首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Congenital heart disease (CHD) is the most common congenital malformation, with evidence of a strong genetic component. We analyzed data from 223 consecutively ascertained families, each consisting of at least one child affected by a conotruncal defect (CNT) or hypoplastic left heart disease (HLHS) and both parents. The NimbleGen HD2-2.1 comparative genomic hybridization platform was used to identify de novo and rare inherited copy number variants (CNVs). Excluding 10 cases with 22q11.2 DiGeorge deletions, we validated de novo CNVs in 8 % of 148 probands with CNTs, 12.7 % of 71 probands with HLHS and none in 4 probands with both. Only 2 % of control families showed a de novo CNV. We also identified a group of ultra-rare inherited CNVs that occurred de novo in our sample, contained a candidate gene for CHD, recurred in our sample or were present in an affected sibling. We confirmed the contribution to CHD of copy number changes in genes such as GATA4 and NODAL and identified several genes in novel recurrent CNVs that may point to novel CHD candidate loci. We also found CNVs previously associated with highly variable phenotypes and reduced penetrance, such as dup 1q21.1, dup 16p13.11, dup 15q11.2-13, dup 22q11.2, and del 2q23.1. We found that the presence of extra-cardiac anomalies was not related to the frequency of CNVs, and that there was no significant difference in CNV frequency or specificity between the probands with CNT and HLHS. In agreement with other series, we identified likely causal CNVs in 5.6 % of our total sample, half of which were de novo.  相似文献   

2.
Previous studies have shown that copy-number variants (CNVs) contribute to the risk of complex developmental phenotypes. However, the contribution of global CNV burden to the risk of sporadic congenital heart disease (CHD) remains incompletely defined. We generated genome-wide CNV data by using Illumina 660W-Quad SNP arrays in 2,256 individuals with CHD, 283 trio CHD-affected families, and 1,538 controls. We found association of rare genic deletions with CHD risk (odds ratio [OR] = 1.8, p = 0.0008). Rare deletions in study participants with CHD had higher gene content (p = 0.001) with higher haploinsufficiency scores (p = 0.03) than they did in controls, and they were enriched with Wnt-signaling genes (p = 1 × 10−5). Recurrent 15q11.2 deletions were associated with CHD risk (OR = 8.2, p = 0.02). Rare de novo CNVs were observed in ∼5% of CHD trios; 10 out of 11 occurred on the paternally transmitted chromosome (p = 0.01). Some of the rare de novo CNVs spanned genes known to be involved in heart development (e.g., HAND2 and GJA5). Rare genic deletions contribute ∼4% of the population-attributable risk of sporadic CHD. Second to previously described CNVs at 1q21.1, deletions at 15q11.2 and those implicating Wnt signaling are the most significant contributors to the risk of sporadic CHD. Rare de novo CNVs identified in CHD trios exhibit paternal origin bias.  相似文献   

3.
4.
Genome-wide screenings for copy number variations (CNVs) in patients with schizophrenia have demonstrated the presence of several CNVs that increase the risk of developing the disease and a growing number of large rare CNVs; the contribution of these rare CNVs to schizophrenia remains unknown. Using Affymetrix 6.0 arrays, we undertook a systematic search for CNVs in 172 patients with schizophrenia and 160 healthy controls, all of Italian origin, with the aim of confirming previously identified loci and identifying novel schizophrenia susceptibility genes. We found five patients with a CNV occurring in one of the regions most convincingly implicated as risk factors for schizophrenia: NRXN1 and the 16p13.1 regions were found to be deleted in single patients and 15q11.2 in 2 patients, whereas the 15q13.3 region was duplicated in one patient. Furthermore, we found three distinct patients with CNVs in 2q12.2, 3q29 and 17p12 loci, respectively. These loci were previously reported to be deleted or duplicated in patients with schizophrenia but were never formally associated with the disease. We found 5 large CNVs (>900 kb) in 4q32, 5q14.3, 8q23.3, 11q25 and 17q12 in five different patients that could include some new candidate schizophrenia susceptibility genes. In conclusion, the identification of previously reported CNVs and of new, rare, large CNVs further supports a model of schizophrenia that includes the effect of multiple, rare, highly penetrant variants.  相似文献   

5.

