首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The light scattering spectra of frog somatic nerves during excitation, its block by tetrodotoxin and at different Ca2+ and H+ extracellular concentrations have been investigated. In all cases changes were observed in the C40-carotenoid peaks enhanced by the resonance Raman effect. These changes can be explained by transient carbon-carbon bond equalization of the polyene chain. The mechanism of regulation of Na-channel function by "potential-sensor" in relation to the excitable membrane was discussed.  相似文献   

2.
Strong light (800 μmol photons/m2 per s)-induced bleaching of the pigment in the isolated photosystem Ⅱ reaction center (PSII RC) under aerobic conditions (in the absence of electron donors or acceptors) was studied using high-pressure liquid chromatography (HPLC), absorption spectra, 77K fluorescence spectra and resonance Raman spectra. Changes in pigment composition of the PSll RC as determined by HPLC after light treatment were as follows: with increasing illumination time chlorophyll (Chi) a and β-carotene (β-car)content decreased. However, decreases in pheophytin (Pheo) could not be observed because of the mixture of the Pheo formed by degraded chlorophyll possibly. On the basis of absorption spectra, it was determined that, with a short time of illumination, the initial bleaching occurred maximally at 680 nm but that with increasing illumination time there was a blue shift to 678 nm. It was suggested that P680 was destroyed initially, followed by the accessory chlorophyll. The activity of P680 was almost lost after 10 min light treatment. Moreover, the bleaching of Pheo and β-car was observed at the beginning of illumination.After illumination, the fluorescence emission intensity changed and the fluorescence maximum blue shifted,showing that energy transfer was disturbed. Resonance Raman spectra of the PSII RC excited at 488.0 and 514.5 nm showed four main bands, peaking at 1 527 cm-1 (υ1), 1 159 cm-1 (υ2), 1 006 cm-1 (υ3), 966 cm-1 (υ4) for 488.0 nm excitation and 1 525 cm-1 (υ1), 1 159 cm-1 (υ2), 1 007 cm-1 (υ3), 968 cm-1 (υ4) for 514.5 nm excitation.It was confirmed that two spectroscopically different β-car molecules exist in the PSII RC. After light treatment for 20 min, band positions and bandwidths were unchanged. This indicates that carotenoid configuration is not the parameter that regulates photoprotection in the PSII RC.  相似文献   

3.
Changes in the microviscosity of excitable membranes was investigated using resonance Raman spectroscopy of carotenoids. The Raman resonance spectra of carotenoids in Nitella cells were excited by 514.5 nm line of an argon ion laser. The bands at 1525 cm-1, 1160 cm-1 and 1008 cm-1 were observed and they were assigned to C=C, C-C and C-CH vibrations, respectively. The rhythmic excitation of cell reduced the intensity and increased the ratios of intensity of major carotenoid bands with no noticeable shift in the position of peaks. The Arrhenius plot of relative intensity ratios of 1525 cm-1 and 1160 cm-1 bands versus reciprocal temperature showed a change of the slope in the range of 13-18 degrees C. This indicates a membrane phase transitions in which a reorientation of carotenoids species takes place. The interpretation was supported by parallel microcalorimetric and EPR measurements. The decrease of microviscosity with increasing temperature is probably caused by changes in polyene chain conformation. It is suggested that membrane microviscosity during NH4(+)-stimulated rhythmic excitation of algal cells increases, and membrane-associated carotenoids act as microviscosity-sensitive "potential sensor" for the channel.  相似文献   

