首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Histopathological studies suggest that the stem cells of human teratomas may be classified into two major categories: nullipotent stem cells, and multipotent stem cells, capable both of self-renewal and differentiation into a wide range of somatic and extraembryonic cell types. We have isolated a multipotent stem cell clone from the human teratoma cell line GCT 27, and compared its properties to a nullipotent clone derived from the same strain. The multipotent clone GCT 27 X-1 gave rise to colonies of mixed cell morphology in vitro. Analysis of cell surface, cytostructural and extracellular matrix markers in GCT 27 X-1 cells showed that the stem cells of this line were very similar in phenotype to nullipotent cells. The two cell clones were predominantly hypotriploid, and contained several marker chromosomes in common. GCT 27 X-1 was feeder-cell-dependent for continuous growth in vitro; removal of the feeder layer resulted in differentiation of the stem cells into a variety of cell types, some with characteristics of extraembryonic endoderm, others showing neuronal properties. When transplanted into nude mice, GCT 27 X-1 cells gave rise to teratocarcinomas containing embryonal carcinoma stem cells, and many other cell types: yolk sac carcinoma cells; cells producing alphafetoprotein or human chorionic gonadotrophin; glandular, columnar, cuboidal, and squamous epithelium; primitive mesenchyme and cartilage; neuroectodermal cells. Nullipotent GCT 27 C-1 cells could form colonies in the absence of feeder layers, but multipotent GCT 27 X-1 cells could not. While a range of known growth factors and related substances failed to substitute for feeder layers in supporting the growth of GCT 27 X-1 stem cells, supernatants from yolk sac carcinoma cell line GCT 44 could partially replace the feeder cell requirement. Thus, the results revealed a basic difference in growth control between these multipotent and nullipotent human embryonal carcinoma cells, and suggested a possible paracrine regulatory pathway between multipotent stem cells and yolk sac carcinoma cells.  相似文献   

2.
3.
Glioblastoma multiforme is a severe form of cancer most likely arising from the transformation of stem or progenitor cells resident in the brain. Although the tumorigenic population in glioblastoma is defined as composed by cancer stem cells (CSCs), the cellular target of the transformation hit remains to be identified. Glioma stem cells (SCs) are thought to have a differentiation potential restricted to the neural lineage. However, using orthotopic versus heterotopic xenograft models and in vitro differentiation assays, we found that a subset of glioblastomas contained CSCs with both neural and mesenchymal potential. Subcutaneous injection of CSCs or single CSC clones from two of seven patients produced tumor xenografts containing osteo-chondrogenic areas in the context of glioblastoma-like tumor lesions. Moreover, CSC clones from four of seven cases generated both neural and chondrogenic cells in vitro. Interestingly, mesenchymal differentiation of the tumor xenografts was associated with reduction of both growth rate and mitotic index. These findings suggest that in a subclass of glioblastomas the tumorigenic hit occurs on a multipotent stem cell, which may reveal its plasticity under specific environmental stimuli. The discovery of such biological properties might provide considerable information to the development of new therapeutic strategies aimed at forcing glioblastoma stem cell differentiation.  相似文献   

4.
Isolation of multipotent adult stem cells from the dermis of mammalian skin   总被引:2,自引:0,他引:2  
We describe here the isolation of stem cells from juvenile and adult rodent skin. These cells derive from the dermis, and clones of individual cells can proliferate and differentiate in culture to produce neurons, glia, smooth muscle cells and adipocytes. Similar precursors that produce neuron-specific proteins upon differentiation can be isolated from adult human scalp. Because these cells (termed SKPs for skin-derived precursors) generate both neural and mesodermal progeny, we propose that they represent a novel multipotent adult stem cell and suggest that skin may provide an accessible, autologous source of stem cells for transplantation.  相似文献   

5.
Bonaguidi MA  Wheeler MA  Shapiro JS  Stadel RP  Sun GJ  Ming GL  Song H 《Cell》2011,145(7):1142-1155
Neurogenesis and gliogenesis continue in discrete regions of the adult mammalian brain. A fundamental question remains whether cell genesis occurs from distinct lineage-restricted progenitors or from self-renewing and multipotent neural stem cells in the adult brain. Here, we developed a genetic marking strategy for lineage tracing of individual, quiescent, and nestin-expressing radial glia-like (RGL) precursors in the adult mouse dentate gyrus. Clonal analysis identified multiple modes of RGL activation, including asymmetric and symmetric self-renewal. Long-term lineage tracing in?vivo revealed a significant percentage of clones that contained RGL(s), neurons, and astrocytes, indicating capacity of individual RGLs for both self-renewal and multilineage differentiation. Furthermore, conditional Pten deletion in RGLs initially promotes their activation and symmetric self-renewal but ultimately leads to terminal astrocytic differentiation and RGL depletion in the adult hippocampus. Our study identifies RGLs as self-renewing and multipotent neural stem cells and provides novel insights into in?vivo properties of adult neural stem cells.  相似文献   