Background

Congenital heart defects (CHD), as the most common congenital anomaly, have been reported to be frequently associated with pathogenic copy number variants (CNVs). Currently, patients with CHD are routinely offered chromosomal microarray (CMA) testing, but the diagnostic yield of CMA on CHD patients has not been extensively evaluated based on a large patient cohort. In this study, we retrospectively assessed the detected CNVs in a total of 514 CHD cases (a 422-case clinical cohort from Boston Children''s Hospital (BCH) and a 92-case research cohort from Shanghai Children’s Medical Center (SCMC)) and conducted a genotype-phenotype analysis. Furthermore, genes encompassed in pathogenic/likely pathogenic CNVs were prioritized by integrating several tools and public data sources for novel CHD candidate gene identification.

Results

Based on the BCH cohort, the overall diagnostic yield of CMA testing for CHD patients was 12.8(pathogenic CNVs)-18.5% (pathogenic and likely pathogenic CNVs). The diagnostic yield of CMA for syndromic CHD was 14.1-20.6% (excluding aneuploidy cases), whereas the diagnostic yield for isolated CHD was 4.3-9.3%. Four recurrent genomic loci (4q terminal region, 15q11.2, 16p12.2 and Yp11.2) were more significantly enriched in cases than in controls. These regions are considered as novel CHD loci. We further identified 20 genes as the most likely novel CHD candidate genes through gene prioritization analysis.

Conclusion

The high clinical diagnostic yield of CMA in this study provides supportive evidence for CMA as the first-line genetic diagnostic tool for CHD patients. The CNVs detected in our study suggest a number of CHD candidate genes that warrant further investigation.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-1127) contains supplementary material, which is available to authorized users.  相似文献   

6.

Background

Ongoing studies using genomic microarrays and next-generation sequencing have demonstrated that the genetic contributions to cardiovascular diseases have been significantly ignored in the past. The aim of this study was to identify rare copy number variants in individuals with congenital pulmonary atresia (PA).

Methods and Results

Based on the hypothesis that rare structural variants encompassing key genes play an important role in heart development in PA patients, we performed high-resolution genome-wide microarrays for copy number variations (CNVs) in 82 PA patient-parent trios and 189 controls with an Illumina SNP array platform. CNVs were identified in 17/82 patients (20.7%), and eight of these CNVs (9.8%) are considered potentially pathogenic. Five de novo CNVs occurred at two known congenital heart disease (CHD) loci (16p13.1 and 22q11.2). Two de novo CNVs that may affect folate and vitamin B12 metabolism were identified for the first time. A de novo 1-Mb deletion at 17p13.2 may represent a rare genomic disorder that involves mild intellectual disability and associated facial features.

Conclusions

Rare CNVs contribute to the pathogenesis of PA (9.8%), suggesting that the causes of PA are heterogeneous and pleiotropic. Together with previous data from animal models, our results might help identify a link between CHD and folate-mediated one-carbon metabolism (FOCM). With the accumulation of high-resolution SNP array data, these previously undescribed rare CNVs may help reveal critical gene(s) in CHD and may provide novel insights about CHD pathogenesis.  相似文献   

7.
Tetralogy of Fallot (TOF) is one of the most common severe congenital heart malformations. Great progress has been made in identifying key genes that regulate heart development, yet approximately 70% of TOF cases are sporadic and nonsyndromic with no known genetic cause. We created an ultra high-resolution gene centric comparative genomic hybridization (gcCGH) microarray based on 591 genes with a validated association with cardiovascular development or function. We used our gcCGH array to analyze the genomic structure of 34 infants with sporadic TOF without a deletion on chromosome 22q11.2 (n male = 20; n female = 14; age range of 2 to 10 months). Using our custom-made gcCGH microarray platform, we identified a total of 613 copy number variations (CNVs) ranging in size from 78 base pairs to 19.5 Mb. We identified 16 subjects with 33 CNVs that contained 13 different genes which are known to be directly associated with heart development. Additionally, there were 79 genes from the broader list of genes that were partially or completely contained in a CNV. All 34 individuals examined had at least one CNV involving these 79 genes. Furthermore, we had available whole genome exon arrays from right ventricular tissue in 13 of our subjects. We analyzed these for correlations between copy number and gene expression level. Surprisingly, we could detect only one clear association between CNVs and expression (GSTT1) for any of the 591 focal genes on the gcCGH array. The expression levels of GSTT1 were correlated with copy number in all cases examined (r = 0.95, p = 0.001). We identified a large number of small CNVs in genes with varying associations with heart development. Our results illustrate the complexity of human genome structural variation and underscore the need for multifactorial assessment of potential genetic/genomic factors that contribute to congenital heart defects.  相似文献   