4.
Resonance Raman spectra of the ferrous CO complex of cytochrome P-450cam have been observed both in its camphor-bound and free states. Upon excitation at 457.9 nm, near the absorption maximum of the Soret band, the ferrous CO complex of the camphor-bound enzyme showed an anomalously intense Raman line at 481 cm-1 besides the strong Raman lines at 1366 and 674 cm-1 for the porphyrin vibrations. The Raman line at 481 cm-1 (of the 12C16O complex) shifted to 478 cm-1 upon the substitution by 13C16O and to 473 cm-1 by 12C18O without any detectable shift in porphyrin Raman lines. This shows that the line at 481 cm-1 is assignable to Fe-CO stretching vibration. By the excitation at 457.9 nm, a weak Raman line was also observed at 558 cm-1, which was assigned to the Fe-C-O bending vibration, because it was found to shift by -14 cm-1 on 13C16O substitution while only -3 cm-1 on 12C18O substitution. These stretching and bending vibrations of the Fe-CO bond were not detected with the excitation at 413.1 nm, though the porphyrin Raman lines at 1366 and 674 cm-1 were clearly observed. When the substrate, camphor, was removed from the enzyme, the Fe-CO stretching vibration was found to shift to 464 cm-1 from 481 cm-1, while no detectable changes were found in porphyrin Raman lines. This means that the bound substrate interacts predominantly with the Fe-CO portion of the enzyme molecule.  相似文献   

5.
Time-resolved vibrational spectra are used to elucidate the structural changes in the retinal chromophore within the K-590 intermediate that precedes the formation of the L-550 intermediate in the room-temperature (RT) bacteriorhodopsin (BR) photocycle. Measured by picosecond time-resolved coherent anti-Stokes Raman scattering (PTR/CARS), these vibrational data are recorded within the 750 cm-1 to 1720 cm-1 spectral region and with time delays of 50-260 ns after the RT/BR photocycle is optically initiated by pulsed (< 3 ps, 1.75 nJ) excitation. Although K-590 remains structurally unchanged throughout the 50-ps to 1-ns time interval, distinct structural changes do appear over the 1-ns to 260-ns period. Specifically, comparisons of the 50-ps PTR/CARS spectra with those recorded with time delays of 1 ns to 260 ns reveal 1) three types of changes in the hydrogen-out-of-plane (HOOP) region: the appearance of a strong, new feature at 984 cm-1; intensity decreases for the bands at 957 cm-1, 952 cm-1, and 939 cm-1; and small changes intensity and/or frequency of bands at 855 cm-1 and 805 cm-1; and 2) two types of changes in the C-C stretching region: the intensity increase in the band at 1196 cm-1 and small intensity changes and/or frequency shifts for bands at 1300 cm-1 and 1362 cm-1. No changes are observed in the C = C stretching region, and no bands assignable to the Schiff base stretching mode (C = NH+) mode are found in any of the PTR/CARS spectra assignable to K-590. These PTR/CARS data are used, together with vibrational mode assignments derived from previous work, to characterize the retinal structural changes in K-590 as it evolves from its 3.5-ps formation (ps/K-590) through the nanosecond time regime (ns/K-590) that precedes the formation of L-550. The PTR/CARS data suggest that changes in the torsional modes near the C14-C15 = N bonds are directly associated with the appearance of ns/K-590, and perhaps with the KL intermediate proposed in earlier studies. These vibrational data can be primarily interpreted in terms of the degree of twisting of the C14-C15 retinal bond. Such twisting may be accompanied by changes in the adjacent protein. Other smaller, but nonetheless clear, spectral changes indicate that alterations along the retinal polyene chain also occur. The changes in the retinal structure are preliminary to the deprotonation of the Schiff base nitrogen during the formation of M-412. The time constant for the ps/ns K-590 transformation is estimated from the amplitude change of four vibrational bands in the HOOP region to be 40-70 ns.  相似文献   

6.
Poly(dG-dC).poly(dG-dC) at low salt concentration (0.1 M NaCl) and at high salt concentration (4.5 M NaCl) has been studied by Raman resonance spectroscopy using two excitation wavelengths: 257 nm and 295 nm. As resonance enhances the intensity of the lines in a proportion corresponding to the square of the molar absorption coefficient, the intensities of the lines with 295 nm wavelength excitation are enhanced about sevenfold during the B to Z transition. With 257 nm excitation wavelength the 1580 cm-1 line of guanosine is greatly enhanced in the Z form whereas with 295 nm excitation several lines are sensitive to the modifications of the conformation: the guanine band around 650 cm-1 and at 1193 cm-1 and the bands of the cytosines at 780 cm-1, 1242 cm-1 and 1268 cm-1. By comparison with the U.V. resonance Raman spectra of DNA, we conclude that resonance Raman spectroscopy allows one to characterize the B to Z transition from one line with 257 nm excitation wavelength and from three lines with 295 nm excitation. The conjoined study of these four lines should permit to observe a few base pairs being in Z form in a DNA.  相似文献   

