首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Muscle atrophy is an inevitable sequel of fasting, denervation, aging, exposure to microgravity, and many human diseases including, cancer, type-2 diabetes, and renal failure. During atrophy the destruction of the muscle's fundamental contractile machinery, the myofibrils, is accelerated leading to a reduction in muscle mass, weakness, frailty, and physical disability. Recent findings indicate that atrophy can be a major cause of death in affected individuals, and inhibition of muscle wasting is likely to prolong survival. Major advances in our understanding of the mechanisms for myofibril breakdown in atrophy include the discovery of biological pathways and key components that play prominent roles. On fasting or denervation, degradation of myofibrillar proteins requires an initial dissociation of the desmin cytoskeleton, whose integrity is critical for myofibril stability. This loss of desmin filaments involves phosphorylation, ubiquitination, and subsequent depolymerization by calpain-1, and appears to reduce myofibrils integrity and facilitate their destruction. Consequently, depolymerization of desmin filament in atrophy seems to be an early key event for overall proteolysis. A focus of this review is to discuss these new insights and the specific role of calpain-1 in promoting desmin filaments loss, and to highlight important key questions that merit further study.  相似文献   

2.
Loss of myofibrillar proteins is a hallmark of atrophying muscle. Expression of muscle RING-finger 1 (MuRF1), a ubiquitin ligase, is markedly induced during atrophy, and MuRF1 deletion attenuates muscle wasting. We generated mice expressing a Ring-deletion mutant MuRF1, which binds but cannot ubiquitylate substrates. Mass spectrometry of the bound proteins in denervated muscle identified many myofibrillar components. Upon denervation or fasting, atrophying muscles show a loss of myosin-binding protein C (MyBP-C) and myosin light chains 1 and 2 (MyLC1 and MyLC2) from the myofibril, before any measurable decrease in myosin heavy chain (MyHC). Their selective loss requires MuRF1. MyHC is protected from ubiquitylation in myofibrils by associated proteins, but eventually undergoes MuRF1-dependent degradation. In contrast, MuRF1 ubiquitylates MyBP-C, MyLC1, and MyLC2, even in myofibrils. Because these proteins stabilize the thick filament, their selective ubiquitylation may facilitate thick filament disassembly. However, the thin filament components decreased by a mechanism not requiring MuRF1.  相似文献   

3.
Desmin, the muscle-specific intermediate filament, is involved in myofibrillar myopathies, dilated cardiomyopathy and muscle wasting. Desmin is the target of posttranslational modifications (PTMs) such as phosphorylation, ADP-ribosylation and ubiquitylation as well as nonenzymatic modifications such as glycation, oxidation and nitration. Several PTM target residues and their corresponding modifying enzymes have been discovered in human and nonhuman desmin. The major effect of phosphorylation and ADP-ribosylation is the disassembly of desmin filaments, while ubiquitylation of desmin leads to its degradation. The regulation of the desmin filament network by phosphorylation and ADP-ribosylation was found to be implicated in several major biological processes such as myogenesis, myoblast fusion, muscle contraction, muscle atrophy, cell division and possibly desmin interactions with its binding partners. Phosphorylation of desmin is also implicated in many forms of desmin-related myopathies (desminopathies). In this review, we summarize the findings on desmin PTMs and their implication in biological processes and pathologies, and discuss the current knowledge on the regulation of the desmin network by PTMs. We conclude that the desmin filament network can be seen as an intricate scaffold for muscle cell structure and biological processes and that its dynamics can be affected by PTMs. There are now precise tools to investigate PTMs and visualize cellular structures that have been underexploited in the study of desminopathies. Future studies should focus on these aspects.  相似文献   

