles over 24 h of predator-prey interaction was recorded, and we investigated the strength of interaction between prey and predator in both experimental habitats by determining predator functional response. The mean number of prey eaten by beetles in the presence of refuge was significantly higher than in the absence of refuge. Females had greater weight gains than males. Logistic regression analyses revealed the type II functional response for both experimental habitats, even though data did not fit well into the random predator model. Results suggest that the addition of refuge in fact enhanced predation, as prey consumption increased in the presence of refuge. Predators kept in the presence of refuge also consumed more prey at high prey densities. Thus, we concluded that the addition of refuge was an important component mediating D. ater-M. domestica population interactions. Refuge actually acted as a refuge for predators from prey, since prey behaviors detrimental to predators were reduced in this case.  相似文献   

2.
Gunzburger MS  Travis J 《Oecologia》2004,140(3):422-429
The effect of a predator on the abundance of a prey species depends upon the predators abundance and its ability to capture that prey. The objectives of this research were to evaluate the community structure of predators of green treefrog (Hyla cinerea) tadpoles across habitat types and evaluate the effectiveness of individual predators on H. cinerea tadpoles. Correspondence and cluster analyses of predator frequencies across 23 aquatic habitats indicated that the majority of variance in predator communities was due to a division between permanent and temporary habitats. Experimental work demonstrated that survival of the smallest H. cinerea tadpoles was significantly lower than survival of medium and large tadpoles with the most effective predators, indicating that H. cinerea tadpoles attain a refuge from predation at larger body sizes. We combined the effectiveness of predators in experiments with the abundance of each predator species from the predator community survey to demonstrate that predation pressure on H. cinerea tadpoles is higher in temporary ponds. This pattern may explain in part why this species generally breeds successfully only in permanent habitats. It also confirms that discussions about an increasing gradient of predation pressure from temporary to permanent aquatic habitats should be restricted to individual prey species for which such a gradient has been demonstrated.  相似文献   

3.
The introduction of non-native predators is thought to have important negative effects on native prey populations. The susceptibility of native prey to non-native or introduced predators may depend on their ability to respond appropriately to the presence of these non-native predators. We conducted a laboratory based behavioral experiment to examine the response of American toad (Bufo americanus) and bullfrog (Rana catesbeiana) tadpoles to the presence of cues from the introduced mosquitofish (Gambusia affinis), a potential tadpole predator. Neither the American toad tadpoles nor the bullfrog tadpoles responded behaviorally to the presence of mosquitofish cues. If tadpoles are unable to respond to the presence of mosquitofish cues appropriately, then their ability to avoid predation by mosquitofish may be compromised and this may contribute to the impacts of mosquitofish on some tadpole populations.  相似文献   

4.
Sympatric black bears (Ursus americanus) and brown bears (Ursus arctos) are common in many boreal systems; however, few predator assemblages are known to coexist on a single seasonally abundant large prey item. In lowland southwestern interior Alaska, black bears and brown bears are considered the primary cause of moose (Alces alces) calf mortality during the first 6 weeks of life. The objective of this study was to document habitat use of global-positioning system (GPS)-collared black bears during peak and non-peak seasons of black bear-induced and brown bear-induced moose calf mortality within southwestern interior Alaska, in spring 2002. We compared habitats of GPS-collared black bears to those of presumably uncollared black bears and brown bears at their moose calf mortality sites. Results from this study suggest that GPS-collared black bears use similar habitat as conspecifics more than expected during the peak period of black bear predation on moose calves, whereas they use habitat in proportion to home range availability during the peak in brown bear predation on moose calves. Sex-specific Ivlev's electivity indices describe greater than expected use of mixed-deciduous forest and needleleaf forest by male GPS-collared black bears during the peak of moose calf predation, whereas females have a tendency to use these habitats less than expected. Juvenile GPS-collared black bears largely use the same habitat as other sympatric predators during the peak of moose calf predation, whereas during the non-peak period juveniles use opposite habitats as adult GPS-collared black bears. The outcome of this study offers possible explanations (e.g., sex, age) for spatial overlap or segregation in one member of a complex predator guild in relation to a seasonal pulse of preferred prey.  相似文献   