8.
Background: Anorectal malformations (ARM) have a prevalence of around 1 in 2500 live births. In around 50% of patients, the malformation is isolated, while in the remainder it arises within the context of complex genetic abnormalities or a defined genetic syndrome. Recent studies have implicated rare copy number variations (CNVs) in both isolated and nonisolated ARM, and identified plausible candidate genes. Methods: In the present study, array‐based molecular karyotyping was performed to identify causative CNVs in 32 sporadic ARM patients with comorbid abnormalities of the central nervous system (CNS). This phenotype was selected to enrich for rare CNVs, since previous research has implicated rare CNVs in both CNS abnormalities and ARM. Results: In five patients, a probable disease‐causing CNV was identified (del6q14.3q16.3, del14q32.2, del17q12q21.2, and two patients with del22q11.21). In three of these patients, the CNVs were de novo. For the remaining two patients, no parental DNA was available. Deletions at 22q11.21 and 6q14.3 have been associated with both CNS abnormalities and ARM. In contrast, deletions at 14q32.2 have only been described in patients with CNS abnormalities, and the del17q12q21.2 is a novel CNV. Expression studies in mice suggest that NEUROD2 and RARA, which reside within the newly identified del17q12q21.2 region, are candidate genes for the formation of microcephaly and ARM. Conclusion: The present data suggest that CNVs are a frequent cause of the ARM with CNS abnormalities phenotype, and that array‐analysis is indicated in such patients. Birth Defects Research (Part A) 103:235–242, 2015. © 2014 Wiley Periodicals, Inc.  相似文献   

9.
Chromosome microarray analysis (CMA) has proven to be a powerful tool in postnatal patients with intellectual disabilities. However, the diagnostic capability of CMA in patients with congenital oral clefts remain mysterious. Here, we present our clinical experience in implementing whole-genome high-resolution SNP arrays to investigate 33 patients with syndromic and nonsyndromic oral clefts in whom standard karyotyping analyses showed normal karyotypes. We aim to identify the genomic aetiology and candidate genes in patients with congenital oral clefts. CMA revealed copy number variants (CNVs) in every patient, which ranged from 2 to 9 per sample. The size of detected CNVs varied from 100 to 3.2 Mb. In 33 patients, we identified six clinically significant CNVs. The incidence of clinically significant CNVs was 18.2% (6/33). Three of these six CNVs were detected in patients with nonsyndromic clefts, including one who presented with isolated cleft lip with cleft palate (CLP) and two with cleft palate only (CPO). The remaining three CNVs were detected in patients with syndromic clefts. However, no CNV was detected in patients with cleft lip only (CLO). The six clinically significant CNVs were as follows: 8p23.1 microduplication (198 kb); 10q22.2-q22.3 microdeletion (1766 kb); 18q12.3 microduplication (638 kb); 20p12.1 microdeletion (184 kb); 6q26 microdeletion (389 kb); and 22q11.21-q11.23 microdeletion (3163 kb). In addition, two novel candidate genes for oral clefts, KAT6B and MACROD2, were putatively identified. We also found a CNV of unknown clinical significance with a detection rate of 3.0% (1/33). Our results further support the notion that CNVs significantly contributed to the genetic aetiology of oral clefts and emphasize the efficacy of whole-genome high-resolution SNP arrays to detect novel candidate genes in patients with syndromic and nonsyndromic clefts.  相似文献   