4.
Caspase cleavage of key cytoskeletal proteins, including several intermediate filament proteins, triggers the dramatic disassembly of the cytoskeleton that characterizes apoptosis. Here we describe the muscle-specific intermediate filament protein desmin as a novel caspase substrate. Desmin is cleaved selectively at a conserved Asp residue in its L1-L2 linker domain (VEMD downward arrow M(264)) by caspase-6 in vitro and in myogenic cells undergoing apoptosis. We demonstrate that caspase cleavage of desmin at Asp(263) has important functional consequences, including the production of an amino-terminal cleavage product, N-desmin, which is unable to assemble into intermediate filaments, instead forming large intracellular aggregates. Moreover, N-desmin functions as a dominant-negative inhibitor of filament assembly, both for desmin and the structurally related intermediate filament protein vimentin. We also show that stable expression of a caspase cleavage-resistant desmin D263E mutant partially protects cells from tumor necrosis factor-alpha-induced apoptosis. Taken together, these results indicate that caspase proteolysis of desmin at Asp(263) produces a dominant-negative inhibitor of intermediate filaments and actively participates in the execution of apoptosis. In addition, these findings provide further evidence that the intermediate filament cytoskeleton has been targeted systematically for degradation during apoptosis.  相似文献   

5.
The intermediate filament proteins desmin and vimentin and the muscle tropomyosins were the major protein phosphate acceptors in 8-day-old myotubes incubated for 4 h in medium containing radiolabeled phosphate. The addition of isoproterenol or 8-bromo-cyclic AMP (BrcAMP) resulted in a two- to threefold increase in incorporation of 32PO4 into both desmin and vimentin, whereas no changes in the incorporation of 32PO4 into tropomyosin or other cellular proteins were observed. The BrcAMP- or hormonally induced increase in 32PO4 incorporation into desmin and vimentin was independent of protein synthesis and was not caused by stimulation of protein phosphate turnover. In addition, BrcAMP did not induce significant changes in the specific activity of the cellular ATP pool. These data suggest that the observed increase in 32PO4 incorporation represented an actual increase in phosphorylation of the intermediate filament proteins desmin and vimentin. Two-dimensional tryptic analysis of desmin from 8-day-old myotubes revealed five phosphopeptides of which two showed a 7- to 10-fold increase in 32PO4 incorporation in BrcAMP-treated myotubes. Four of the phosphopeptides identified in desmin labeled in vivo were also observed in desmin phosphorylated in vitro by bovine heart cAMP-dependent protein kinase. Although phosphorylation of desmin and vimentin was apparent in myogenic cells at all stages of differentiation, BrcAMP- and isoproterenol-induced increases in phosphorylation of these proteins were restricted to mature myotubes. These data strongly suggest that in vivo phosphorylation of the intermediate filament proteins desmin and vimentin is catalyzed by the cAMP-dependent protein kinases and that such phosphorylation may be regulated during muscle differentiation.  相似文献   

6.
Analysis of specific fragments of vimentin and desmin from 32P-labeled BHK-21 cells indicated that these intermediate-filament subunit proteins are phosphorylated in specific regions or domains. High performance liquid chromatography and sodium dodecyl sulfate (SDS) polyacrylamide gel electrophoresis of lysine-specific protease-generated fragments demonstrated that both molecules were phosphorylated in their amino terminal or "head" domains. While this was the predominant site of phosphorylation for vimentin, additional phosphorylated fragments from desmin were observed. Chemical cleavage of [32P]desmin and subsequent examination of the phosphorylated peptides indicated that the major site of desmin phosphorylation was located within the "tail" domain. Analysis of vimentin and desmin from non-mitotic and mitotically selected cells indicated that the increased phosphorylation of intermediate-filament proteins observed during cell division occurs within the amino terminal domains of both molecules. These studies indicate that the increased phosphorylation of filament proteins during mitosis may involve the function of the amino terminal domain. In addition, filament proteins may be phosphorylated in a subunit-protein-specific manner which may reflect subunit-specific functions.  相似文献   

