首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
How cells move is a fundamental biological question. The directionality of adherent migrating cells depends on the assembly and disassembly (turnover) of focal adhesions (FAs). FAs are micron-sized actin-based structures that link cells to the extracellular matrix. Traditionally, microtubules have been considered key to triggering FA turnover. Through the years, advancements in biochemistry, biophysics, and bioimaging tools have been invaluable for many research groups to unravel a variety of mechanisms and molecular players that contribute to FA turnover, beyond microtubules. Here, we discuss recent discoveries of key molecular players that affect the dynamics and organization of the actin cytoskeleton to enable timely FA turnover and consequently proper directed cell migration.  相似文献   

2.
Focal adhesions (FAs) play a key role in cell attachment, and their timely disassembly is required for cell motility. Both microtubule-dependent targeting and recruitment of clathrin are critical for FA disassembly. Here we identify nonvisual arrestins as molecular links between microtubules and clathrin. Cells lacking both nonvisual arrestins showed excessive spreading on fibronectin and poly-d-lysine, increased adhesion, and reduced motility. The absence of arrestins greatly increases the size and lifespan of FAs, indicating that arrestins are necessary for rapid FA turnover. In nocodazole washout assays, FAs in arrestin-deficient cells were unresponsive to disassociation or regrowth of microtubules, suggesting that arrestins are necessary for microtubule targeting–dependent FA disassembly. Clathrin exhibited decreased dynamics near FA in arrestin-deficient cells. In contrast to wild-type arrestins, mutants deficient in clathrin binding did not rescue the phenotype. Collectively the data indicate that arrestins are key regulators of FA disassembly linking microtubules and clathrin.  相似文献   

3.
Endothelial cell migration is critical for vascular angiogenesis and is compromised to facilitate tumor metastasis. The migratory process requires the coordinated assembly and disassembly of focal adhesions (FA), actin, and microtubules (MT). MT dynamics at FAs deliver vesicular cargoes and enhance actomyosin contractility to promote FA turnover and facilitate cell advance. Noncentrosomal (NC) MTs regulate FA dynamics and are sufficient to drive cell polarity, but how NC MTs target FAs to control FA turnover is not understood. Here, we show that Rac1 induces the assembly of FA-proximal septin filaments that promote NC MT growth into FAs and inhibit mitotic centromere-associated kinesin (MCAK)-associated MT disassembly, thereby maintaining intact MT plus ends proximal to FAs. Septin-associated MT rescue is coupled with accumulation of Aurora-A kinase and cytoplasmic linker-associated protein (CLASP) localization to the MT between septin and FAs. In this way, NC MTs are strategically positioned to undergo MCAK- and CLASP-regulated bouts of assembly and disassembly into FAs, thereby regulating FA turnover and cell migration.  相似文献   

4.
Initial integrin-mediated cell-matrix adhesions (focal complexes) appear underneath the lamellipodia, in the regions of the "fast" centripetal flow driven by actin polymerization. Once formed, these adhesions convert the flow behind them into a "slow", myosin II-driven mode. Some focal complexes then turn into elongated focal adhesions (FAs) associated with contractile actomyosin bundles (stress fibers). Myosin II inhibition does not suppress formation of focal complexes but blocks their conversion into mature FAs and further FA growth. Application of external pulling force promotes FA growth even under conditions when myosin II activity is blocked. Thus, individual FAs behave as mechanosensors responding to the application of force by directional assembly. We proposed a thermodynamic model for the mechanosensitivity of FAs, taking into account that an elastic molecular aggregate subject to pulling forces tends to grow in the direction of force application by incorporating additional subunits. This simple model can explain a variety of processes typical of FA behavior. Assembly of FAs is triggered by the small G-protein Rho via activation of two major targets, Rho-associated kinase (ROCK) and the formin homology protein, Dia1. ROCK controls creation of myosin II-driven forces, while Dia1 is involved in the response of FAs to these forces. Expression of the active form of Dia1, allows the external force-induced assembly of mature FAs, even in conditions when Rho is inhibited. Conversely, downregulation of Dia1 by siRNA prevents FA maturation even if Rho is activated. Dia1 and other formins cap barbed (fast growing) ends of actin filaments, allowing insertion of the new actin monomers. We suggested a novel mechanism of such "leaky" capping based on an assumption of elasticity of the formin/barbed end complex. Our model predicts that formin-mediated actin polymerization should be greatly enhanced by application of external pulling force. Thus, the formin-actin complex might represent an elementary mechanosensing device responding to force by enhancement of actin assembly. In addition to its role in actin polymerization, Dia1 seems to be involved in formation of links between actin filaments and microtubules affecting microtubule dynamics. Alpha-tubulin deacetylase HDAC6 cooperates with Dia1 in formation of such links. Since microtubules are known to promote FA disassembly, the Dia1-mediated effect on microtubule dynamics may possibly play a role in the negative feedback loop controlling size and turnover of FAs.  相似文献   