10.
We have undertaken a genome-wide analysis of rare copy-number variation (CNV) in 1124 autism spectrum disorder (ASD) families, each comprised of a single proband, unaffected parents, and, in most kindreds, an unaffected sibling. We find significant association of ASD with de novo duplications of 7q11.23, where the reciprocal deletion causes Williams-Beuren syndrome, characterized by a highly social personality. We identify rare recurrent de novo CNVs at five additional regions, including 16p13.2 (encompassing genes USP7 and C16orf72) and Cadherin 13, and implement a rigorous approach to evaluating the statistical significance of these observations. Overall, large de novo CNVs, particularly those encompassing multiple genes, confer substantial risks (OR = 5.6; CI = 2.6-12.0, p = 2.4 × 10(-7)). We estimate there are 130-234 ASD-related CNV regions in the human genome and present compelling evidence, based on cumulative data, for association of rare de novo events at 7q11.23, 15q11.2-13.1, 16p11.2, and Neurexin 1.  相似文献   

11.
Copy number variations (CNVs) are one of the main sources of variability in the human genome. Many CNVs are associated with various diseases including cardiovascular disease. In addition to hybridization-based methods, next-generation sequencing (NGS) technologies are increasingly used for CNV discovery. However, respective computational methods applicable to NGS data are still limited. We developed a novel CNV calling method based on outlier detection applicable to small cohorts, which is of particular interest for the discovery of individual CNVs within families, de novo CNVs in trios and/or small cohorts of specific phenotypes like rare diseases. Approximately 7,000 rare diseases are currently known, which collectively affect ∼6% of the population. For our method, we applied the Dixon’s Q test to detect outliers and used a Hidden Markov Model for their assessment. The method can be used for data obtained by exome and targeted resequencing. We evaluated our outlier- based method in comparison to the CNV calling tool CoNIFER using eight HapMap exome samples and subsequently applied both methods to targeted resequencing data of patients with Tetralogy of Fallot (TOF), the most common cyanotic congenital heart disease. In both the HapMap samples and the TOF cases, our method is superior to CoNIFER, such that it identifies more true positive CNVs. Called CNVs in TOF cases were validated by qPCR and HapMap CNVs were confirmed with available array-CGH data. In the TOF patients, we found four copy number gains affecting three genes, of which two are important regulators of heart development (NOTCH1, ISL1) and one is located in a region associated with cardiac malformations (PRODH at 22q11). In summary, we present a novel CNV calling method based on outlier detection, which will be of particular interest for the analysis of de novo or individual CNVs in trios or cohorts up to 30 individuals, respectively.  相似文献   

12.
Duplications at 15q11.2-q13.3 overlapping the Prader-Willi/Angelman syndrome (PWS/AS) region have been associated with developmental delay (DD), autism spectrum disorder (ASD) and schizophrenia (SZ). Due to presence of imprinted genes within the region, the parental origin of these duplications may be key to the pathogenicity. Duplications of maternal origin are associated with disease, whereas the pathogenicity of paternal ones is unclear. To clarify the role of maternal and paternal duplications, we conducted the largest and most detailed study to date of parental origin of 15q11.2-q13.3 interstitial duplications in DD, ASD and SZ cohorts. We show, for the first time, that paternal duplications lead to an increased risk of developing DD/ASD/multiple congenital anomalies (MCA), but do not appear to increase risk for SZ. The importance of the epigenetic status of 15q11.2-q13.3 duplications was further underlined by analysis of a number of families, in which the duplication was paternally derived in the mother, who was unaffected, whereas her offspring, who inherited a maternally derived duplication, suffered from psychotic illness. Interestingly, the most consistent clinical characteristics of SZ patients with 15q11.2-q13.3 duplications were learning or developmental problems, found in 76% of carriers. Despite their lower pathogenicity, paternal duplications are less frequent in the general population with a general population prevalence of 0.0033% compared to 0.0069% for maternal duplications. This may be due to lower fecundity of male carriers and differential survival of embryos, something echoed in the findings that both types of duplications are de novo in just over 50% of cases. Isodicentric chromosome 15 (idic15) or interstitial triplications were not observed in SZ patients or in controls. Overall, this study refines the distinct roles of maternal and paternal interstitial duplications at 15q11.2-q13.3, underlining the critical importance of maternally expressed imprinted genes in the contribution of Copy Number Variants (CNVs) at this interval to the incidence of psychotic illness. This work will have tangible benefits for patients with 15q11.2-q13.3 duplications by aiding genetic counseling.  相似文献   

