首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanism of surfactant-induced cell lysis has been studied with quantitative coherent anti-Stokes Raman scattering (CARS) microspectroscopy. The dynamics of surfactant molecules as well as intracellular biomolecules in living Chinese Hamster Lung (CHL) cells has been examined for a low surfactant concentration (0.01 w%). By using an isotope labeled surfactant having CD bonds, surfactant uptake dynamics in living cells has been traced in detail. The simultaneous CARS imaging of the cell itself and the internalized surfactant has shown that the surfactant molecules is first accumulated inside a CHL cell followed by a sudden leak of cytosolic components such as proteins to the outside of the cell. This finding indicates that surfactant uptake occurs prior to the cell lysis, contrary to what has been believed: surface adsorption of surfactant molecules has been thought to occur first with subsequent disruption of cell membranes. Quantitative CARS microspectroscopy enables us to determine the molecular concentration of the surfactant molecules accumulated in a cell. We have also investigated the effect of a drug, nocodazole, on the surfactant uptake dynamics. As a result of the inhibition of tubulin polymerization by nocodazole, the surfactant uptake rate is significantly lowered. This fact suggests that intracellular membrane trafficking contributes to the surfactant uptake mechanism.  相似文献   

2.
An hybridoma cell line cultivated in flasks has been used as a model to study the loss of cell viability in high density cell cultures. Cell cycle analysis by cytofluorimetry has shown that a new hypochromosomic cell population appeared as soon as the viability began to decrease. However there is no evidence that this new population is constituted of dead cells.  相似文献   

3.
Effects of substratum morphology on cell physiology   总被引:3,自引:0,他引:3  
Among the host of substratum properties that affect animal cell behavior, surface morphology has received relatively little attention. The earliest effect of surface morphology on animal cells was discovered almost a century ago when it was found that cells became oriented in response to the underlying topography. This phenomenon is now commonly known as contact guidance. From then until very recentrly, little progress has been made in understanding the role of surface morphology on cell behavior, primarily due to a lack of defined surfaces with uniform morphologies. This problem has been solved recently with the development of photolithographic techniques to prepare substrata with well defined and uniform surface morphologies. Availability of such surfaces has facilitated systematic in vitro experiments to study influence of surface morphology on diverse cell physiological aspects such as adhesion, growth, and function. For example, these studies have shown that surfaces with uniform multipls parallel grooves can enhance cell adhesion by confining cells in grooves and by mechanically interlocking them. Several independent studies have demosterated that cell shape is a major determinant of cell growth and function. Because surface morphology has been shown to modulate the extent of cell spreading and cell shape, its effects on cell growth and function appear to be mediated via this biological coupling between cell shape and function. New evidence in the cell biology literature is emerging to suggest that surface morphology could affect other cell behavioral properties such as post-translational modifications. Further elucidation of such effects will enable better designs for implant and cell culture substrata.  相似文献   

4.
Cell adhesion junctions characteristically arise from the cooperative integration of adhesion receptors, cell signalling pathways and the cytoskeleton. This is exemplified by cell–cell interactions mediated by classical cadherin adhesion receptors. These junctions are sites where cadherin adhesion systems functionally couple to the dynamic actin cytoskeleton, a process that entails physical interactions with many actin regulators and regulation by cell signalling pathways. Such integration implies a potential role for molecules that may stand at the interface between adhesion, signalling and the cytoskeleton. One such candidate is the cortical scaffolding protein, vinculin, which is a component of both cell–cell and cell–matrix adhesions. While its contribution to integrin-based adhesions has been extensively studied, less is known about how vinculin contributes to cell–cell adhesions. A major recent advance has come with the realisation that cadherin adhesions are active mechanical structures, where cadherin serves as part of a mechanotransduction pathway by which junctions sense and elicit cellular responses to mechanical stimuli. Vinculin has emerged as an important element in cadherin mechanotransduction, a perspective that illuminates its role in cell–cell interactions. We now review its role as a cortical scaffold and its role in cadherin mechanotransduction.  相似文献   

5.
A mathematical model has been considered in which the known equation of McKendrick and Von Foerster for cell age distribution is combined with that for substrate concentration. The dependence of cell division rate on cell age has been taken as a step function. The interrelation between culture parameters describing the substrate consumption and cell division has been found. The shape of cell age distribution as well as the values of substrate and cell concentrations in steady and transient states have been investigated. Stationary regimes at the initial culture state synchronized by ages have been found to be established as damped oscillations and age waves. Under definite conditions the transition from one steady growth regime to another includes sharp single-time age synchronization of the culture.  相似文献   

6.
Polarity is a fundamental feature of all organisms both during development and in the adult. This reflects the key role of cell polarity during basic fundamental processes such as cell division, cell differentiation and cell migration. The control of cell polarity relies on functionally conserved proteins. Among these, Scribble, initially identified as a tumor suppressor gene in Drosophila, has been first involved in epithelial polarity. More recently Scribble function has been implicated in neuronal polarity and polarized cell migration. Scribble joins the growing family of tumor suppressors that play a key and conserved function in cell polarity. Scribble illustrates the more and more obvious link between regulation of cell polarity, cell transformation and tumor formation.  相似文献   