7.
The DNA-Actinomycin D interaction has been studied by resonance Raman effect using DNA as chromophore. First, the resonance Raman spectra of DNA obtained with a U.V. excitation at wavelengths of 300 nm and 280 nm are presented. The main Raman hands are assigned to the convenient nucleic bases by comparison with the spectra of mononucleotides obtained under the same experimental conditions. In particular, with a 300 nm excitation, the 1582 cm-1 line is provided by adenine, while the 1492 cm-1 one is almost exclusively due to guanine. Then, the DNA-Actinomycin D complex has been studied: the line enhancements and the specificity of the resonance permits the displaying of the DNA spectrum free of any contribution of Actinomycin. The interaction provides a large intensity decrease of the 1492 cm-1 guanine line: this is a direct consequence of the orbital overlapping of the guanine 2-aminogroup with the ring nitrogen of Actinomycin in the DNA-Actinomycin pi complex.  相似文献   

8.
By using fosmidomycin and mevinolin (inhibitors of the synthesis of isoprenoid pigments), spectrophotometry, and mass spectrometry, the presence of isoprenoid pigments is shown in 71 of the 78 strains under study. All of these strains belong to 11 genera of the family Microbacteriaceae. Yellow, orange, and red pigments are found to have absorption spectra typical of C40-carotenoids. Eight out of the sixteen strains of the genus Microbacterium are able to synthesize neurosporene, a precursor of lycopene and beta-carotene. The biosynthesis of carotenoids in some representatives of the genera Agromyces, Leifsonia, and Microbacterium is induced by light. Inhibition of the biosynthesis of isoprenoid pigments by fosmidomycin suggests that they are synthesized via the nonmevalonate pathway. Twelve strains are found to exhibit both the nonmevalonate and mevalonate pathways of isoprenoid synthesis. These data, together with the difference in the inhibitory concentration of fosmidomycin, can be used for differentiating various taxa within the family Microbacteriaceae.  相似文献   

9.
Candida albicans produced chlamydospores after 24 h in the dark at 27 degrees C, but the process was inhibited under adequate irradiation of light. The in vivo absorption spectra showed a main peak at 414 nm, and less important peaks at 430, 446, 477, 519, 549 and 560 nm. No bands were detected beyond 600 nm. A total inhibition of chlamydosporulation occurred at 414 nm (monochromatic light) for an initial energy of 2,000 ergs cm-2 s-1. A 4,000 ergs cm-2 s-1 irradiation energy was necessary to observe a marked inhibition at 460, 500 and 530 nm (les chlamydospores and/or immaturity); this energy must be raised to 300,000 ergs cm-2 s-1 to observe a similar effect at 575 and 630 nm. Biological activity spectra were in full concordance with absorption spectra at 414 nm; no interpretation of absorption band at 460 nm is given, but total or partial inhibition could be explained by modulation of protoporphyrin activity.  相似文献   

10.
Spectral characteristics of absorption changes associated with nerve excitation were studied with crab nerves stained with a homologous series of dyes, merocyanine-rhodanines and rhodanine oxonols. In these classes of dyes, the absorption changes which followed approximately the same time course as that of the action potential (fast responses) depended in a similar fashion on the wavelength and polarization of the incident light. In order to interpret those commonly observed dependencies, a mode of reorientation of the absorption oscillators of the dye molecules in the membrane matrix during nerve excitation was proposed. In addition to the fast changes mentioned above, slow responses which developed during and after the action potential were commonly observed with oxonols. The spectra of the slow changes differed from those of the fast ones, indicating a distinct mechanism on the response production. A possible mechanism of the production of fast responses was also discussed based on the proposed mode of reorientation of the absorption oscillators.  相似文献   

