首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Burkholderia pseudomallei is a category B pathogen and the causative agent of melioidosis – a serious infectious disease that is typically acquired directly from environmental reservoirs. Nearly all B. pseudomallei strains sequenced to date (> 85 isolates) contain gene clusters that are related to the contact‐dependent growth inhibition (CDI) systems of γ‐proteobacteria. CDI systems from Escherichia coli and Dickeya dadantii play significant roles in bacterial competition, suggesting these systems may also contribute to the competitive fitness of B. pseudomallei. Here, we identify 10 distinct CDI systems in B. pseudomallei based on polymorphisms within the cdiA‐CT/cdiI coding regions, which are predicted to encode CdiA‐CT/CdiI toxin/immunity protein pairs. Biochemical analysis of three B. pseudomallei CdiA‐CTs revealed that each protein possesses a distinct tRNase activity capable of inhibiting cell growth. These toxin activities are blocked by cognate CdiI immunity proteins, which specifically bind the CdiA‐CT and protect cells from growth inhibition. Using Burkholderia thailandensis E264 as a model, we show that a CDI system from B. pseudomallei 1026b mediates CDI and is capable of delivering CdiA‐CT toxins derived from other B. pseudomallei strains. These results demonstrate that Burkholderia species contain functional CDI systems, which may confer a competitive advantage to these bacteria.  相似文献   

2.
Bacterial contact-dependent growth inhibition (CDI) is mediated by the CdiA/CdiB family of two-partner secretion proteins. Each CdiA protein exhibits a distinct growth inhibition activity, which resides in the polymorphic C-terminal region (CdiA-CT). CDI(+) cells also express unique CdiI immunity proteins that specifically block the activity of cognate CdiA-CT, thereby protecting the cell from autoinhibition. Here we show that many CDI systems contain multiple cdiA gene fragments that encode CdiA-CT sequences. These "orphan" cdiA-CT genes are almost always associated with downstream cdiI genes to form cdiA-CT/cdiI modules. Comparative genome analyses suggest that cdiA-CT/cdiI modules are mobile and exchanged between the CDI systems of different bacteria. In many instances, orphan cdiA-CT/cdiI modules are fused to full-length cdiA genes in other bacterial species. Examination of cdiA-CT/cdiI modules from Escherichia coli EC93, E. coli EC869, and Dickeya dadantii 3937 confirmed that these genes encode functional toxin/immunity pairs. Moreover, the orphan module from EC93 was functional in cell-mediated CDI when fused to the N-terminal portion of the EC93 CdiA protein. Bioinformatic analyses revealed that the genetic organization of CDI systems shares features with rhs (rearrangement hotspot) loci. Rhs proteins also contain polymorphic C-terminal regions (Rhs-CTs), some of which share significant sequence identity with CdiA-CTs. All rhs genes are followed by small ORFs representing possible rhsI immunity genes, and several Rhs systems encode orphan rhs-CT/rhsI modules. Analysis of rhs-CT/rhsI modules from D. dadantii 3937 demonstrated that Rhs-CTs have growth inhibitory activity, which is specifically blocked by cognate RhsI immunity proteins. Together, these results suggest that Rhs plays a role in intercellular competition and that orphan gene modules expand the diversity of toxic activities deployed by both CDI and Rhs systems.  相似文献   

3.
Contact-dependent inhibition (CDI) toxins, delivered into the cytoplasm of target bacterial cells, confer to host strain a significant competitive advantage. Upon cell contact, the toxic C-terminal region of surface-exposed CdiA protein (CdiA-CT) inhibits the growth of CDI- bacteria. CDI+ cells express a specific immunity protein, CdiI, which protects from autoinhibition by blocking the activity of cognate CdiA-CT. CdiA-CT are separated from the rest of the protein by conserved peptide motifs falling into two distinct classes, the “E. coli”- and “Burkholderia-type”. CDI systems have been described in numerous species except in Pseudomonadaceae. In this study, we identified functional toxin/immunity genes linked to CDI systems in the Pseudomonas genus, which extend beyond the conventional CDI classes by the variability of the peptide motif that delimits the polymorphic CdiA-CT domain. Using P. aeruginosa PAO1 as a model, we identified the translational repressor RsmA as a negative regulator of CDI systems. Our data further suggest that under conditions of expression, P. aeruginosa CDI systems are implicated in adhesion and biofilm formation and provide an advantage in competition assays. All together our data imply that CDI systems could play an important role in niche adaptation of Pseudomonadaceae.  相似文献   