7.
Intermediate filaments (IFs) reconstituted from purified, delipidated vimentin and desmin as well as respective protofilaments were subjected to degradation by Ca2+-activated neutral thiol proteinase, thrombin and lysine-specific endoproteinase Lys-C, respectively. The breakdown products were analyzed by SDS-polyacrylamide gel electrophoresis and negative stain electron microscopy. While Ca2+-activated proteinase and thrombin caused rapid and complete degradation of IFs with kinetics not significantly different from those of the degradation of protofilaments, lysine-specific endoproteinase did not exert any electron microscopically detectable effect on filament structure. Although both types of subunit proteins were truncated at their non-alpha-helical, C-terminal polypeptides by this proteinase, they were still able to assemble into 10 nm filaments. Closer electron microscopic inspection of IFs treated with Ca2+-activated proteinase revealed numerous ruptures along the filaments already at very early stages of digestion. SDS-polyacrylamide gel electrophoresis of the processed filaments in conjunction with previous biochemical characterizations of the breakdown of protofilaments by Ca2+-activated proteinase showed that these inhomogeneities primarily arose from degradation of the arginine-rich, non-alpha-helical N-termini of the filament proteins. These findings demonstrate that, although the N-terminus of vimentin and desmin is essential for filament stability, it is still highly susceptible to proteolytic attack in particular and very likely to posttranslational modification in general. Such structural modifications of the N-termini of IF proteins might exert great influences on the intracellular distribution and molecular organization of IFs in various physiological and pathological conditions.  相似文献   

8.
Desmin interacts with nebulin establishing a direct link between the intermediate filament network and sarcomeres at the Z-discs. Here, we examined a desmin mutation, E245D, that is located within the coil IB (nebulin-binding) region of desmin and that has been reported to cause human cardiomyopathy and skeletal muscle atrophy. We show that the coil IB region of desmin binds to C-terminal nebulin (modules 160-164) with high affinity, whereas binding of this desmin region containing the E245D mutation appears to enhance its interaction with nebulin in solid-phase binding assays. Expression of the desmin-E245D mutant in myocytes displaces endogenous desmin and C-terminal nebulin from the Z-discs with a concomitant increase in the formation of intracellular aggregates, reminiscent of a major histological hallmark of desmin-related myopathies. Actin filament architecture was strikingly perturbed in myocytes expressing the desmin-E245D mutant because most sarcomeres contained elongated or shorter actin filaments. Our findings reveal a novel role for desmin intermediate filaments in modulating actin filament lengths and organization. Collectively, these data suggest that the desmin E245D mutation interferes with the ability of nebulin to precisely regulate thin filament lengths, providing new insights into the potential molecular consequences of expression of certain disease-associated desmin mutations.  相似文献   

9.
The degradation of vimentin and desmin by the Ca2+-activated proteinase specific for these intermediate filament proteins proceeds in two stages in the form of a limited proteolysis. At first, the reaction is very rapid, with the stepwise and complete removal of a peptide (ca. 9,000 daltons) from the N-terminal of vimentin and desmin. This results in the production of a characteristic "staircase" of degradation products, as seen in two-dimensional polyacrylamide gel electrophoresis. The second stage of proteolysis is characterized by the accumulation of peptides which are resistant to further proteolysis; this is due not to product inhibition but to the fact that these peptides are not substrates for the proteinase and therefore do not protect the latter from inactivation (autodigestion). In vitro phosphorylation of the substrates does not affect proteinase activity, probably because the phosphorylation site is located towards the C-terminal of the molecules. The specific and limited proteolysis of vimentin and desmin results in the deletion of the nucleic acid binding and filament assembly site of these proteins, indicating that the Ca2+-activated proteinase plays a role in regulating the function(s) of these intermediate filament proteins, rather than their simple turnover during the cell cycle.  相似文献   