11.
Changes in chlorophyll content, ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) binding protein (RBP), Rubisco activase (RA), Rubisco large (LS) and small (SS) subunits, and electrolyte leakage were investigated in wheat leaf segments during heat stress (HS) for 1 h and for 24 h at 40 °C in darkness or in light, as well as after recovery from heat stress (HSR) for 24 h at 25 °C in light. The 24-h HS treatment in darkness decreased irreversibly photosynthetic pigments, soluble proteins, RBP, RA, Rubisco LS and SS. An increase in RA and RBP protein contents was observed under 24-h HS and HSR in light. This increase was in accordance with their role as chaperones and the function of RBP as a heat shock protein.This work was partially supported by Swiss National Science Foundation (Project 31-55289.98).  相似文献   

12.
H DeGrazia  D Brown  S Cheung  R M Wartell 《Biochemistry》1988,27(17):6359-6365
Raman spectra from three subfragments of the Escherichia coli lactose promoter region were obtained in 0.1 M NaCl. The three DNAs are 21, 40, and 62 bp in length. The 21 and 62 bp DNAs contain the binding site for the catabolite gene activator protein (CAP). The 40 bp DNA contains the binding site for the lac repressor. A quantitative analysis of Raman band characteristics indicates an overall B-type conformation for these gene regulatory sites. Bands which correspond to A-family (807 cm-1) and B-family (834 cm-1) deoxyribose phosphate vibrations have the same intensities as bands found in heterogeneous DNAs. The spectra of the 21 bp CAP site have, however, a small band at 867 cm-1 and several other small differences similar to some characteristics observed in C-DNA spectra. Several dG nucleosides in the CAP site appear to be altered from the conventional C2'-endo/anti conformation. At 45 degrees C, well below the melting region of these DNAs, small changes occur in the spectra of the 40 bp lac repressor site which are not observed in the other DNAs. A weak band occurs at 705 cm-1, and intensity changes are observed at 497, 682, and 792 cm-1. The changes suggest that the conformations of several dG nucleosides are altered and that a small region may exist with characteristics of an A-family backbone. This conformational change at 45 degrees C coincides with previous NMR observations indicating an enhanced imino proton exchange rate at a GTG sequence within the lac operator site.  相似文献   

13.
H H Liu  S H Lin    N T Yu 《Biophysical journal》1990,57(4):851-856
Resonance Raman spectra are reported for the organometallic phenyl-FeIII complexes of horse heart myoglobin. We observed the resonance enhancement of the ring vibrational modes of the bound phenyl group. They were identified at 642, 996, 1,009, and 1,048 cm-1, which shift to 619, 961, 972, and 1,030 cm-1, respectively, upon phenyl 13C substitution. The lines at 642 and 996 cm-1 are assigned, respectively, as in-plane phenyl ring deformation mode (derived from benzene vibration No. 6a at 606 cm-1) and out-of-plane CH deformation (derived from benzene vibration No. 5 at 995 cm-1). The frequencies of the ring "breathing" modes at 1,009 and 1,048 cm-1 are higher than the corresponding ones in phenylalanine (at 1,004 and 1,033 cm-1) and benzene (at 992 and 1,010 cm-1), indicating that the ring C--C bonds are strengthened (or shortened) when coordinated to the heme iron. The excitation profiles of these phenyl ring modes and a porphyrin ring vibrational mode at 674 cm-1 exhibit peaks near its Soret absorption maximum at 431 nm. This appears to indicate that these phenyl ring modes may be enhanced via resonance with the Soret pi-pi transition. The FeIII--C bond stretching vibration has not been detected with excitation wavelengths in the 406.7-457.9-nm region.  相似文献   