4.
Bacterial populations can use bet‐hedging strategies to cope with rapidly changing environments. One example is non‐growing cells in clonal bacterial populations that are able to persist antibiotic treatment. Previous studies suggest that persisters arise in bacterial populations either stochastically through variation in levels of global signalling molecules between individual cells, or in response to various stresses. Here, we show that toxins used in contact‐dependent growth inhibition (CDI) create persisters upon direct contact with cells lacking sufficient levels of CdiI immunity protein, which would otherwise bind to and neutralize toxin activity. CDI‐mediated persisters form through a feedforward cycle where the toxic activity of the CdiA toxin increases cellular (p)ppGpp levels, which results in Lon‐mediated degradation of the immunity protein and more free toxin. Thus, CDI systems mediate a population density‐dependent bet‐hedging strategy, where the fraction of non‐growing cells is increased only when there are many cells of the same genotype. This may be one of the mechanisms of how CDI systems increase the fitness of their hosts.  相似文献   

5.
Contact-Dependent Growth Inhibition (CDI) is a phenomenon in which bacteria use the toxic C-terminus of a large exoprotein (called BcpA in Burkholderia species) to inhibit the growth of neighboring bacteria upon cell-cell contact. CDI systems are present in a wide range of Gram-negative proteobacteria and a hallmark feature is polymorphism amongst the exoprotein C-termini (BcpA-CT in Burkholderia) and amongst the small immunity proteins (BcpI) that protect against CDI in an allele-specific manner. In addition to CDI, the BcpAIOB proteins of Burkholderia thailandensis mediate biofilm formation, and they do so independent of BcpA-mediated interbacterial competition, suggesting a cooperative role for CDI system proteins in this process. CDI has previously only been demonstrated between CDI+ and CDI bacteria, leaving the roles of CDI system-mediated interbacterial competition and of CDI system diversity in nature unknown. We constructed B. thailandensis strains that differed only in the BcpA-CT and BcpI proteins they produced. When co-cultured on agar, these strains each participated in CDI and the outcome of the competition depended on both CDI system efficiency and relative bacterial numbers initially. Strains also participated in CDI during biofilm development, resulting in pillar structures that were composed of only a single BcpA-CT/BcpI type. Moreover, a strain producing BcpA-CT/BcpI proteins of one type was prevented from joining a pre-established biofilm community composed of bacteria producing BcpA-CT/BcpI proteins of a different type, unless it also produced the BcpI protein of the established strain. Bacteria can therefore use CDI systems for kind recognition and competitive exclusion of ‘non-self’ bacteria from a pre-established biofilm. Our data indicate that CDI systems function in both cooperative and competitive behaviors to build microbial communities that are composed of only bacteria that are related via their CDI system alleles.  相似文献   

6.
Protein secretion through autotransporter and two-partner pathways   总被引:1,自引:0,他引:1  
Two distinct protein secretion pathways, the autotransporter (AT) and the two-partner secretion (TPS) pathways are characterized by their apparent simplicity. Both are devoted to the translocation across the outer membrane of mostly large proteins or protein domains. As implied by their name, AT proteins contain their own transporter domain, covalently attached to the C-terminal extremity of the secreted passenger domain, while TPS systems are composed of two separate proteins, with TpsA being the secreted protein and TpsB its specific transporter. In both pathways, the secreted proteins are exported in a Sec-dependent manner across the inner membrane, after which they cross the outer membrane with the help of their cognate transporters. The AT translocator domains and the TpsB proteins constitute distinct families of protein-translocating, outer membrane porins of Gram-negative bacteria. Both types of transporters insert into the outer membrane as beta-barrel proteins possibly forming oligomeric pores in the case of AT and serve as conduits for their cognate secreted proteins or domains across the outer membrane. Translocation appears to be folding-sensitive in both pathways, indicating that AT passenger domains and TpsA proteins cross the periplasm and the outer membrane in non-native conformations and fold progressively at the cell surface. A major difference between AT and TPS pathways arises from the manner by which specificity is established between the secreted protein and its transporter. In AT, the covalent link between the passenger and the translocator domains ensures the translocation of the former without the need for a specific molecular recognition between the two modules. In contrast, the TPS pathway has solved the question of specific recognition between the TpsA proteins and their transporters by the addition to the TpsA proteins of an N-proximal module, the conserved TPS domain, which represents a hallmark of the TPS pathway.  相似文献   