5.
 Cell migration is a highly complex process that requires the coordinated formation of membrane protrusion and focal adhesions (FAs). Focal adhesion kinase (FAK), a major signaling component of FAs, is involved in the disassembly process of FAs through phosphorylation and dephosphorylation of its tyrosine residues, but the role of such phosphorylations in nascent FA formation and turnover near the cell front and in cell protrusion is less well understood. In the present study, we demonstrate that, depending on the phosphorylation status of Tyr-925 residue, FAK modulates cell migration via two specific mechanisms. FAK−/− mouse embryonic fibroblasts (MEFs) expressing nonphosphorylatable Y925F-FAK show increased interactions between FAK and unphosphorylated paxillin, which lead to FA stabilization and thus decreased FA turnover and reduced cell migration. Conversely, MEFs expressing phosphomimetic Y925E-FAK display unchanged FA disassembly rates, show increase in phosphorylated paxillin in FAs, and exhibit increased formation of nascent FAs at the cell leading edges. Moreover, Y925E-FAK cells present enhanced cell protrusion together with activation of the p130CAS/Dock180/Rac1 signaling pathway. Together, our results demonstrate that phosphorylation of FAK at Tyr-925 is required for FAK-mediated cell migration and cell protrusion.  相似文献   

6.
Engagement of integrin receptors with the extracellular matrix induces the formation of focal adhesions (FAs). Dynamic regulation of FAs is necessary for cells to polarize and migrate. Key interactions between FA scaffolding and signaling proteins are dependent on tyrosine phosphorylation. However, the precise role of tyrosine phosphorylation in FA development and maturation is poorly defined. Here, we show that phosphorylation of type Igamma phosphatidylinositol phosphate kinase (PIPKIgamma661) on tyrosine 644 (Y644) is critical for its interaction with talin, and consequently, localization to FAs. PIPKIgamma661 is specifically phosphorylated on Y644 by Src. Phosphorylation is regulated by focal adhesion kinase, which enhances the association between PIPKIgamma661 and Src. The phosphorylation of Y644 results in an approximately 15-fold increase in binding affinity to the talin head domain and blocks beta-integrin binding to talin. This defines a novel phosphotyrosine-binding site on the talin F3 domain and a "molecular switch" for talin binding between PIPKIgamma661 and beta-integrin that may regulate dynamic FA turnover.  相似文献   

7.
Both tyrosine-phosphorylated caveolin-1 (pY14Cav1) and GlcNAc-transferase V (Mgat5) are linked with focal adhesions (FAs); however, their function in this context is unknown. Here, we show that galectin-3 binding to Mgat5-modified N-glycans functions together with pY14Cav1 to stabilize focal adhesion kinase (FAK) within FAs, and thereby promotes FA disassembly and turnover. Expression of the Mgat5/galectin lattice alone induces FAs and cell spreading. However, FAK stabilization in FAs also requires expression of pY14Cav1. In cells lacking the Mgat5/galectin lattice, pY14Cav1 is not sufficient to promote FAK stabilization, FA disassembly, and turnover. In human MDA-435 cancer cells, Cav1 expression, but not mutant Y14FCav1, stabilizes FAK exchange and stimulates de novo FA formation in protrusive cellular regions. Thus, transmembrane crosstalk between the galectin lattice and pY14Cav1 promotes FA turnover by stabilizing FAK within FAs defining previously unknown, interdependent roles for galectin-3 and pY14Cav1 in tumor cell migration.  相似文献   