10.
The p97/VCP ATPase complex facilitates the extraction and degradation of ubiquitinated proteins from larger structures. We therefore studied if p97 participates to the rapid degradation of myofibrillar proteins during muscle atrophy. Electroporation of a dominant negative p97 (DNp97), but not the WT, into mouse muscle reduced fibre atrophy caused by denervation and food deprivation. DNp97 (acting as a substrate-trap) became associated with specific myofibrillar proteins and its cofactors, Ufd1 and p47, and caused accumulation of ubiquitinated components of thin and thick filaments, which suggests a role for p97 in extracting ubiquitinated proteins from myofibrils. DNp97 expression in myotubes reduced overall proteolysis by proteasomes and lysosomes and blocked the accelerated proteolysis induced by FoxO3, which is essential for atrophy. Expression of p97, Ufd1 and p47 increases following denervation, at times when myofibrils are rapidly degraded. Surprisingly, p97 inhibition, though toxic to most cells, caused rapid growth of myotubes (without enhancing protein synthesis) and hypertrophy of adult muscles. Thus, p97 restrains post-natal muscle growth, and during atrophy, is essential for the accelerated degradation of most muscle proteins.  相似文献   

11.
To analyze the cell cycle-dependent desmin phosphorylation by Rho kinase, we developed antibodies specifically recognizing the kinase-dependent phosphorylation of desmin at Thr-16, Thr-75, and Thr-76. With these antibodies, phosphorylation of desmin was observed specifically at the cleavage furrow in late mitotic Saos-2 cells. We then found that treatment of the interphase cells with calyculin A revealed phosphorylation at all the three sites of desmin. We also found that an antibody, which specifically recognizes vimentin phosphorylated at Ser-71 by Rho kinase, became immunoreactive after calyculin A treatment. This calyculin A-induced interphase phosphorylation of vimentin at Ser-71 was blocked by Rho kinase inhibitor or by expression of the dominant-negative Rho kinase. Taken together, our results indicate that Rho kinase is activated not only in mitotic cells but also interphase ones, and phosphorylates intermediate filament proteins, although the apparent phosphorylation level is diminished to an undetectable level due to the constitutive action of type 1 protein phosphatase. The balance between intermediate filament protein phosphorylation by Rho kinase and dephosphorylation by type 1 protein phosphatase may affect the continuous exchange of intermediate filament subunits between a soluble pool and polymerized intermediate filaments.  相似文献   

12.
Desmin filaments form the intermediate filament system of muscle cells where they play important role in maintaining mechanical integrity and elasticity. Although the importance of desmin elasticity and assembly-disassembly dynamics in cellular mechanics is being increasingly recognized, the molecular basis of neither desmin's elasticity nor its disassembly pathway is well understood. In the present work, we explored the topographical structure of purified and reconstituted desmin filaments by using scanning force microscopy. With the addition of divalent cation chelators ethyleneglycoltetraacetic acid or ethylenediaminetetraacetic acid, the filaments disassembled on a time scale of hours to days into stable, thin fibrillar components with variable (up to micrometer) length, smooth surface and uniform thickness, which are identified as protofibrils. Desmin protofibrils appear as elastic structures with a persistence length of 51.5 nm, and their Young's modulus (10.6 MPa) far exceeds that of the mature filament (3.7 MPa). Protofibrillar bundling within the desmin filament results in high longitudinal tensile strength at a large bending flexibility. The stability of protofibrils suggests that desmin may disassemble along a pathway quite distinct from its assembly.  相似文献   

13.
14.
15.
Desmin and vimentin are two type III intermediate filament (IF) proteins, which can be phosphorylated in vitro by cAMP-dependent kinase (kinase A) and protein kinase C, and the in vitro phosphorylation of these proteins appears to favor the disassembled state. The sites of phosphorylation for desmin and vimentin have been mapped to their amino-terminal headpiece domains; in chicken smooth muscle desmin the most kinase A-reactive residues are ser-29 and ser-35. In this study we have examined the phosphorylation of desmin by the catalytic subunit of kinase A by using anti-peptide antibodies directed against residues 26-36. The antibodies, which we call anti-D26, recognize both native and denatured desmin and can discriminate between intact desmin and those derivatives that do not possess residues 26-36. Pre-incubation of desmin with affinity purified anti-D26 blocks total kinase A catalyzed incorporation of 32P into desmin by 75-80%. When antibody-treated IFs are subjected to phosphorylation, no filament break-down is observed after 3 hours. Thus anti-D26 antibodies block phosphorylation of IF in vitro. We have also explored the role of desmin phosphorylation in skeletal muscle cell differentiation using these antibodies. Quail embryo cells, induced to differentiate along the myogenic pathway by infection with avian SKV retroviruses expressing the ski oncogene, were microinjected with affinity purified anti-D26 at the mononucleated, myoblast stage. By 24 h post-injection, the vast majority of uninjected cells had fused into multinucleated myotubes, but all microinjected cells were arrested in the process of incorporating into myotubes and remained mononucleated. This observation suggests that kinase A phosphorylation-induced dynamic behavior of the desmin/vimentin IF cytoskeleton may be one of the many cytoskeletal restructuring events that must take place during myoblast fusion.  相似文献   