7.
Contact-dependent growth inhibition (CDI) is a mode of inter-bacterial competition mediated by the CdiB/CdiA family of two-partner secretion systems. CdiA binds to receptors on susceptible target bacteria, then delivers a toxin domain derived from its C-terminus. Studies with Escherichia coli suggest the existence of multiple CDI growth-inhibition pathways, whereby different systems exploit distinct target-cell proteins to deliver and activate toxins. Here, we explore the CDI pathway in Burkholderia using the CDIII Bp1026b system encoded on chromosome II of Burkholderia pseudomallei 1026b as a model. We took a genetic approach and selected Burkholderia thailandensis E264 mutants that are resistant to growth inhibition by CDIII Bp1026b. We identified mutations in three genes, BTH_I0359, BTH_II0599, and BTH_I0986, each of which confers resistance to CDIII Bp1026b. BTH_I0359 encodes a small peptide of unknown function, whereas BTH_II0599 encodes a predicted inner membrane transport protein of the major facilitator superfamily. The inner membrane localization of BTH_II0599 suggests that it may facilitate translocation of CdiA-CTII Bp1026b toxin from the periplasm into the cytoplasm of target cells. BTH_I0986 encodes a putative transglycosylase involved in lipopolysaccharide (LPS) synthesis. ∆BTH_I0986 mutants have altered LPS structure and do not interact with CDI+ inhibitor cells to the same extent as BTH_I0986+ cells, suggesting that LPS could function as a receptor for CdiAII Bp1026b. Although ∆BTH_I0359, ∆BTH_II0599, and ∆BTH_I0986 mutations confer resistance to CDIII Bp1026b, they provide no protection against the CDIE264 system deployed by B. thailandensis E264. Together, these findings demonstrate that CDI growth-inhibition pathways are distinct and can differ significantly even between closely related species.  相似文献   

8.
Contact‐dependent growth inhibition (CDI) is a mode of bacterial competition orchestrated by the CdiB/CdiA family of two‐partner secretion proteins. The CdiA effector extends from the surface of CDI+ inhibitor cells, binds to receptors on neighbouring bacteria and delivers a toxin domain derived from its C‐terminal region (CdiA‐CT). Here, we show that CdiA‐CT toxin translocation requires the proton‐motive force (pmf) within target bacteria. The pmf is also critical for the translocation of colicin toxins, which exploit the energized Ton and Tol systems to cross the outer membrane. However, CdiA‐CT translocation is clearly distinct from known colicin‐import pathways because ΔtolA ΔtonB target cells are fully sensitive to CDI. Moreover, we provide evidence that CdiA‐CT toxins can be transferred into the periplasm of de‐energized target bacteria, indicating that transport across the outer membrane is independent of the pmf. Remarkably, CDI toxins transferred under de‐energized conditions remain competent to enter the target‐cell cytoplasm once the pmf is restored. Collectively, these results indicate that outer‐ and inner‐membrane translocation steps can be uncoupled, and that the pmf is required for CDI toxin transport from the periplasm to the target‐cell cytoplasm.  相似文献   