14.
Resonance Raman (RR) spectra of purple intermediates of L-phenylalanine oxidase (PAO) with non-labeled and isotopically labeled phenylalanines as substrates, i.e., [1-13C], [2-13C], [ring-U-13C6], and [15N]phenylalanines, were measured with excitation at 632.8 nm within the broad absorption band around 540 nm. The spectra obtained resemble those of purple intermediates of D-amino acid oxidase (DAO). The isotope effects on the 1,665 cm-1 band with [15N] or [2-13C]phenylalanine indicate that the band is due to the C = N stretching mode of an imino acid derived from phenylalanine, i.e., alpha-imino-beta-phenylpropionate. The intense band at 1,389 cm-1 is contributed to by the CO2- symmetric stretching and C-CO2- stretching modes of alpha-imino-beta-phenylpropionate. The 1,602 cm-1 band, which does not shift upon isotopic substitution of phenylalanine, corresponds to the 1,605 cm-1 band of DAO purple intermediates and was assigned to a vibrational mode associated with the C(10a) = C(4a) - C(4) = O moiety of reduced flavin. These results confirm that PAO purple intermediates consist of the reduced enzyme and an imino acid derived from a substrate, and suggest that the plane defined by C(10a) = C(4a) - C(4) = O of reduced flavin and the plane containing H2+N = C - CO2- of an imino acid are arranged in close contact to each other, generating a charge-transfer interaction.  相似文献   

15.
J F Madden  S H Han  L M Siegel  T G Spiro 《Biochemistry》1989,28(13):5471-5477
Resonance Raman (RR) spectra from the hemoprotein subunit of Escherichia coli sulfite reductase (SiR-HP) are examined in the low-frequency (200-500 cm-1) region where Fe-S stretching modes are expected. In spectra obtained with excitation in the siroheme Soret or Q bands, this region is dominated by siroheme modes. Modes assignable to the Fe4S4 cluster are selectively enhanced, however, with excitation at 488.0 or 457.9 nm. The assignments are confirmed by observation of the expected frequency shifts in SiR-HP extracted from E. coli grown on 34S-labeled sulfate. The mode frequencies and isotopic shifts resemble those seen in RR spectra of other Fe4S4 proteins and analogues, but the breathing mode of the cluster at 342 cm-1 is higher than that observed in the other species. Spectra of various ligand complexes of SiR-HP reveal only slight sensitivity of the cluster terminal ligand modes to the presence of exogenous heme ligands, at variance with a model of ligand binding in a bridged mode between heme and cluster. Close examination of RR spectra obtained with siroheme Soret-band excitation reveals additional 34S-sensitive features at 352 and 393 cm-1. These may be attributed to a bridging thiolate ligand.  相似文献   

16.
Summary Changes in light absorption during nerve excitation (absorption responses) were detected from the crab leg nerve, the rabbit vagus, and the rat superior cervical ganglion (SCG) stained with a merocyanine-rhodanine. Dependences of the responses on the wavelength and polarization of the incident light (absorption spectra) showed characteristic features with the respective nerves. In the crab nerve, the pattern of response spectra was precisely analyzed based on the previously proposed scheme, which included the shift of absorption bands and the statistical reorientation of absorption oscillators of the dye molecules in the membrane matrix during nerve excitation. Different patterns of the response spectra between the crab nerve and the rabbit vagus suggested that distinct physicochemical environments of the dye occurred in these two classes of membranes. On the other hand, the characteristic pattern that arose in the rat SCG was explained by its morphological form, that is, unlike those in a bundle of axons, the membrane elements in the ganglion were randomly oriented with respect to the direction of the light polarization.  相似文献   

17.
The right to left helix structural transition in purine-pyrimidine alternating copolymers has been extensively studied by vibrational spectroscopies, amongst many other experimental approaches. Here, the use of resonance Raman spectroscopy in the ultraviolet region (223-, 257- and 281 nm excitation wavelengths) to monitor such structural changes is reviewed in the light of new results obtained on poly(dA-dC).poly(dG-dT) on one hand, and the previous results obtained on poly(dG-dC)2, poly(dA-dT)2 and natural DNA (Chicken erythrocytes) on the other. It is now possible to define B----Z transition marker bands involving the proper bases, which show a similar behaviour on structural transition whatever the composition of alternating purine-pyrimidine sequences: the 1580- and 1487 cm-1 lines of the purines, the 1486- and 1294 cm-1 lines of the pyrimidines are good markers in the vibrational spectra recorded at various UV excitation wavelengths.  相似文献   