13.
Obesity is one of the most complex human diseases that are widely concerned and studied. More recently, copy number variations (CNVs) emerge as another important genetic marker to influence various human diseases. To elucidate the relationship between obesity and CNVs, this current study selected obesity-related candidate CNVs and analyzed their association with body mass index (BMI). Results showed that a CNV locus, 8q24.3, was significantly different (P = 0.0070) in CNV frequency between the obese and healthy controls in a young eastern Chinese cohort, while no statistical significance was observed in other seven candidate loci including well reported 10q11.22 and 16p11.2 loci. The association of 8q24.3 CNVs with BMI of the subjects only showed marginal significance, while the copy number (CN) of 5p15.33 had a significant correlation with the BMI of the subject. These results suggested that 8q24.3 CN gains was associated with obesity, and 5p15.33 might also contribute to obesity pathogenesis, highlighting the importance of these CNVs for obesity risks, as well as providing new evidence for CNVs in the pathology of common diseases.  相似文献   

14.

Objective

The current study aimed to develop a reliable targeted array comparative genomic hybridization (aCGH) to detect microdeletions and microduplications in congenital conotruncal defects (CTDs), especially on 22q11.2 region, and for some other chromosomal aberrations, such as 5p15-5p, 7q11.23 and 4p16.3.

Methods

Twenty-seven patients with CTDs, including 12 pulmonary atresia (PA), 10 double-outlet right ventricle (DORV), 3 transposition of great arteries (TGA), 1 tetralogy of Fallot (TOF) and one ventricular septal defect (VSD), were enrolled in this study and screened for pathogenic copy number variations (CNVs), using Agilent 8 x 15K targeted aCGH. Real-time quantitative polymerase chain reaction (qPCR) was performed to test the molecular results of targeted aCGH.

Results

Four of 27 patients (14.8%) had 22q11.2 CNVs, 1 microdeletion and 3 microduplications. qPCR test confirmed the microdeletion and microduplication detected by the targeted aCGH.

Conclusion

Chromosomal abnormalities were a well-known cause of multiple congenital anomalies (MCA). This aCGH using arrays with high-density coverage in the targeted regions can detect genomic imbalances including 22q11.2 and other 10 kinds CNVs effectively and quickly. This approach has the potential to be applied to detect aneuploidy and common microdeletion/microduplication syndromes on a single microarray.  相似文献   

15.
Autism spectrum disorders (ASDs) are highly heritable and characterised by deficits in social interaction and communication, as well as restricted and repetitive behaviours. Although a number of highly penetrant ASD gene variants have been identified, there is growing evidence to support a causal role for combinatorial effects arising from the contributions of multiple loci. By examining synaptic and circadian neurological phenotypes resulting from the dosage variants of unique human:fly orthologues in Drosophila, we observe numerous synergistic interactions between pairs of informatically-identified candidate genes whose orthologues are jointly affected by large de novo copy number variants (CNVs). These CNVs were found in the genomes of individuals with autism, including a patient carrying a 22q11.2 deletion. We first demonstrate that dosage alterations of the unique Drosophila orthologues of candidate genes from de novo CNVs that harbour only a single candidate gene display neurological defects similar to those previously reported in Drosophila models of ASD-associated variants. We then considered pairwise dosage changes within the set of orthologues of candidate genes that were affected by the same single human de novo CNV. For three of four CNVs with complete orthologous relationships, we observed significant synergistic effects following the simultaneous dosage change of gene pairs drawn from a single CNV. The phenotypic variation observed at the Drosophila synapse that results from these interacting genetic variants supports a concordant phenotypic outcome across all interacting gene pairs following the direction of human gene copy number change. We observe both specificity and transitivity between interactors, both within and between CNV candidate gene sets, supporting shared and distinct genetic aetiologies. We then show that different interactions affect divergent synaptic processes, demonstrating distinct molecular aetiologies. Our study illustrates mechanisms through which synergistic effects resulting from large structural variation can contribute to human disease.  相似文献   