9.
Contact‐dependent growth inhibition (CDI) is a widespread form of inter‐bacterial competition that requires direct cell‐to‐cell contact. CDI+ inhibitor cells express CdiA effector proteins on their surface. CdiA binds to specific receptors on susceptible target bacteria and delivers a toxin derived from its C‐terminal region (CdiA‐CT). Here, we show that purified CdiA‐CT536 toxin from uropathogenic Escherichia coli 536 translocates into bacteria, thereby by‐passing the requirement for cell‐to‐cell contact during toxin delivery. Genetic analyses demonstrate that the N‐terminal domain of CdiA‐CT536 is necessary and sufficient for toxin import. The CdiA receptor plays no role in this import pathway; nor do the Tol and Ton systems, which are exploited to internalize colicin toxins. Instead, CdiA‐CT536 import requires conjugative F pili. We provide evidence that the N‐terminal domain of CdiA‐CT536 interacts with F pilin, and that pilus retraction is critical for toxin import. This pathway is reminiscent of the strategy used by small RNA leviviruses to infect F+ cells. We propose that CdiA‐CT536 mimics the pilin‐binding maturation proteins of leviviruses, allowing the toxin to bind F pili and become internalized during pilus retraction.  相似文献   

10.
Interbacterial communication can be mediated by soluble secreted factors and direct cell-cell contact. Recently, Aoki et al. identified a new contact-dependent communication pathway by which strains of uropathogenic Escherichia coli can inhibit the growth of other microbes within a mixed population. Two novel gene products--CdiA and CdiB, which seem to be members of a two-partner secretion family with homologs in many pathogens--mediate this contact-dependent inhibition (CDI). A third gene product, CdiI, provides immunity to CDI, as does expression of either P or S pili. The interplay between CDI and immunity factors could directly affect the course of an infection and modulate both the dispersion and the chronic persistence of bacterial pathogens within the host.  相似文献   

11.
Bacterial contact-dependent growth inhibition (CDI) is mediated by the CdiB/CdiA family of two-partner secretion proteins. CDI systems deploy a variety of distinct toxins, which are contained within the polymorphic C-terminal region (CdiA-CT) of CdiA proteins. Several CdiA-CTs are nucleases, suggesting that the toxins are transported into the target cell cytoplasm to interact with their substrates. To analyze CdiA transfer to target bacteria, we used the CDI system of uropathogenic Escherichia coli 536 (UPEC536) as a model. Antibodies recognizing the amino- and carboxyl-termini of CdiAUPEC536 were used to visualize transfer of CdiA from CDIUPEC536+ inhibitor cells to target cells using fluorescence microscopy. The results indicate that the entire CdiAUPEC536 protein is deposited onto the surface of target bacteria. CdiAUPEC536 transfer to bamA101 mutants is reduced, consistent with low expression of the CDI receptor BamA on these cells. Notably, our results indicate that the C-terminal CdiA-CT toxin region of CdiAUPEC536 is translocated into target cells, but the N-terminal region remains at the cell surface based on protease sensitivity. These results suggest that the CdiA-CT toxin domain is cleaved from CdiAUPEC536 prior to translocation. Delivery of a heterologous Dickeya dadantii CdiA-CT toxin, which has DNase activity, was also visualized. Following incubation with CDI+ inhibitor cells targets became anucleate, showing that the D.dadantii CdiA-CT was delivered intracellularly. Together, these results demonstrate that diverse CDI toxins are efficiently translocated across target cell envelopes.  相似文献   

12.
A collection of large virulence exoproteins, including Ca2+-independent cytolysins, an iron acquisition protein and several adhesins, are secreted by the two-partner secretion (TPS) pathway in various Gram-negative bacteria. The hallmarks of the TPS pathway are the presence of an N-proximal module called the 'secretion domain' in the exoproteins that we have named the TpsA family, and the channel-forming beta-barrel transporter proteins we refer to as the TpsB family. The genes for cognate exoprotein and transporter protein are usually organized in an operon. Specific secretion signals are present in a highly conserved region of the secretion domain of TpsAs. TpsBs probably serve as specific receptors of the TpsA secretion signals and as channels for the translocation of the exoproteins across the outer membrane. A subfamily of transporters also mediates activation of their cognate cytolysins upon secretion. The exoproteins are synthesized as precursors with an N-terminal cleavable signal peptide, and a subset of them carries an extended signal peptide of unknown function. According to our current model, the exoproteins are probably translocated across the cytoplasmic membrane in a Sec-dependent fashion, and their signal peptide is probably processed by a LepB-type signal peptidase. The N-proximal secretion domain directs the exoproteins towards their transporters early, so that translocation across both membranes is coupled. The exoproteins transit through the periplasm in an extended conformation and fold progressively at the cell surface before eventually being released into the extracellular milieu. Several adhesins also undergo extensive proteolytic processing upon secretion. The genes of many new TpsAs and TpsBs are found in recently sequenced genomes, suggesting that the TPS pathway is widespread.  相似文献   