5.
Mills MD  Rader RB  Belk MC 《Oecologia》2004,141(4):713-721
We suggest that the ultimate outcome of interactions between native species and invasive species (extinction or coexistence) depends on the number of simultaneous negative interactions (competition and predation), which depends on relative body sizes of the species. Multiple simultaneous interactions may constrain the ability of native species to trade fitness components (i.e., reduced growth for reduced risk of predation) causing a spiral to extinction. We found evidence for five types of interactions between the adults and juveniles of introduced western mosquitofish (Gambusia affinis) and the juveniles of native least chub (Iotichthys phlegethontis). We added ten large (23–28 mm) and seven small (9–13 mm) young-of-the-year (YOY) least chub to replicate enclosures with zero, low, and high densities of mosquitofish in a desert spring ecosystem. Treatments with mosquitofish reduced the average survival of least chub by one-third. No small YOY least chub survived in enclosures with high mosquitofish densities. We also performed two laboratory experiments to determine mortality to predation, aggressiveness, and habitat selection of least chub in the presence of mosquitofish. Mean mortality of least chub due to predation by large mosquitofish was 69.7% over a 3-h trial. Least chub were less aggressive, selected protected habitats (Potamogeton spp.), and were more stationary in the presence of mosquitofish where the dominance hierarchy was large mosquitofish>>large least chubsmall mosquitofish>>small least chub. Least chub juveniles appear to be figuratively caught in a vice. Rapid growth to a size refuge could reduce the risk of predation, but the simultaneous effects of competition decreased least chub growth and prolonged the period when juveniles were vulnerable to mosquitofish predation.  相似文献   

6.
Alto BW  Griswold MW  Lounibos LP 《Oecologia》2005,146(2):300-310
Studies in aquatic systems have shown that habitat complexity may provide refuge or reduce the number of encounters prey have with actively searching predators. For ambush predators, habitat complexity may enhance or have no effect on predation rates because it conceals predators, reduces prey detection by predators, or visually impairs both predators and prey. We investigated the effects of habitat complexity and predation by the ambush predators Toxorhynchites rutilus and Corethrella appendiculata on their mosquito prey Aedes albopictus and Ochlerotatus triseriatus in container analogs of treeholes. As in other ambush predator-prey systems, habitat complexity did not alter the effects of T. rutilus or C. appendiculata whose presence decreased prey survivorship, shortened development time, and increased adult size compared to treatments where predators were absent. Faster growth and larger size were due to predator-mediated release from competition among surviving prey. Male and female prey survivorship were similar in the absence of predators, however when predators were present, survivorship of both prey species was skewed in favor of males. We conclude that habitat complexity is relatively unimportant in shaping predator-prey interactions in this treehole community, where predation risk differs between prey sexes.  相似文献   

7.
Finke DL  Denno RF 《Oecologia》2006,149(2):265-275
The ability of predators to elicit a trophic cascade with positive impacts on primary productivity may depend on the complexity of the habitat where the players interact. In structurally-simple habitats, trophic interactions among predators, such as intraguild predation, can diminish the cascading effects of a predator community on herbivore suppression and plant biomass. However, complex habitats may provide a spatial refuge for predators from intraguild predation, enhance the collective ability of multiple predator species to limit herbivore populations, and thus increase the overall strength of a trophic cascade on plant productivity. Using the community of terrestrial arthropods inhabiting Atlantic coastal salt marshes, this study examined the impact of predation by an assemblage of predators containing Pardosa wolf spiders, Grammonota web-building spiders, and Tytthus mirid bugs on herbivore populations (Prokelisia planthoppers) and on the biomass of Spartina cordgrass in simple (thatch-free) and complex (thatch-rich) vegetation. We found that complex-structured habitats enhanced planthopper suppression by the predator assemblage because habitats with thatch provided a refuge for predators from intraguild predation including cannibalism. The ultimate result of reduced antagonistic interactions among predator species and increased prey suppression was enhanced conductance of predator effects through the food web to positively impact primary producers. Behavioral observations in the laboratory confirmed that intraguild predation occurred in the simple, thatch-free habitat, and that the encounter and capture rates of intraguild prey by intraguild predators was diminished in the presence of thatch. On the other hand, there was no effect of thatch on the encounter and capture rates of herbivores by predators. The differential impact of thatch on the susceptibility of intraguild and herbivorous prey resulted in enhanced top-down effects in the thatch-rich habitat. Therefore, changes in habitat complexity can enhance trophic cascades by predator communities and positively impact productivity by moderating negative interactions among predators.  相似文献   