6.
Mesenchymal stem cells (MSCs) are multipotent stromal cells with great potential for clinical applications. However, little is known about their cell heterogeneity at a single-cell resolution, which severely impedes the development of MSC therapy. In this review, we focus on advances in the identification of novel surface markers and functional subpopulations of MSCs made by single-cell RNA sequencing and discuss their participation in the pathophysiology of stem cells and related diseases. The challenges and future directions of single-cell RNA sequencing in MSCs are also addressed in this review.  相似文献   

7.
A procedure has been developed for cloning interstitial stem cells from hydra. Clones are prepared by introducing small numbers of viable cells into aggregates of nitrogen mustard-inactivated host tissue. Clones derived from added stem cells are identified after 1–2 weeks of growth by staining with toluidine blue. The incidence of clones increases with increasing input of viable cells according to one-hit Poisson statistics, indicating that clones arise from single cells. After correction for cell losses in the procedure, about 1.2% of the input cells are found to form clones. This compares with estimates from in vivo experiments of about 4% stem cells in whole hydra [David, C. N., and Gierer, A. (1974). Cell cycle kinetics and development of Hydra attenuata. III. Nerve and nematocyte differentiation. J. Cell Sci.16, 359–375.]Differentiation of nematocytes and nerve cells in clones was analyzed by labeling precursors with [3H]thymidine and scoring labeled nerves and nematocytes 2 days later. Nine clones examined in this way contained both differentiated nerve cells and nematocytes, demonstrating that the interstitial stem cell is multipotent. This result suggests that the observed localization of nerve and nematocyte differentiation in whole hydra probably occurs at the level of stemcell determination. The observation that differentiated cells occur very early in clone development suggests that a stem cell's decision to proliferate or differentiate is regulated by shortrange feedback signals which are already saturated in young clones.  相似文献   

8.
Pools of human adipose-derived adult stem (hADAS) cells can exhibit multiple differentiated phenotypes under appropriate in vitro culture conditions. Because adipose tissue is abundant and easily accessible, hADAS cells offer a promising source of cells for tissue engineering and other cell-based therapies. However, it is unclear whether individual hADAS cells can give rise to multiple differentiated phenotypes or whether each phenotype arises from a subset of committed progenitor cells that exists within a heterogeneous population. The goal of this study was to test the hypothesis that single hADAS are multipotent at a clonal level. hADAS cells were isolated from liposuction waste, and ring cloning was performed to select cells derived from a single progenitor cell. Forty-five clones were expanded through four passages and then induced for adipogenesis, osteogenesis, chondrogenesis, and neurogenesis using lineage-specific differentiation media. Quantitative differentiation criteria for each lineage were determined using histological and biochemical analyses. Eighty one percent of the hADAS cell clones differentiated into at least one of the lineages. In addition, 52% of the hADAS cell clones differentiated into two or more of the lineages. More clones expressed phenotypes of osteoblasts (48%), chondrocytes (43%), and neuron-like cells (52%) than of adipocytes (12%), possibly due to the loss of adipogenic ability after repeated subcultures. The findings are consistent with the hypothesis that hADAS cells are a type of multipotent adult stem cell and not solely a mixed population of unipotent progenitor cells. However, it is important to exercise caution in interpreting these results until they are validated using functional in vivo assays.  相似文献   

9.
10.
Interstitial stem cells in Hydra constitute a population of multipotent cells, which continuously give rise to differentiated products during the growth and budding of Hydra polyps. They also give rise to germ cells in animals undergoing sexual differentiation. Cloning experiments have shown that interstitial stem cells are multipotent. In vivo tracing of stem cell lineages has revealed that stem cells divide symmetrically to yield two stem cells or asymmetrically to yield one stem cell daughter and one daughter cell which initiates nerve or nematocyte differentiation. Following commitment, some nerve cell precursors migrate from the body column into the head or foot region, thus giving rise to the high density of nerve cells observed in these regions. Stem cell proliferation is regulated by changes in the self-renewal probability and is controlled by stem cell density. Nerve cell commitment is controlled by several peptides including the Head Activator. Factors affecting nematocyte commitment are not known, but wnt and notch signaling are both required for differentiation of committed precursors.  相似文献   