13.
The two-partner secretion (TPS) systems of Gram-negative bacteria secrete large TpsA exoproteins by a dedicated TpsB transporter in the outer membrane. TpsBs contain an N-terminal module located in the periplasm that includes two polypeptide transport-associated (POTRA) domains. These are thought to initiate secretion of a TpsA by binding its N-terminal secretion signal, called the TPS domain. Neisseria meningitidis encodes up to five TpsA proteins that are secreted via only two TpsB transporters: TpsB1 and TpsB2. Of these two, the TpsB2 recognizes the TPS domains of all TpsAs, despite their sequence diversity. By contrast, the TpsB1 shows a limited recognition of a TPS domain that is shared by two TpsAs. The difference in substrate specificity of the TpsBs enabled us to investigate the role of the POTRA domains in the selection of TPS domains. We tested secretion of TPS domains or full-length TpsAs by TpsB mutants with deleted, duplicated, and exchanged POTRA domains. Exchanging the two POTRA domains of a TpsB resulted in a switch in specificity. Furthermore, exchanging a single POTRA domain showed that each of the two domains contributed to the cargo selection. Remarkably, the order of the POTRA domains could be reversed without affecting substrate selection, but this aberrant order did result in an alternatively processed secretion product. Our results suggest that secretion of a TpsA is initiated by engaging both POTRA domains of a TpsB transporter and that these select the cognate TpsAs for secretion.  相似文献   