8.
Johan Ahlgren  Christer Brönmark 《Oikos》2012,121(9):1501-1506
Prey species are often exposed to multiple predators, which presents several difficulties to prey species. This is especially true when the response to one predator influences the prey’s susceptibility to other predators. Predator‐induced defences have evolved in a wide range of prey species, and experiments involving predators with different hunting strategies allow researchers to evaluate how prey respond to multiple threats. Freshwater snails are known to respond to a variety of predators with both morphological and behavioural defences. Here we studied how freshwater snails Radix balthica responded behaviourally to fish and leech predators, both separately and together. Our aim was to explore whether conflicting predator‐induced responses existed and, if so, what effect they had on snail survival when both predatory fish and leeches were present. We found that although R. balthica increased refuge use when exposed to predatory fish, they decreased refuge use when exposed to predatory leeches. When both predators were present, snails showed a stronger response towards leech than fish and responded by leaving the refuge. This response made the snails more susceptible to fish predation, which increased snail mortality when exposed to both fish and leech compared to fish only. We show that predators that have a relatively low predation rate can substantially increase mortality rates by indirect effects. By forcing snails out of refuges such as rock and macrophyte habitats, leeches can indirectly increase predation from molluscivorous fish and may thus affect snail densities.  相似文献   

9.
Conspecific prey individuals often exhibit persistent differences in behavior (i.e., animal personality) and consequently vary in their susceptibility to predation. How this form of selection varies across environmental contexts is essential to predicting ecological and evolutionary dynamics, yet remains currently unresolved. Here, we use three separate predator–prey systems (sea star–snail, wolf spider–cricket, and jumping spider–cricket) to independently examine how habitat structural complexity influences the selection that predators impose on prey behavioral types. Prior to conducting staged predator–prey interaction encounters, we ran prey individuals through multiple behavioral assays to determine their average activity level. We then allowed individual predators to interact with groups of prey in either open or structurally complex habitats and recorded the number and individual identity of prey that were eaten. Habitat complexity had no effect on overall predation rates in any of the three predator–prey systems. Despite this, we detected a pervasive interaction between habitat structure and individual prey activity level in determining individual prey survival. In open habitats, all predators imposed strong selection on prey behavioral types: sea stars preferentially consumed sedentary snails, while spiders preferentially consumed active crickets. Habitat complexity dampened selection within all three systems, equalizing the predation risk that active and sedentary prey faced. These findings suggest a general effect of habitat complexity that reduces the importance of prey activity level in determining individual predation risk. We reason this occurs because activity level (i.e., movement) is paramount in determining risk within open environments, whereas in complex habitats, other behavioral traits (e.g., escape ability to a refuge) may take precedence.  相似文献   

10.
Weed seed biocontrol by omnivorous mice and insects can limit weed seedbanks, but this ecosystem service can be difficult to predict given the broad diet breadth of seed predators and their potential for intraguild predation. Seed foraging behavior is further modified by fluctuating cues of predation risk from higher trophic levels and the availability of refuge habitat. Uncertainty about whether co-occurring insects and mice additively contribute to weed biocontrol or interfere with each other via intraguild predation limits our ability to recommend habitat management strategies that reliably promote seed destruction. Using seed removal assays, fluorescent powder tracking, and stable isotope analyses, we assessed effects of a predation risk cue (moonlight) on mouse foraging patterns in a patchwork of vegetated and exposed plots in a cultivated field. Mouse foraging activity decreased on exposed ground during the full moon, compared to dark nights, yet foraging movements were unaffected by moon cycle within refuge patches. Weed seed consumption was more than three times higher in cover than exposed soil, and 78% of that difference was attributable to invertebrate granivores. Mice and invertebrate granivores both exhibited higher foraging activity in cover, indicating co-occurrence of intraguild predators and prey. However, stable isotope analyses of fecal samples revealed that mice captured in refuge habitats fed at slightly lower trophic levels than those in exposed habitats (suggesting minimal intraguild predation in refuge habitat), and mouse diet was unaffected by moonlight. Despite increased availability of invertebrate prey in cover patches, mice do not appear to preferentially exploit prey when avoiding their own predators or interfere with weed seed predation. Therefore, functional redundancy of mice and invertebrate seed predators in cover crops and other refuge habitats may strengthen and stabilize weed seed biocontrol.  相似文献   