8.
Chen TJ  Wu CC  Tang MJ  Huang JS  Su FC 《PloS one》2010,5(12):e14392
Cytoskeleton plays important roles in intracellular force equilibrium and extracellular force transmission from/to attaching substrate through focal adhesions (FAs). Numerical simulations of intracellular force distribution to describe dynamic cell behaviors are still limited. The tensegrity structure comprises tension-supporting cables and compression-supporting struts that represent the actin filament and microtubule respectively, and has many features consistent with living cells. To simulate the dynamics of intracellular force distribution and total stored energy during cell spreading, the present study employed different complexities of the tensegrity structures by using octahedron tensegrity (OT) and cuboctahedron tensegrity (COT). The spreading was simulated by assigning specific connection nodes for radial displacement and attachment to substrate to form FAs. The traction force on each FA was estimated by summarizing the force carried in sounding cytoskeletal elements. The OT structure consisted of 24 cables and 6 struts and had limitations soon after the beginning of spreading by declining energy stored in struts indicating the abolishment of compression in microtubules. The COT structure, double the amount of cables and struts than the OT structure, provided sufficient spreading area and expressed similar features with documented cell behaviors. The traction force pointed inward on peripheral FAs in the spread out COT structure. The complex structure in COT provided further investigation of various FA number during different spreading stages. Before the middle phase of spreading (half of maximum spreading area), cell attachment with 8 FAs obtained minimized cytoskeletal energy. The maximum number of 12 FAs in the COT structure was required to achieve further spreading. The stored energy in actin filaments increased as cells spread out, while the energy stored in microtubules increased at initial spreading, peaked in middle phase, and then declined as cells reached maximum spreading. The dynamic flows of energy in struts imply that microtubules contribute to structure stabilization.  相似文献   

9.
Cell migration is mediated by the dynamic remodeling of focal adhesions (FAs). Recently, an important role of endosomal signaling in regulation of cell migration was recognized. Here, we show an essential function for late endosomes carrying the p14–MP1 (LAMTOR2/3) complex in FA dynamics. p14–MP1-positive endosomes move to the cell periphery along microtubules (MTs) in a kinesin1- and Arl8b-dependent manner. There they specifically target FAs to regulate FA turnover, which is required for cell migration. Using genetically modified fibroblasts from p14-deficient mice and Arl8b-depleted cells, we demonstrate that MT plus end–directed traffic of p14–MP1-positive endosomes triggered IQGAP1 disassociation from FAs. The release of IQGAP was required for FA dynamics. Taken together, our results suggest that late endosomes contribute to the regulation of cell migration by transporting the p14–MP1 scaffold complex to the vicinity of FAs.  相似文献   

10.
Integrin-mediated adhesion to extracellular matrix proteins is dynamically regulated during morphological changes and cell migration. Upon cell adhesion, protein-protein interactions among molecules at focal adhesions (FAs) play major roles in the regulation of cell morphogenesis and migration. Although tyrosine phosphorylation of paxillin is critically involved in adhesion-mediated signaling, the significance of paxillin phosphorylation at Ser-85 and the mechanism by which it regulates cell migration remain unclear. In this study, we examined how Ser-85 phosphorylation of paxillin affects FA formation and cell migration. We found that paxillin phosphorylation at Ser-85 occurred during HeLa cell adhesion to collagen I and was concomitant with tyrosine phosphorylation of both focal adhesion kinase and talin. However, the non-phosphorylatable S85A mutant of paxillin impaired cell spreading, FA turnover, and migration toward collagen I but not toward serum. Furthermore, whereas the (presumably indirect) interaction between paxillin and the C-terminal tail of talin led to dynamic FAs at the cell boundary, S85A paxillin did not bind talin and caused stabilized FAs in the central region of cells. Together, these observations suggest that cell adhesion-dependent Ser-85 phosphorylation of paxillin is important for its interaction with talin and regulation of dynamic FAs and cell migration.  相似文献   