14.
Contact-dependent growth inhibition (CDI) is a mechanism identified in Escherichia coli by which bacteria expressing two-partner secretion proteins encoded by cdiA and cdiB bind to BamA in the outer membranes of target cells and inhibit their growth. A third gene in the cluster, cdiI, encodes a small protein that is necessary and sufficient to confer immunity to CDI, thereby preventing cells expressing the cdiBA genes from inhibiting their own growth. In this study, the cdiI gene was placed under araBAD promoter control to modulate levels of the immunity protein and thereby induce CDI by removal of arabinose. This CDI autoinhibition system was used for metabolic analyses of a single population of E. coli cells undergoing CDI. Contact-inhibited cells showed altered cell morphology, including the presence of filaments. Notably, CDI was reversible, as evidenced by resumption of cell growth and normal cellular morphology following induction of the CdiI immunity protein. Recovery of cells from CDI also required an energy source. Cells undergoing CDI showed a significant, reversible downregulation of metabolic parameters, including aerobic respiration, proton motive force (Δp), and steady-state ATP levels. It is unclear whether the decrease in respiration and/or Δp is directly involved in growth inhibition, but a role for ATP in the CDI mechanism was ruled out using an atp mutant. Consistent with the observed decrease in Δp, the phage shock response was induced in cells undergoing CDI but not in recovering cells, based on analysis of levels of pspA mRNA.Intercellular communication mechanisms enable bacteria to coordinate biological phenomena such as DNA uptake, differentiation for fruiting body development, light production, and swarming (7, 8). These cell-to-cell interactions enable individual bacteria to form a multicellular community, such as in a biofilm on a solid surface, under specific environmental conditions (20, 52). Similarly to multicellular organisms, bacteria have signal transduction mechanisms to facilitate cellular cross talk, including two-component regulatory systems and other cell surface ligand-receptor interactions that control cellular processes.We previously described a cross talk phenomenon designated as contact-dependent growth inhibition (CDI) in which one bacterial isolate (CDI+) blocks the growth of another bacterium when mixed together (4). CDI requires two contiguous genes, cdiB and cdiA, which encode proteins that are in the two-partner secretion (TPS) family. Overlapping the stop codon of cdiA is a downstream open reading frame designated cdiI, which encodes a 79-amino-acid protein that provides immunity to growth inhibition from cells expressing cdiBA (4). Evidence strongly indicates that cell-to-cell contact is required for growth inhibition. First, separation of CDI+ inhibitor cells and target cells by a 0.4-μm nitrocellulose membrane blocked CDI, distinguishing CDI from the class of soluble bacterial growth inhibitors known as bacteriocins. Second, to address the possibility that a very short-lived bacteriocin-like molecule might be released from CDI+ inhibitor cells, we separated inhibitor-target cell aggregates by fluorescence-activated cell sorting. Target cells within aggregates with CDI+ inhibitor cells lost viability, as measured by growth on LB medium, more rapidly than did unbound target cells, supporting the conclusion that cell-to-cell contact is required for CDI (4).In our previous work, analysis of CDI was carried out with a bipartite system using Escherichia coli inhibitor cells containing cdiB, -A, and -I on a multicopy plasmid that constitutively expressed CDI activity, cocultured with E. coli K-12 target cells. Mixing inhibitor cells with E. coli K-12 target cells resulted in a 5- to 6-log decrease in target cell number after only 1 to 2 h (4). Because this bipartite CDI assay contains both inhibitor and target cells, monitoring of target cell growth in real time is not possible. Thus, we have not been able to determine if CDI is a reversible process or a nonreversible toxin-like system. This is important in assessing the role of CDI in the biology of E. coli as well as its potential role in many gram-negative bacteria, including uropathogenic E. coli, Burkholderia pseudomallei, and Yersinia pestis that contain genes with significant sequence identity to cdiB and cdiA (4).Recently, in collaboration with J. Malinverni and T. Silhavy (Princeton University), we showed that the target cell receptor for CDI is BamA, an essential outer membrane protein (OMP). Homologues of bamA are conserved in genomes from bacteria to mitochondria (3). BamA is a key component of the β-barrel assembly machine required for biogenesis of many other OMPs (34, 43, 53). Our results indicated that the BamA receptor facilitates CdiB/CdiA-dependent cell-to-cell binding and growth inhibition since antibodies to BamA blocked formation of inhibitor-target cell aggregates and CDI (3). The ligand for BamA is not known, but it seems probable that it is CdiA, which is at the surface of inhibitor cells (4), and may form a short 40- to 50-nm fiber, such as filamentous hemagglutinin in Bordetella pertussis, based on sequence similarities (42). AcrB is also required for sensitivity of target cells to CDI, which acts downstream of the BamA receptor (3). AcrB is a protein that exports small molecules, including drugs/antibiotics, through the inner membrane, with further transport through the outer membrane in conjunction with AcrA and TolC (47, 55, 56). This export machine requires proton motive force (Δp) as an energy source (46). Markedly, only BamA and AcrB, independent from their respective export machines, are required for CDI (3). Based on these results, we developed a model in which CdiA of inhibitor cells bind to BamA on target cells, transmitting a signal into target cells such as a CdiA peptide (Fig. (Fig.1A).1A). This signal could enter cells through an AcrB portal to interact with an unidentified cytosolic target. It is also possible that AcrB could play an indirect role in CDI-mediated growth inhibition.Open in a separate windowFIG. 1.Construction of a contact-dependent autoinhibition system in Escherichia coli. (A) CDI model. CdiB and CdiA (CdiBA) expressed by one cell (inhibitor cell) binds to BamA in the outer membrane (OM) of an adjacent cell (target cell) (3). A signal, such as a CdiA peptide, is transferred through BamA to AcrB located in the inner membrane (IM), causing inhibition of cell growth by an unknown mechanism. CDI is modulated at the cell surface by certain pili, including pyelonephritis-associated pili (4), and by colanic acid capsule (3) and inside cells by CdiI immunity protein (4). (B) Map of the CDI autoinhibition plasmid (pDAL728).Here, we describe the development of a CDI autoinhibition system in which growth inhibition is regulated by controlled expression of the CdiI immunity protein, enabling examination of a single population of cells undergoing CDI. Using this system, we show that cells undergoing CDI have significantly reduced cellular respiration, Δp, and steady-state ATP levels. Notably, this metabolic downregulation, as well as cellular growth inhibition, is reversible. To the best of our knowledge, this is the first report of a natural, reversible system controlling bacterial metabolism and growth.  相似文献   