11.
Intraspecific aggression represents a major source of mortality for many animals and is often experienced alongside the threat of predation. The presence of predators can strongly influence ecological systems both directly by consuming prey and indirectly by altering prey behavior or habitat use. As such, the threat of attack by higher level predators may strongly influence agonistic interactions among conspecifics via nonconsumptive (e.g., behaviorally mediated) predator effects. We sought to investigate these interactions experimentally using larval salamanders (Ambystoma maculatum) as prey and dragonfly nymphs (Anax junius) as predators. Specifically, we quantified salamander behavioral responses to perceived predation risk (PPR) from dragonfly nymphs and determined the degree to which PPR influenced intraspecific aggression (i.e., intraspecific biting and cannibalism) among prey. This included examining the effects of predator exposure on the magnitude of intraspecific biting (i.e., extent of tail damage) and the resulting change in performance (i.e., burst swim speed). Salamander larvae responded to PPR by reducing activity and feeding, but did not increase refuge use. Predator exposure did not significantly influence overall survival; however, the pattern of survival differed among treatments. Larvae exposed to PPR experienced less tail damage from conspecifics, and maximum burst swim speed declined as tail damage became more extensive. Thus, escape ability was more strongly compromised by intraspecific aggression occurring in the absence of predation risk. We conclude that multitrophic indirect effects may importantly modulate intraspecific aggression and should be considered when evaluating the effects of intraspecific competition.  相似文献   

12.
Yunger JA 《Oecologia》2004,139(4):647-654
Predation directly changes the demographics of prey, generally through a numerical decrease. An indirect effect of predators is alteration of movements and spatial patterns of prey. The relationship between these direct and indirect effects can be tested by excluding predators. Home range size of white-footed mice (Peromyscus leucopus) decreased and home range overlaps increased in the absence of predators. Home range size and overlaps of meadow voles (Microtus pennsylvanicus) did not change despite an increase in vole density. P. leucopus had significantly lower interspecific home range overlaps with M. pennsylvanicus than intraspecific overlaps. The changes in P. leucopus spatial behavior may be an indirect effect of predator exclusion resulting from the increase in M. pennsylvanicus densities.  相似文献   

13.
Notonectids are well‐known predators in aquatic habitats, where mosquito larvae, chironomids, and cladocerans constitute their main diet. Our purpose was to assess the effect of structural complexity on the predatory ability of Buenoa fuscipennis, a common predator in aquatic habitats of Buenos Aires city (Argentina). Buenoa fuscipennis showed type 2 functional responses in both the presence and absence of prey refuge and no differences in attack rate or handling time between refuge treatments. Regarding mosquito size classes, B. fuscipennis exhibited a significantly higher preference for 2nd instar larvae and no predation on pupae. In the presence of mosquito larvae and alternative prey, B. fuscipennis preferred mosquitoes over chironomid larvae and adult cladocerans over mosquito larvae. No switching behavior was detected in our experiments. Habitat structure only slightly affected the predator´s consumption rates on mosquito larvae. Overall, preference for prey did not vary with the presence of refuge, except for the preference for mosquitoes over chironomid larvae, which was significantly decreased in the presence of refuge as a consequence of reduced predation on mosquito larvae. The results suggest that B. fuscipennis could efficiently control mosquitoes in structurally simple habitats where chironomids are the most abundant alternative prey but not in temporary pools where cladocerans are abundant.  相似文献   