16.
Joseph A. DiPaolo 《Cell》1980,20(1):263-265
Electrophoretic and autoradiographic analyses of the incorporation of 35S-methionine into newly synthesized proteins during myogenesis reveal that presumptive chicken myoblasts synthesize primarily one intermediate filament protein: vimentin. Desmin synthesis is initiated at the onset of fusion. Synthesis rates of both filament subunits increase during the first three days in culture, relative to the total protein synthesis rate. The observed increase in the rate of desmin synthesis (at least 10 fold) is significantly greater than that observed for vimentin, and is responsible for a net increase in the cellular desmin content relative to vimentin. Both filament subunits continue to be synthesized through at least 20 days in culture. Immunofluorescent staining using desmin- and vimentin-specific antisera supports the conclusion that desmin is synthesized only in fusing or multinucleate cells. These results indicate that the synthesis of the two filament subunits is not coordinately regulated during myogenesis. The distributions of desmin and vimentin in multinucleate chicken myotubes are indistinguishable, as determined by double immunofluorescence techniques. In early myotubes, both proteins are found in an intricate network of free cytoplasmic filaments. Later in myogenesis, several days after the appearance of α-actinin-containing Z line striations, both filament proteins become associated with the Z lines of newly assembled myofibrils, with a corresponding decrease in the number of cytoplasmic filaments. This transition corresponds to the time when the a-actinin-containing Z lines become aligned laterally. These data suggest that the two intermediate filament systems, desmin and vimentin, have an important role in the lateral organization and registration of myofibrils and that the synthesis of desmin and assembly of desmin-containing intermediate filaments during myogenesis is directly related to these functions. These results also indicate that the Z disc is assembled in at least two distinct steps during myogenesis.  相似文献   

17.
Mutations in the small heat shock protein chaperone CRYAB (αB-crystallin/HSPB5) and the intermediate filament protein desmin, phenocopy each other causing cardiomyopathies. Whilst the binding sites for desmin on CRYAB have been determined, desmin epitopes responsible for CRYAB binding and also the parameters that determine CRYAB binding to desmin filaments are unknown. Using a combination of co-sedimentation centrifugation, viscometric assays and electron microscopy of negatively stained filaments to analyse the in vitro assembly of desmin filaments, we show that the binding of CRYAB to desmin is subject to its assembly status, to the subunit organization within filaments formed and to the integrity of the C-terminal tail domain of desmin. Our in vitro studies using a rapid assembly protocol, C-terminally truncated desmin and two disease-causing mutants (I451M and R454W) suggest that CRYAB is a sensor for the surface topology of the desmin filament. Our data also suggest that CRYAB performs an assembly chaperone role because the assembling filaments have different CRYAB-binding properties during the maturation process. We suggest that the capability of CRYAB to distinguish between filaments with different surface topologies due either to mutation (R454W) or assembly protocol is important to understanding the pathomechanism(s) of desmin-CRYAB myopathies.  相似文献   