16.
Agenesis of the corpus callosum (ACC), cerebellar hypoplasia (CBLH), and polymicrogyria (PMG) are severe congenital brain malformations with largely undiscovered causes. We conducted a large-scale chromosomal copy number variation (CNV) discovery effort in 255 ACC, 220 CBLH, and 147 PMG patients, and 2,349 controls. Compared to controls, significantly more ACC, but unexpectedly not CBLH or PMG patients, had rare genic CNVs over one megabase (p = 1.48×10−3; odds ratio [OR] = 3.19; 95% confidence interval [CI] = 1.89–5.39). Rare genic CNVs were those that impacted at least one gene in less than 1% of the combined population of patients and controls. Compared to controls, significantly more ACC but not CBLH or PMG patients had rare CNVs impacting over 20 genes (p = 0.01; OR = 2.95; 95% CI = 1.69–5.18). Independent qPCR confirmation showed that 9.4% of ACC patients had de novo CNVs. These, in comparison to inherited CNVs, preferentially overlapped de novo CNVs previously observed in patients with autism spectrum disorders (p = 3.06×10−4; OR = 7.55; 95% CI = 2.40–23.72). Interestingly, numerous reports have shown a reduced corpus callosum area in autistic patients, and diminished social and executive function in many ACC patients. We also confirmed and refined previously known CNVs, including significantly narrowing the 8p23.1-p11.1 duplication present in 2% of our current ACC cohort. We found six novel CNVs, each in a single patient, that are likely deleterious: deletions of 1p31.3-p31.1, 1q31.2-q31.3, 5q23.1, and 15q11.2-q13.1; and duplications of 2q11.2-q13 and 11p14.3-p14.2. One ACC patient with microcephaly had a paternally inherited deletion of 16p13.11 that included NDE1. Exome sequencing identified a recessive maternally inherited nonsense mutation in the non-deleted allele of NDE1, revealing the complexity of ACC genetics. This is the first systematic study of CNVs in congenital brain malformations, and shows a much higher prevalence of large gene-rich CNVs in ACC than in CBLH and PMG.  相似文献   

17.
Schizophrenia is a common disorder with a high heritability, but its genetic architecture is still elusive.We implemented whole-genome sequencing(WGS) analysis of 8 families with monozygotic(MZ) twin pairs discordant for schizophrenia to assess potential association of de novo mutations(DNMs) or inherited variants with susceptibility to schizophrenia. Eight non-synonymous DNMs(including one splicing site) were identified and shared by twins, which were either located in previously reported schizophrenia risk genes(p.V24689 I mutation in TTN, p.S2506 T mutation in GCN1L1, IVS3+1G T in DOCK1) or had a benign to damaging effect according to in silico prediction analysis. By searching the inherited rare damaging or loss-of-function(LOF) variants and common susceptible alleles from three classes of schizophrenia candidate genes, we were able to distill genetic alterations in several schizophrenia risk genes, including GAD1, PLXNA2, RELN and FEZ1. Four inherited copy number variations(CNVs; including a large deletion at 16p13.11) implicated for schizophrenia were identified in four families, respectively. Most of families carried both missense DNMs and inherited risk variants, which might suggest that DNMs, inherited rare damaging variants and common risk alleles together conferred to schizophrenia susceptibility. Our results support that schizophrenia is caused by a combination of multiple genetic factors, with each DNM/variant showing a relatively small effect size.  相似文献   