14.
Aarnio  Katri  Mattila  Johanna 《Hydrobiologia》2000,440(1-3):347-355
Due to increasing eutrophication of the coastal Baltic waters, drifting algae are a common phenomenon. Drifting algal mats accumulate on shallow sandy bottoms in late summer and autumn, and affect the ambient fauna. Juvenile flounder, Platichthys flesus, utilize these habitats during their first few years. They feed on benthic meio- and macrofauna; part of their diet consists of shelled species, such as Ostracods, and juvenile Hydrobia spp. and Macoma balthica. Earlier studies have shown that up to 75% of ostracods and 92% of hydrobiids survive the gut passage of juvenile flounder, while all M. balthica are digested by the fish. We conducted laboratory experiments to study how the shelled prey responded to a drift algal mat, and the predation efficiency of juvenile P. flesus on these prey species on bare sand and with drifting algae (50% coverage). Hydrobia spp. utilized the drift algae as a habitat and, after 1 h, 50% had moved into the algae; ostracods and M. balthica were more stationary and, after 96 h, only 23 and 12%, respectively, were found in the algae. For the predation efficiency of P. flesus, a two-way ANOVA with habitat (algae, bare sand) and predation (fish, no fish) as factors revealed that both algae and predation affected negatively the survival of all three prey species. The algae, thus, affected the predation efficiency of juvenile P. flesus and the consumption of prey was much reduced in the algal treatments compared to the bare sand. This was due probably to increased habitat complexity and the ability of prey, especially hydrobiids, to use the algal mat as a refuge. Altered habitat structure due to drift algae, together with the resultant changes in habitat (refuge) value for different prey species, may profoundly change the structure of benthic communities.  相似文献   

15.
In small rodent populations with wide-amplitude fluctuations and low-density bottlenecks, the individuals that survive through the bottlenecks may gain major fitness advantages as they will be the founders of the following population expansion. Most hypotheses assume that there exists a physical or behavioural refuge from increased predation risk, and that the survivors are most likely individuals adapted to use such refuges. A recent hypothesis suggests that survival probability is habitat-dependent so that some otherwise sub-optimal habitats provide a spatial refuge from predation risk by the main predator(s). We used spatially replicated long-term (1981–2004) trapping and tracking data of voles (field vole Microtus agrestis and sibling vole M. rossiaemeridionalis) and their main predators (weasel Mustela nivalis and stoat M. erminea) to test predictions based on this hypothesis. We did not find support for the hypothesis. We did not find marked phase-dependent differences in the habitat-level distribution of Microtus voles. Habitat types with low Microtus vole abundance had, on average, comparable predator activity than the main Microtus vole habitats, indicating that there were no habitat-level refuges from predators. There appeared to be no permanent site-level refuges: the spatial distribution of voles varied from one bottleneck to another. This suggests that survival through bottlenecks is at least partly determined by chance events. We propose that in this kind of systems, where relatively short-lived prey are hunted by nomadic or widely ranging predators, short-term anti-predator responses may increase survival prospects as efficiently as more costly anti-predator adaptations, and there is no apparent need to maintain special adaptations to bottleneck situations that occur at infrequent intervals.Co-ordinating editor: J. Tuomi  相似文献   

16.
Predation by visual predators is often affected by light conditions and may therefore exhibit strong diel variation. The dominant predators on grass shrimp, Palaemonetes pugio, are finfish predators that are thought to locate their prey by visual cues. We examined the response of grass shrimp to diel variation in predation risk in the nearshore shallow waters of the Chesapeake Bay. We used diel shoreline seines to assess the relative abundance of predators. We assessed the relative risk of predation with shrimp tethered at refuge (30 cm) and nonrefuge (60 cm) depths. To measure grass shrimp response to predation risk, we used dipnets to monitor habitat use. Four predominantly visual predators dominated the shoreline seine catches, Fundulus heteroclitus, Micropogonias undulatus, Morone americana and Morone saxatilis. Total predator abundance had a diel component, with dramatic nighttime decreases in total abundance, whereas guild composition and relative abundance remained unchanged. Relative predation risk for tethered shrimp exhibited significant time by habitat interaction. During the day, depth negatively affected survivorship of tethered shrimp while at night overall survivorship increased and there was no effect of depth. Shrimp habitats use reflected diel predation risks. Abundances in the near shore were highest during the day with decreased abundances at night. Together, the seine and tethering data highlight the importance for a refuge (e.g., shallow water) from predation during the daytime and a relaxation of predation pressure at night.  相似文献   