11.
Bone marrow-derived mesenchymal stem cells consist of a developmentally heterogeneous population of cells obtained from colony forming progenitors. As these colonies express the alpha-1 integrin (CD49a), here we single-cell FACS sorted CD49a+ cells from bone marrow in order to create clones and then compared their colony forming efficiency and multilineage differentiation capacity to the unsorted cells. Following selection, 40% of the sorted CD49a+ cells formed colonies, whereas parental cells failed to form colonies following limited dilution plating at 1 cell/well. Following ex vivo expansion, clones shared a similar morphology to the parental cell line, and also demonstrated enhanced proliferation. Further analysis by flow cytometry using a panel of multilineage markers demonstrated that the CD49a+ clones had enhanced expression of CD90 and CD105 compared to unsorted cells. Culturing cells in adipogenic, osteogenic or chondrogenic medium for 7, 10 and 15 days respectively and then analysing them by quantitative PCR demonstrated that CD49a+ clones readily underwent multlineage differentiation into fat, bone and cartilage compared to unsorted cells. These results thus support the use of CD49a selection for the enrichment of mesenchymal stem cells, and describes a strategy for selecting the most multipotential cells from a heterogeneous pool of bone marrow mononuclear stem cells.  相似文献   

12.
13.
Hair follicle harbors a rich stem cell pool with mesenchymal lineage differentiation potential. Although previous studies with rodent cells demonstrated that hair follicle sheath and papilla cells possess multi-lineage differentiation potential, human hair follicle derived mesenchymal stem cells (hHF-MSCs) have not been characterized in detail in terms of their multipotency. In addition, it is not clear whether these cells are true stem cells that can differentiate along multiple lineages or whether they represent a collection of progenitor cells with restricted differentiation potential. Here we report that hHF-MSCs are highly proliferative cells that can be maintained in culture for ~ 45 population doublings before they start to show signs of cellular senescence. Under appropriate culture conditions, hHF-MSCs differentiated along the myogenic, osteogenic, adipogenic and chondrogenic lineages, as demonstrated by kinetic gene expression profiling and functional assays. Interestingly, the differentiation potential decreased with time in culture in a lineage-specific manner. Specifically, myogenesis and chondrogenesis showed a moderate decrease over time; osteogenesis was maximum at intermediate passages and adipogenesis was highly sensitive to long-term culture and was diminished at late passages. Finally, hHF-MSCs were clonally multipotent as the majority of hHF-MSCs clones (73%) demonstrated bi- or tri-lineage differentiation potential. These results suggest that hHF-MSCs may present as an alternative source of easily accessible, autologous stem cells for tissue engineering and regenerative medicine.  相似文献   

14.
15.
Human umbilical cord blood (UCB)-derived multipotent stem cells are regarded as valuable sources for cell transplantation and cell therapy. These cells, under appropriate culture conditions, can differentiate into a variety of cell lineages such as osteoblasts. chondrocyles, adipocytes, and neuronal cells. Based on their largeex vivo expansion capacity as well as their differentiation potential, UCB-derived multipotent stem cells may become a suitable source for clinical transplantation in tissue engineering and regenerative medicine. All modern protocols involve the use of cytokines with chemotherapy in order to increase the circulation of stem cells in the blood. Because UCB, in general, produce less cytokine, or have a lower frequency of cytokine producing cells compared to adult stem cells, further research in cytokines related to the cell proliferation, cellular adhesion and cell migration is necessary to improve the understanding of the basic mechanisms of stem cell mobilization. This paper gives an overview of the cytokines produced by UCB-derived multipotent stem cells, and strongly suggests that cytokine induction and signal transduction is important for the differentiation of these cells.  相似文献   

16.

Background

The therapeutic use of multipotent stem cells depends on their differentiation potential, which has been shown to be variable for different populations. These differences are likely to be the result of key changes in their epigenetic profiles.