11.
Tumor cell migration is supported in part by the cyclic formation and disassembly of focal adhesions (FAs); however, the mechanisms that regulate this process are not fully defined. The large guanosine 5'-triphosphatase dynamin (Dyn) plays an important role in FA dynamics and is activated by tyrosine phosphorylation. Using a novel antibody specific to phospho-dynamin (pDyn-Tyr-231), we found that Dyn2 is phosphorylated at FAs by Src kinase and is recruited to FAs by a direct interaction with the 4.1/ezrin/radizin/moesin domain of focal adhesion kinase (FAK), which functions as an adaptor between Src and Dyn2 to facilitate Dyn2 phosphorylation. This Src-FAK-Dyn2 trimeric complex is essential for FA turnover, as mutants disrupting the formation of this complex inhibit FA disassembly. Importantly, phosphoactivated Dyn2 promotes FA turnover by mediating the endocytosis of integrins in a clathrin-dependent manner. This study defines a novel mechanism of how Dyn2 functions as a downstream effector of FAK-Src signaling in turning over FAs.  相似文献   

12.
Focal adhesion (FA) kinase (FAK) regulates cell survival and motility by transducing signals from membrane receptors. The C-terminal FA targeting (FAT) domain of FAK fulfils multiple functions, including recruitment to FAs through paxillin binding. Phosphorylation of FAT on Tyr925 facilitates FA disassembly and connects to the MAPK pathway through Grb2 association, but requires dissociation of the first helix (H1) of the four-helix bundle of FAT. We investigated the importance of H1 opening in cells by comparing the properties of FAK molecules containing wild-type or mutated FAT with impaired or facilitated H1 openings. These mutations did not alter the activation of FAK, but selectively affected its cellular functions, including self-association, Tyr925 phosphorylation, paxillin binding, and FA targeting and turnover. Phosphorylation of Tyr861, located between the kinase and FAT domains, was also enhanced by the mutation that opened the FAT bundle. Similarly phosphorylation of Ser910 by ERK in response to bombesin was increased by FAT opening. Although FAK molecules with the mutation favoring FAT opening were poorly recruited at FAs, they efficiently restored FA turnover and cell shape in FAK-deficient cells. In contrast, the mutation preventing H1 opening markedly impaired FAK function. Our data support the biological importance of conformational dynamics of the FAT domain and its functional interactions with other parts of the molecule.  相似文献   

13.
Focal adhesions (FAs) are large assemblies of proteins that mediate intracellular signals between the cytoskeleton and the extracellular matrix (ECM). The turnover of FA proteins plays a critical regulatory role in cancer cell migration. Plasma membrane lipids locally generated or broken down by different inositide kinases and phosphatase enzymes to activate and recruit proteins to specific regions in the plasma membrane. Presently, little attention has been given to the use of phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) and Phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P3) fluorescent biosensors in order to determine the spatiotemporal organisation of PtdIns(4,5)P2 and PtdIns(3,4,5)P3 within and around or during assembly and disassembly of FAs. In this study, specific biosensors were used to detect PtdIns(4,5)P2, PtdIns(3,4,5)P3, and FAs proteins conjugated to RFP/GFP in order to monitor changes of PtdIns(4,5)P2 and PtdIns(3,4,5)P3 levels within FAs. We demonstrated that the localisation of PtdIns(4,5)P2 and PtdIns(3,4,5)P3 were moderately correlated with that of FA proteins. Furthermore, we demonstrate that local levels of PtdIns(4,5)P2 increased within FA assembly and declined within FA disassembly. However, PtdIns(3,4,5)P3 levels remained constant within FAs assembly and disassembly. In conclusion, this study shows that PtdIns(4,5)P2 and PtdIns(3,4,5)P3 localised in FAs may be regulated differently during FA assembly and disassembly.  相似文献   

14.

Background

Efficient cell movement requires the dynamic regulation of focal adhesion (FA) formation and turnover. FAs are integrin-associated sites of cell attachment and establish linkages to the cellular actin cytoskeleton. Cells without focal adhesion kinase (FAK), an integrin-activated tyrosine kinase, exhibit defects in FA turnover and cell motility. Cortactin is an actin binding adaptor protein that can influence FA dynamics. FAK and cortactin interact, but the cellular role of this complex remains unclear.