18.
Mutations in the DES gene coding for the intermediate filament protein desmin may cause skeletal and cardiac myopathies, which are frequently characterized by cytoplasmic aggregates of desmin and associated proteins at the cellular level. By atomic force microscopy, we demonstrated filament formation defects of desmin mutants, associated with arrhythmogenic right ventricular cardiomyopathy. To understand the pathogenesis of this disease, it is essential to analyze desmin filament structures under conditions in which both healthy and mutant desmin are expressed at equimolar levels mimicking an in vivo situation. Here, we applied dual color photoactivation localization microscopy using photoactivatable fluorescent proteins genetically fused to desmin and characterized the heterozygous status in living cells lacking endogenous desmin. In addition, we applied fluorescence resonance energy transfer to unravel short distance structural patterns of desmin mutants in filaments. For the first time, we present consistent high resolution data on the structural effects of five heterozygous desmin mutations on filament formation in vitro and in living cells. Our results may contribute to the molecular understanding of the pathological filament formation defects of heterozygous DES mutations in cardiomyopathies.  相似文献   

19.
Activation of the PI3K–Akt–FoxO pathway induces cell growth, whereas its inhibition reduces cell survival and, in muscle, causes atrophy. Here, we report a novel mechanism that suppresses PI3K–Akt–FoxO signaling. Although skeletal muscle lacks desmosomes, it contains multiple desmosomal components, including plakoglobin. In normal muscle plakoglobin binds the insulin receptor and PI3K subunit p85 and promotes PI3K–Akt–FoxO signaling. During atrophy, however, its interaction with PI3K–p85 is reduced by the ubiquitin ligase Trim32 (tripartite motif containing protein 32). Inhibition of Trim32 enhanced plakoglobin binding to PI3K–p85 and promoted PI3K–Akt–FoxO signaling. Surprisingly, plakoglobin overexpression alone enhanced PI3K–Akt–FoxO signaling. Furthermore, Trim32 inhibition in normal muscle increased PI3K–Akt–FoxO signaling, enhanced glucose uptake, and induced fiber growth, whereas plakoglobin down-regulation reduced PI3K–Akt–FoxO signaling, decreased glucose uptake, and caused atrophy. Thus, by promoting plakoglobin–PI3K dissociation, Trim32 reduces PI3K–Akt–FoxO signaling in normal and atrophying muscle. This mechanism probably contributes to insulin resistance during fasting and catabolic diseases and perhaps to the myopathies and cardiomyopathies seen with Trim32 and plakoglobin mutations.  相似文献   

20.
Assembly of amino-terminally deleted desmin in vimentin-free cells   总被引:13,自引:9,他引:4       下载免费PDF全文
《The Journal of cell biology》1990,111(5):1971-1985
To study the role of the amino-terminal domain of the desmin subunit in intermediate filament (IF) formation, several deletions in the sequence encoding this domain were made. The deleted hamster desmin genes were fused to the RSV promoter. Expression of such constructs in vimentin- free MCF-7 cells as well as in vimentin-containing HeLa cells, resulted in the synthesis of mutant proteins of the expected size. Single- and double-label immunofluorescence assays of transfected cells showed that in the absence of vimentin, desmin subunits missing amino acids 4-13 are still capable of filament formation, although in addition to filaments large numbers of desmin dots are present. Mutant desmin subunits missing larger portions of their amino terminus cannot form filaments on their own. It may be concluded that the amino-terminal region comprising amino acids 7-17 contains residues indispensable for desmin filament formation in vivo. Furthermore it was shown that the endogenous vimentin IF network in HeLa cells masks the effects of mutant desmin on IF assembly. Intact and mutant desmin colocalized completely with endogenous vimentin in HeLa cells. Surprisingly, in these cells endogenous keratin also seemed to colocalize with endogenous vimentin, even if the endogenous vimentin filaments were disturbed after expression of some of the mutant desmin proteins. In MCF-7 cells some overlap between endogenous keratin and intact exogenous desmin filaments was also observed, but mutant desmin proteins did not affect the keratin IF structures. In the absence of vimentin networks (MCF-7 cells), the initiation of desmin filament formation seems to start on the preexisting keratin filaments. However, in the presence of vimentin (HeLa cells) a gradual integration of desmin in the preexisting vimentin filaments apparently takes place.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号