17.
Central to the protection of native species is an understanding of impacts of actual or potential invasive species and also the mechanisms through which those impacts are mediated. The introduction and spread of western mosquitofish, Gambusia affinis, into spring systems of the Barrens Plateau region of middle Tennessee is a concern for native species such as the Barrens topminnow, Fundulus julisia. We investigated whether mosquitofish might act as predators on early life stages of topminnows as well as affect the physiological well being of adults through aggressive interactions. A short-term, 24-h laboratory study with mosquitofish and topminnows demonstrated the vulnerability of young topminnow life stages to large mosquitofish predation and aggression. Survival of topminnow young, <16 mm total length (TL), was 0% and was attributed to predation by mosquitofish. Survival of juveniles, 20–30 mm TL, was 25%; juveniles mostly succumbed (post 24-h) to injuries inflicted by large mosquitofish. Adult topminnow survival was 100% but adults faced injury risk, primarily during the initial stages of their interaction with large mosquitofish. A long-term, 60-day laboratory study with syntopic and allotopic populations of adult topminnows and mosquitofish failed to detect any negative impacts on topminnows due to coexistence. Survival, growth, and fecundity of adult topminnows syntopic with mosquitofish were not different from the allotopic population, although injury risk in the form of fin damage was greater syntopically. Thus, predation and aggression towards young topminnows may be the primary mechanisms by which western mosquitofish jeopardize the persistence of native Barrens topminnows in the wild. Our results reemphasize the danger to native aquatic biodiversity of unregulated introductions of Gambusia species.  相似文献   

18.
Synopsis Juvenile bluegill sunfish, Lepomis macrochirus, are known to use beds of aquatic vegetation as a refuge from predators. This study examines the effects of increasing plant stem density on juvenile bluegill foraging. Three stem densities (100, 250 and 500 stems m−2), varying in their refuge potential for bluegills from predators, were tested. Results demonstrate that stem densities chosen as a refuge from predation (i.e. 500 stems m−2) significantly reduced bluegill foraging success and increased time required to capture prey. Therefore, juvenile bluegills seeking safety in vegetation may be faced with a trade-off between foraging success and effective refuge from predation when choosing among plant stem densities.  相似文献   

19.
In some systems, the identity of a prey species' dominant predator(s) may not be constant over time. In cases in which a prey species exhibits different responses to various predator species, such changes in predator identity may have population-wide consequences. Our goals were to determine (1) whether mortality of and refuge use by the grass shrimp, Palaemonetes pugio, were predator-specific, and (2) how effects of prey size and habitat interacted with predator type. Striped bass (Morone saxatilis) exerted twice as much predation pressure as mummichog (Fundulus heteroclitus), although not equally as great on large (female) and small (male) shrimp. Mummichog, which fed preferentially on large shrimp, forced a partitioning of habitat between the two shrimp size classes. In contrast, large and small shrimp occupied similar habitats when subjected to striped bass, which fed on both size classes equally. Refuge use of grass shrimp depended on predator type. In the presence of mummichog, which occupied shallower depths in the water column than striped bass, shrimp stayed deep and close to structural habitat. Striped bass, which were deeper, caused shrimp to move high in the water column away from structural habitat. When both predators were present, shrimp distribution was similar to that when only striped bass were present, striped bass predation rate was enhanced, and overall mortality was higher than with either predator alone. Results suggest that at times when mummichogs are the dominant predators, large (female) shrimp experience higher predation than small (male) shrimp and are physically separated from their potential mates. When striped bass are more abundant, male and female shrimp may share a similar, shallow, less structure-oriented distribution and be subjected to higher mortality. When both predators are present, mortality rates may be higher still. This predator-, size-, and habitat-specificity of grass shrimp behavior suggests significant population and distribution consequences of fluctuating predator guilds and fluctuating cover of structural habitats in the field.  相似文献   

20.
Predators can cause a shift in both density and frequency of a prey phenotype that may lead to phenotypic divergence through natural selection. What is less investigated is that predators have a variety of indirect effects on prey that could potentially have large evolutionary responses. We conducted a pond experiment to test whether differences in predation risk in different habitats caused shifts in behavior of prey that, in turn, would affect their morphology. We also tested whether the experimental data could explain the morphological variation of perch in the natural environment. In the experiment, predators caused the prey fish to shift to the habitat with the lower predation risk. The prey specialized on habitat-specific resources, and there was a strong correlation between diet of the prey fish and morphological variation, suggesting that resource specialization ultimately affected the morphology. The lack of differences in competition and mortality suggest that the morphological variation among prey was induced by differences in predation risk among habitats. The field study demonstrated that there are differences in growth related to morphology of perch in two different habitats. Thus, a trade-off between foraging and predator avoidance could be responsible for adaptive morphological variation of young perch.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号