Principal Findings

Using FAK-null fibroblasts stably reconstituted with green fluorescent protein (GFP) tagged FAK constructs, we find that FAK activity and FAK C-terminal proline-rich region 2 (PRR2) and PRR3 are required for FA turnover and cell motility. Cortactin binds directly to FAK PRR2 and PRR3 sites via its SH3 domain and cortactin expression is important in promoting FA turnover and GFP-FAK release from FAs. FAK-cortactin binding is negatively-regulated by FAK activity and associated with cortactin tyrosine phosphorylation. FAK directly phosphorylates cortactin at Y421 and Y466 and over-expression of cortactin Y421, Y466, and Y482 mutated to phenylalanine (3YF) prevented FAK-enhanced FA turnover and cell motility. However, phospho-mimetic cortactin mutated to glutamic acid (3YE) did not affect FA dynamics and did not rescue FA turnover defects in cells with inhibited FAK activity or with PRR2-mutated FAK that does not bind cortactin.

Conclusions

Our results support a model whereby FAK-mediated FA remodeling may occur through the formation of a FAK-cortactin signaling complex. This involves a cycle of cortactin binding to FAK, cortactin tyrosine phosphorylation, and subsequent cortactin-FAK dissociation accompanied by FA turnover and cell movement.  相似文献   

15.
Fatty acid (FA) signature analysis is a powerful tool to investigate foraging ecology and food web dynamics in marine ecosystems. However, use of FA signatures to qualitatively or quantitatively infer diets is potentially complicated by effects of nutritional state on lipid metabolism. Estimation of diets using the quantitative fatty acid signature analysis (QFASA) model requires the use of calibration coefficients to account for predator metabolism of individual FAs. We conducted a captive feeding experiment to determine the effects of a 50% reduction in food intake on growth rate and adipose tissue FA signatures of tufted puffin (Fratercula cirrhata) nestlings, a species that routinely experiences food restriction during growth. FA signatures of chicks fed low- and high-calorie diets both exhibited a change in composition in response to the dietary shift with the direction of change in the composition of individual FAs matching the direction of change in the dietary FAs. Despite a growth rate in the restricted nestlings that was 38% of those in the well-fed group, rates of FA turnover were not different between high and low-calorie treatments, and turnover was close to, but not entirely complete, after 27 days on both high-calorie and restricted diets. FA signatures of tufted puffin nestlings were significantly affected by caloric restriction, but these effects were much less pronounced than those of dietary turnover, and calibration coefficients of puffins fed low and high-calorie diets were highly correlated. Our results demonstrate that changes in physiological state can affect FA metabolism, but future research is required to better understand whether the size of these effects is sufficient to substantially alter diet estimation using the QFASA model.  相似文献   

16.
During mitosis in budding yeast the nucleus first moves to the mother-bud neck and then into the neck. Both movements depend on interactions of cytoplasmic microtubules with the cortex. We investigated the mechanism of these movements in living cells using video analysis of GFP-labeled microtubules in wild-type cells and in EB1 and Arp1 mutants, which are defective in the first and second steps, respectively. We found that nuclear movement to the neck is largely mediated by the capture of microtubule ends at one cortical region at the incipient bud site or bud tip, followed by microtubule depolymerization. Efficient microtubule interactions with the capture site require that microtubules be sufficiently long and dynamic to probe the cortex. In contrast, spindle movement into the neck is mediated by microtubule sliding along the bud cortex, which requires dynein and dynactin. Free microtubules can also slide along the cortex of both bud and mother. Capture/shrinkage of microtubule ends also contributes to nuclear movement into the neck and can serve as a backup mechanism to move the nucleus into the neck when microtubule sliding is impaired. Conversely, microtubule sliding can move the nucleus into the neck even when capture/shrinkage is impaired.  相似文献   