15.
Protein secretion is a major contributor to Gram‐negative bacterial virulence. Type Vb or two‐partner secretion (TPS) pathways utilize a membrane bound β‐barrel B component (TpsB) to translocate large and predominantly virulent exoproteins (TpsA) through a nucleotide independent mechanism. We focused our studies on a truncated TpsA member termed hemolysin A (HpmA265), a structurally and functionally characterized TPS domain from Proteus mirabilis. Contrary to the expectation that the TPS domain of HpmA265 would denature in a single cooperative transition, we found that the unfolding follows a sequential model with three distinct transitions linking four states. The solvent inaccessible core of HpmA265 can be divided into two different regions. The C‐proximal region contains nonpolar residues and forms a prototypical hydrophobic core as found in globular proteins. The N‐proximal region of the solvent inaccessible core, however, contains polar residues. To understand the contributions of the hydrophobic and polar interiors to overall TPS domain stability, we conducted unfolding studies on HpmA265 and site‐specific mutants of HpmA265. By correlating the effect of individual site‐specific mutations with the sequential unfolding results we were able to divide the HpmA265 TPS domain into polar core, nonpolar core, and C‐terminal subdomains. Moreover, the unfolding studies provide quantitative evidence that the folding free energy for the polar core subdomain is more favorable than for the nonpolar core and C‐terminal subdomains. This study implicates the hydrogen bonds shared among these conserved internal residues as a primary means for stabilizing the N‐proximal polar core subdomain.  相似文献   

16.
Burkholderia thailandensis is a nonpathogenic gram-negative bacillus that is closely related to Burkholderia mallei and Burkholderia pseudomallei. We found that B. thailandensis E125 spontaneously produced a bacteriophage, termed phiE125, which formed turbid plaques in top agar containing B. mallei ATCC 23344. We examined the host range of phiE125 and found that it formed plaques on B. mallei but not on any other bacterial species tested, including B. thailandensis and B. pseudomallei. Examination of the bacteriophage by transmission electron microscopy revealed an isometric head and a long noncontractile tail. B. mallei NCTC 120 and B. mallei DB110795 were resistant to infection with phiE125 and did not produce lipopolysaccharide (LPS) O antigen due to IS407A insertions in wbiE and wbiG, respectively. wbiE was provided in trans on a broad-host-range plasmid to B. mallei NCTC 120, and it restored LPS O-antigen production and susceptibility to phiE125. The 53,373-bp phiE125 genome contained 70 genes, an IS3 family insertion sequence (ISBt3), and an attachment site (attP) encompassing the 3' end of a proline tRNA (UGG) gene. While the overall genetic organization of the phiE125 genome was similar to lambda-like bacteriophages and prophages, it also possessed a novel cluster of putative replication and lysogeny genes. The phiE125 genome encoded an adenine and a cytosine methyltransferase, and purified bacteriophage DNA contained both N6-methyladenine and N4-methylcytosine. The results presented here demonstrate that phiE125 is a new member of the lambda supergroup of Siphoviridae that may be useful as a diagnostic tool for B. mallei.  相似文献   

17.
The two-partner secretion (TPS) systems of Gram-negative bacteria consist of a large secreted exoprotein (TpsA) and a transporter protein (TpsB) located in the outer membrane. TpsA targets TpsB for transport across the membrane via its ∼30-kDa TPS domain located at its N terminus, and this domain is also the minimal secretory unit. Neisseria meningitidis genomes encode up to five TpsAs and two TpsBs. Sequence alignments of TPS domains suggested that these are organized into three systems, while there are two TpsBs, which raised questions on their system specificity. We show here that the TpsB2 transporter of Neisseria meningitidis is able to secrete all types of TPS domains encoded in N. meningitidis and the related species Neisseria lactamica but not domains of Haemophilus influenzae and Pseudomonas aeruginosa. In contrast, the TpsB1 transporter seemed to be specific for its cognate N. meningitidis system and did not secrete the TPS domains of other meningococcal systems. However, TpsB1 did secrete the TPS2b domain of N. lactamica, which is related to the meningococcal TPS2 domains. Apparently, the secretion depends on specific sequences within the TPS domain rather than the overall TPS domain structure.  相似文献   