18.
Resonance Raman (RR) spectra of the "rapid" and "slow" forms (Baker et al., 1987) of resting cytochrome oxidase obtained with Soret excitation at 413.1 nm are reported. There are a number of conspicuous differences between the two forms in the high-frequency region of the RR spectrum which involve changes in Raman intensity arising from a blue shift in the Soret maximum of cytochrome a3 upon conversion to the slow form. In the low-frequency region a peak present at 223 cm-1 in the rapid form shifts to 220 cm-1 in the slow form; this peak is assigned as the cytochrome a3 Fe(III)-N(His-Im) stretch. The slow form of the enzyme possesses greater intensity in RR peaks near 1620 cm-1 which have been previously attributed by others to partial photoreduction of the enzyme. We have quantitated the amount of laser-induced photoreduction in these RR spectra by comparison with the spectra of mixed-valence derivatives of the enzyme and find that these 1620-cm-1 features are unreliable indicators of photoreduction. The spectra of the fast- and slow-reacting species in H2O and D2O have been compared. The fast-reacting form exhibits a 4-cm-1 shift, from 223 to 219 cm-1, upon transferring to D2O in a peak which we assign as the cytochrome a3 Fe(III)-N(His-Im) stretch. There is a parallel shift in the feature at 1651 cm-1 due to the C = O stretch of the formyl group of cytochrome a. These deuterium shifts are not observed in the slow form.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Resonance Raman (RR) spectra of two reaction intermediates of D-amino acid oxidase with substrate analogs were obtained. The reaction intermediates studied were (1) the one in the aerobic oxidative reaction of the enzyme with beta-cyano-D-alanine and (2) the other in the reverse reductive reaction of the enzyme with chloropyruvate and ammonium. Both intermediates are characterized with the charge transfer absorption bands in the long wavelength region extending beyond 600 nm. The RR spectra of the two intermediates excited at 488.0 or 514.5 nm are those of oxidized flavin, which is consistent with our previous assumption that oxidized flavin is involved in these reaction intermediates. Relatively simple RR spectra were obtained for these intermediates with excitation at 632.8 nm which is within the region of the charge transfer bands. The resonance enhancement for the Raman lines around 1585 and 1350 cm-1 for either of the intermediates with excitation in the region of the charge transfer bands suggests that the charge transfer interaction involves the N(5)-C(4a) region extending to the C(10a)-N(1)-C(2) region of the isoalloxazine nucleus. The Raman line at 1657 cm-1 for the intermediate with chloropyruvate and ammonium was assigned to C = N of an imino acid from the isotopic frequency shift upon 15N-substitution. The assignment substantiates our previous conclusion that the intermediate involves an imino acid, alpha-imino-beta-chloropropionate.  相似文献   

20.
To investigate the effect of UV light on Cryptosporidium parvum and Cryptosporidium hominis oocysts in vitro, we exposed intact oocysts to 4-, 10-, 20-, and 40-mJ x cm-2 doses of UV irradiation. Thymine dimers were detected by immunofluorescence microscopy using a monoclonal antibody against cyclobutyl thymine dimers (anti-TDmAb). Dimer-specific fluorescence within sporozoite nuclei was confirmed by colocalization with the nuclear fluorogen 4',6'-diamidino-2-phenylindole (DAPI). Oocyst walls were visualized using either commercial fluorescein isothiocyanate-labeled anti-Cryptosporidium oocyst antibodies (FITC-CmAb) or Texas Red-labeled anti-Cryptosporidium oocyst antibodies (TR-CmAb). The use of FITC-CmAb interfered with TD detection at doses below 40 mJ x cm-2. With the combination of anti-TDmAb, TR-CmAb, and DAPI, dimer-specific fluorescence was detected in sporozoite nuclei within oocysts exposed to 10 to 40 mJ x cm-2 of UV light. Similar results were obtained with C. hominis. C. parvum oocysts exposed to 10 to 40 mJ x cm-2 of UV light failed to infect neonatal mice, confirming that results of our anti-TD immunofluorescence assay paralleled the outcomes of our neonatal mouse infectivity assay. These results suggest that our immunofluorescence assay is suitable for detecting DNA damage in C. parvum and C. hominis oocysts induced following exposure to UV light.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号