Methodology/Principal Findings

to address this issue, we have investigated the levels of epigenetic regulation in well characterized populations of pluripotent embryonic stem cells (ESC) and multipotent adult stem cells (ASC) at the trancriptome, methylome, histone modification and microRNA levels. Differences in gene expression profiles allowed classification of stem cells into three separate populations including ESC, multipotent adult progenitor cells (MAPC) and mesenchymal stromal cells (MSC). The analysis of the PcG repressive marks, histone modifications and gene promoter methylation of differentiation and pluripotency genes demonstrated that stem cell populations with a wider differentiation potential (ESC and MAPC) showed stronger representation of epigenetic repressive marks in differentiation genes and that this epigenetic signature was progressively lost with restriction of stem cell potential. Our analysis of microRNA established specific microRNA signatures suggesting specific microRNAs involved in regulation of pluripotent and differentiation genes.

Conclusions/Significance

Our study leads us to propose a model where the level of epigenetic regulation, as a combination of DNA methylation and histone modification marks, at differentiation genes defines degrees of differentiation potential from progenitor and multipotent stem cells to pluripotent stem cells.  相似文献   

17.
18.
Recent studies have shown that amniotic membrane tissue is a rich source of stem cells in humans. In clinical applications, the amniotic membrane tissue had therapeutic effects on wound healing and corneal surface reconstruction. Here, we successfully isolated and identified multipotent stem cells (MSCs) from canine amniotic membrane tissue. We cultured the canine amniotic membrane-derived multipotent stem cells (cAM-MSCs) in low glucose DMEM medium. cAM-MSCs have a fibroblast-like shape and adhere to tissue culture plastic. We characterized the immunophenotype of cAM-MSCs by flow cytometry and measured cell proliferation by the cumulative population doubling level (CPDL). We performed differentiation studies for the detection of trilineage multipotent ability, under the appropriate culture conditions. Taken together, our results show that cAM-MSCs could be a rich source of stem cells in dogs. Furthermore, cAM-MSCs may be useful as a cell therapy application for veterinary regenerative medicine.  相似文献   

19.
In an attempt to isolate unipotent stem cells (progenitors to the nerve cells, nematocytes, gland cells, and gametes) from Hydra oligactis females, animals were treated with a drug (hydroxyurea, HU) that preferentially lowers or eliminates the interstitial stem cells, leaving the epithelial tissue intact. In this epithelial environment, interstitial cells remaining after treatment will proliferate and differentiate, permitting a long-term analysis of their developmental capabilities. Following treatment of females with HU, animals were isolated that contained interstitial cells that gave rise to eggs only. Two clones of animals containing these cells were propagated for several years and the growth and differentiation behavior of the interstitial cells examined in their asexually produced offspring. During this time, the cells displayed an extensive proliferative capacity (classifying them as stem cells) and remained restricted to egg differentiation. It is proposed that both the sperm- and the egg-restricted stem cells arise from a multipotent stem cell, which also gives rise to the somatic cells (see above), and that, in hydra, sex is ultimately determined by interactions between cells of the two germ cell lineages.  相似文献   

20.
Background aimsThe ability to expand and maintain bone marrow (BM)-derived mesenchymal stem cells (MSC) in vitro is an important aspect of their therapeutic potential. Despite this, the exact composition of stromal cell types within these cultures and the potential effects of non-stem cells on the maintenance of MSC are poorly understood.MethodsC57BL/6J BM stroma was investigated as a model to determine the relationship between MSC and non-multipotent cells in vitro. Whole BM and single-cell derived cultures were characterized using flow cytometry and cell sorting combined with multipotent differentiation. Proliferation of individual stromal populations was evaluated using BrdU.ResultsAt a single-cell level, MSC were distinguished from committed progenitors, and cells lacking differentiation ability, by the expression of CD105 (CD105+). A 3-fold reduction in the percentage of CD105+ cells was detected after prolonged culture and correlated with loss of MSC. Depletion of CD105+ cells coincided with a 10–20% increase in the frequency of proliferating CD105? cells. Removal of CD105? stroma caused increased proliferation in CD105+ cells, which could be diminished by conditioned media from parent cultures. Comparison of the multipotent differentiation potential in purified and non-purified CD105+ cells determined that MSC were detectable for at least 3 weeks longer when cultured in the absence of CD105? cells.ConclusionsThis work identifies a simple model for characterizing the different cellular components present in BM stromal cultures and demonstrates that stromal cells lacking multipotent differentiating capacity greatly reduce the longevity of MSC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号