18.
Widespread in Gram-negative bacteria, the two-partner secretion (TPS) pathway mediates the secretion of large, β-helical 'TpsA' proteins with various functions. TpsA proteins harbour a conserved, N-proximal TPS domain essential for secretion. TpsB transporters specifically recognize their TpsA partners in the periplasm and mediate their translocation across the outer membrane through a hydrophilic channel. The FHA/FhaC pair of Bordetella pertussis represents a model TPS system. FhaC is composed of a β barrel preceded by two periplasmic POTRA domains in tandem. Here we show that both POTRAs are involved in FHA recognition. Surface plasmon resonance analyses indicated an interaction of micromolar affinity between the POTRAs and the TPS domain with fast association and dissociation steps, consistent with the transient character of this interaction in vivo. Major interaction sites in POTRAs correspond to hydrophobic grooves formed by a β sheet edge and the flanking α helix, well-suited to accommodate extended, amphipathic strands of the substrate and consistent with β augmentation. The initial recruitment of the TPS domain to POTRAs appears to be facilitated by electrostatic attractions. A domain corresponding to the first part of the repeat-rich central region of FHA is also recognized by the POTRAs, suggesting successive interactions in the course of secretion.  相似文献   

19.
Genome rearrangement events, including inversions and translocations, are frequently observed across related microbial species, but the impact of such events on functional diversity is unclear. To clarify this relationship, we compared 4 members of the Gram-negative Burkholderia family (Burkholderia pseudomallei, Burkholderia mallei, Burkholderia thailandensis, and Burkholderia cenocepacia) and identified a core set of 2,590 orthologs present in all 4 species (metagenes). The metagenes were organized into 255 synteny blocks whose relative order has been altered by a predicted minimum of 242 genome rearrangement events. Functionally, metagenes within individual synteny blocks were often related. The molecular divergence of metagenes adjacent to synteny breakpoints (boundary metagenes) was significantly greater compared with metagenes within blocks, suggesting an association between breakpoint locations and local fine-scale nucleotide alterations. This phenomenon, referred to as boundary element associated divergence, was also observed in Pseudomonas and Shigella, suggesting that this is a common phenomenon in prokaryotes. We also observed preferential localization of species-specific genes and insertion sequence element to synteny breakpoints in Burkholderia. Our results suggest that in prokaryotes, genome rearrangements may influence functional diversity through the enhanced divergence of boundary genes and the creation of foci for acquiring and deleting species-specific genes.  相似文献   

20.
The sorting of proteins to their proper subcellular compartment requires specific addressing signals that mediate interactions with ad hoc transport machineries. In Gram-negative bacteria, the widespread two-partner secretion (TPS) pathway is dedicated to the secretion of large, mostly virulence-related proteins. The secreted TpsA proteins carry a characteristic 250-residue-long N-terminal 'TPS domain' essential for secretion, while their TpsB transporters are pore-forming proteins that specifically recognize their respective TpsA partners and mediate their translocation across the outer membrane. However, the nature of the secretion signal has not been elucidated yet. The whooping cough agent Bordetella pertussis secretes its major adhesin filamentous haemagglutinin (FHA) via the TpsB transporter FhaC. In this work, we show specific interactions between an N-terminal fragment of FHA containing the TPS domain and FhaC by using two different techniques, an overlay assay and a pull-down of the complex. FhaC recognizes only non-native conformations of the TPS domain, corroborating the model that in vivo, periplasmic FHA is not yet folded. By generating single amino acid substitutions, we have identified interaction determinants forming the secretion signal. They are found unexpectedly far into the TPS domain and include both conserved and variable residues, which most likely explains the specificity of the TpsA-TpsB interaction. The N-terminal domain of FhaC is involved in the FHA-FhaC interaction, in agreement with its proposed function and periplasmic localization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号