18.
Thoracic Aortic Aneurysms and Dissections (TAAD) are a major cause of death in the United States. The spectrum of TAAD ranges from genetic disorders, such as Marfan syndrome, to sporadic isolated disease of unknown cause. We hypothesized that genomic copy number variants (CNVs) contribute causally to early onset TAAD (ETAAD). We conducted a genome-wide SNP array analysis of ETAAD patients of European descent who were enrolled in the National Registry of Genetically Triggered Thoracic Aortic Aneurysms and Cardiovascular Conditions (GenTAC). Genotyping was performed on the Illumina Omni-Express platform, using PennCNV, Nexus and CNVPartition for CNV detection. ETAAD patients (n = 108, 100% European American, 28% female, average age 20 years, 55% with bicuspid aortic valves) were compared to 7013 dbGAP controls without a history of vascular disease using downsampled Omni 2.5 data. For comparison, 805 sporadic TAAD patients with late onset aortic disease (STAAD cohort) and 192 affected probands from families with at least two affected relatives (FTAAD cohort) from our institution were screened for additional CNVs at these loci with SNP arrays. We identified 47 recurrent CNV regions in the ETAAD, FTAAD and STAAD groups that were absent or extremely rare in controls. Nine rare CNVs that were either very large (>1 Mb) or shared by ETAAD and STAAD or FTAAD patients were also identified. Four rare CNVs involved genes that cause arterial aneurysms when mutated. The largest and most prevalent of the recurrent CNVs were at Xq28 (two duplications and two deletions) and 17q25.1 (three duplications). The percentage of individuals harboring rare CNVs was significantly greater in the ETAAD cohort (32%) than in the FTAAD (23%) or STAAD (17%) cohorts. We identified multiple loci affected by rare CNVs in one-third of ETAAD patients, confirming the genetic heterogeneity of TAAD. Alterations of candidate genes at these loci may contribute to the pathogenesis of TAAD.  相似文献   

19.
Copy number variants (CNVs) contribute to human genetic and phenotypic diversity. However, the distribution of larger CNVs in the general population remains largely unexplored. We identify large variants in ~2500 individuals by using Illumina SNP data, with an emphasis on “hotspots” prone to recurrent mutations. We find variants larger than 500 kb in 5%–10% of individuals and variants greater than 1 Mb in 1%–2%. In contrast to previous studies, we find limited evidence for stratification of CNVs in geographically distinct human populations. Importantly, our sample size permits a robust distinction between truly rare and polymorphic but low-frequency copy number variation. We find that a significant fraction of individual CNVs larger than 100 kb are rare and that both gene density and size are strongly anticorrelated with allele frequency. Thus, although large CNVs commonly exist in normal individuals, which suggests that size alone can not be used as a predictor of pathogenicity, such variation is generally deleterious. Considering these observations, we combine our data with published CNVs from more than 12,000 individuals contrasting control and neurological disease collections. This analysis identifies known disease loci and highlights additional CNVs (e.g., 3q29, 16p12, and 15q25.2) for further investigation. This study provides one of the first analyses of large, rare (0.1%–1%) CNVs in the general population, with insights relevant to future analyses of genetic disease.  相似文献   

20.
Epidemiological and genetic studies suggest that schizophrenia and autism may share genetic links. Besides common single nucleotide polymorphisms, recent data suggest that some rare copy number variants (CNVs) are risk factors for both disorders. Because we have previously found that schizophrenia and psychosis in Alzheimer''s disease (AD+P) share some genetic risk, we investigated whether CNVs reported in schizophrenia and autism are also linked to AD+P. We searched for CNVs associated with AD+P in 7 recurrent CNV regions that have been previously identified across autism and schizophrenia, using the Illumina HumanOmni1-Quad BeadChip. A chromosome 16p11.2 duplication CNV (chr16: 29,554,843-30,105,652) was identified in 2 of 440 AD+P subjects, but not in 136 AD subjects without psychosis, or in 593 AD subjects with intermediate psychosis status, or in 855 non-AD individuals. The frequency of this duplication CNV in AD+P (0.46%) was similar to that reported previously in schizophrenia (0.46%). This duplication CNV was further validated using the NanoString nCounter CNV Custom CodeSets. The 16p11.2 duplication has been associated with developmental delay, intellectual disability, behavioral problems, autism, schizophrenia (SCZ), and bipolar disorder. These two AD+P patients had no personal of, nor any identified family history of, SCZ, bipolar disorder and autism. To the best of our knowledge, our case report is the first suggestion that 16p11.2 duplication is also linked to AD+P. Although rare, this CNV may have an important role in the development of psychosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号