17.
The kinesin superfamily of microtubule associated motor proteins share a characteristic motor domain which both hydrolyses ATP and binds microtubules. Kinesins display differences across the superfamily both in ATP turnover and in microtubule interaction. These differences tailor specific kinesins to various functions such as cargo transport, microtubule sliding, microtubule depolymerization and microtubule stabilization. To understand the mechanism of action of a kinesin it is important to understand how the chemical cycle of ATP turnover is coupled to the mechanical cycle of microtubule interaction. To dissect the ATP turnover cycle, one approach is to utilize fluorescently labeled nucleotides to visualize individual steps in the cycle. Determining the kinetics of each nucleotide transition in the ATP turnover cycle allows the rate-limiting step or steps for the complete cycle to be identified. For a kinesin, it is important to know the rate-limiting step, in the absence of microtubules, as this step is generally accelerated several thousand fold when the kinesin interacts with microtubules. The cycle in the absence of microtubules is then compared to that in the presence of microtubules to fully understand a kinesin’s ATP turnover cycle. The kinetics of individual nucleotide transitions are generally too fast to observe by manually mixing reactants, particularly in the presence of microtubules. A rapid mixing device, such as a stopped-flow fluorimeter, which allows kinetics to be observed on timescales of as little as a few milliseconds, can be used to monitor such transitions. Here, we describe protocols in which rapid mixing of reagents by stopped-flow is used in conjunction with fluorescently labeled nucleotides to dissect the ATP turnover cycle of a kinesin.  相似文献   

18.
Microtubules meet substrate adhesions to arrange cell polarity   总被引:13,自引:0,他引:13  
Cell movement is driven by the regulated and polarised turnover of the actin cytoskeleton and of the adhesion complexes that link it to the extracellular matrix. For most cells, polarisation requires the engagement of microtubules, which exert their effect by mediating changes in the activity of the Rho GTPases. Evidence suggests that these changes are effected in a very localised fashion at sites of substrate adhesion, via specific microtubule-targeting interactions. Targeting serves to bring molecular complexes bound at the tips and along microtubules in close proximity with adhesion complexes, to promote adhesion disassembly and remodelling of the actin cytoskeleton.  相似文献   

19.
Because cells are sensitive to mechanical forces, microgravity might act on stress-dependent cell changes. Regulation of focal adhesions (FAs) and cytoskeletal activity plays a role in cell maintenance, cell movement, and migration. Human MCF-7 cells were exposed to modeled microgravity (MMG) to test the hypothesis that migration responsiveness to microgravity is associated with cytoskeleton and FA anomalies. MMG acts on MCF-7 cells by disorganizing cytoskeleton filaments (microfilaments and microtubules). Microfilaments in MMG did not display their typical radial array. Likewise, microtubules were disrupted in MCF-7 cells within 4 h of initiation of MMG and were partly reestablished by 48 h. FAs generated in microgravity were less mature than those established in controls, shown by reduced FAs number and clustering. In parallel, MMG decreased kinases activity (such as FAK, PYK2, and ILK) of FAs in MCF-7 cells. The expression of both integrinβ1 and integrinβ4 were downregulated by MMG. We conclude that cytoskeletal alterations and FAs changes in MMG are concomitant with cell invasion and migration retardation. We suggest that reduced migration response in MCF-7 cells following MMG is linked to changes of cytoskeleton and FAs.  相似文献   

20.
The concept of a spindle matrix has long been proposed. Whether such a structure exists, however, and what its molecular and structural composition are have remained controversial. In this study, using a live-imaging approach in Drosophila syncytial embryos, we demonstrate that nuclear proteins reorganize during mitosis to form a highly dynamic, viscous spindle matrix that embeds the microtubule spindle apparatus, stretching from pole to pole. We show that this "internal" matrix is a distinct structure from the microtubule spindle and from a lamin B-containing spindle envelope. By injection of 2000-kDa dextran, we show that the disassembling nuclear envelope does not present a diffusion barrier. Furthermore, when microtubules are depolymerized with colchicine just before metaphase the spindle matrix contracts and coalesces around the chromosomes, suggesting that microtubules act as "struts" stretching the spindle matrix. In addition, we demonstrate that the spindle matrix protein Megator requires its coiled-coil amino-terminal domain for spindle matrix localization, suggesting that specific interactions between spindle matrix molecules are necessary for them to form a complex confined to the spindle region. The demonstration of an embedding spindle matrix lays the groundwork for a more complete understanding of microtubule dynamics and of the viscoelastic properties of the spindle during cell division.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号