7.
The Cytoskeleton of trypanosomes   总被引:1,自引:0,他引:1  
From the concept of cells as mere bags full of enzymes, cell biology has come a long way towards understanding the highly complex structural organization of eukaryotic cells. The cytoskeleton, ie. the complex of fibrous elements that are crucial for cell shape, motility and the structural organization of cytoplasm and cell membranes, is now recognized as vital for supporting many critical functions in eukaryotic cells. Surprisingly, this subject, which has provided scores of cell biologists with excitement and fascination, has been largely overlooked with respect to parasitic protozoa. A notable change of perception has taken place over the past few years as the cytoskeleton of parasitic protozoa has been increasingly recognized as a potential target for antiparasitic intervention. The following article by Thomas Seebeck, Andrew Hemphill and Durward Lawson highlights some recent developments in the analysis of what is presently the best-studied parasite cytoskeleton, that of the trypanosome.  相似文献   

8.
细菌双组分调节系统,或称之为双组分信号转导系统,是细菌感应外界多变环境,维持自身存活和生长繁衍的重要感应系统.在这些调节系统中,最早发现于枯草芽孢杆菌的VicRK(YycFG)系统因与细胞存活密切相关而倍受关注.该系统存在于少数低G+C含量的革兰氏阳性菌中,包括金黄色葡萄球菌和肺炎链球菌等致病菌,高度保守.许多证据显示,VicRK(YycFG)具有调控细胞壁合成与代谢、胞膜完整、细胞分裂、脂类代谢、多糖合成与被膜形成以及细菌毒力等多种功能,参与细胞的生长、分裂与感染.该系统异常可导致细菌生活力严重下降,甚至死亡,因而成为防治该类病原菌的重要靶标.  相似文献   

9.
Detection of intracytoplasmic cytokines by flow cytometry   总被引:1,自引:0,他引:1  
Flow cytometry has been used as a powerful technique for studying cell surface antigen expression as well as intracellular molecules. Its capability of analyzing multiple parameters simultaneously on a single cell has allowed identification and studies of functional cell subsets within heterogeneous populations. In this respect, several techniques have been developed during the past few years to study cytokine-producing cells by flow cytometry in humans and several animal models.  相似文献   

10.
The plant cell wall is composed of multiple biopolymers, representing one of the most complex structural networks in nature. Hundreds of genes are involved in building such a natural masterpiece. However, the plant cell wall is the least understood cellular structure in plants. Due to great progress in plant functional genomics,manyachievementshavebeenmadein uncovering cell wall biosynthesis, assembly, and architecture, as well as cell wall regulation and signaling. Such information has significantly advanced our understanding of the roles of the cell wall in many biological and physiological processes and has enhanced our utilization of cell wall materials. The use of cutting-edge technologies such as single-molecule imaging,nuclear magnetic resonance spectroscopy, and atomic force microscopy has provided much insight into the plant cell wall as an intricate nanoscale network, opening up unprecedented possibilities for cell wall research. In this review,we summarize the major advances made in understanding the cell wall in this era of functional genomics, including the latest findings on the biosynthesis, construction, and functions of the cell wall.  相似文献   

11.
Helper T cell (Th) has been identified as a critical immune cell for regulating immune response since 1980s. The type 2 helper T cell (Th2), characterized by the production of interleukin-4 (IL-4), IL-5 and IL-13, plays a critical role in immune response against helminths invading cutaneous or mucosal sites. It also has a functional role in the pathophysiology of allergic diseases such as asthma and allergic diarrhea. Currently, most studies have shed light on Th2 cell function and behavior in specific diseases, such as asthma and helminthes inflammation, but not on Th2 cell itself and its differentiation. Based on different cytokines and specific behavior in recent research, Th2 cell is also regarded as new subtypes of T cell, such as IL-9 secreting T cell (Th9) and CXCR5+ T follicular helper cells. Here, we will discuss the latest view of Th2 cell towards their function and the involvement of Th2 cell in diseases.  相似文献   

12.
《Cellular signalling》2014,26(3):549-555
Not surprisingly, the death of a cell is a complex and well controlled process. For several decades, apoptosis, the first genetically programmed death process to be identified has taken centre stage as the principal mechanism of programmed cell death (type I cell death) in mammalian tissues. Apoptosis has been extensively studied and its contribution to the pathogenesis of disease well documented. However, apoptosis does not function alone in determining the fate of a cell. More recently, autophagy, a process in which de novo formed membrane enclosed vesicles engulf and consume cellular components, has been shown to engage in complex interplay with apoptosis. As a result, cell death has been subdivided into the categories apoptosis (Type I), autophagic cell death (Type II), and necrosis (Type III). The boundary between Type I and II cell death is not completely clear and as we will discuss in this review and perhaps a discrete difference does not exist, due to intrinsic factors among different cell types and crosstalk among organelles within each cell type. Apoptosis may begin with autophagy and autophagy can often end with apoptosis, inhibition or a blockade of caspase activity may lead a cell to default into Type II cell death from Type I.  相似文献   

13.
Synthesis and Structure of Caulobacter crescentus Flagella   总被引:30,自引:27,他引:3  
During the normal cell cycle of Caulobacter crescentus, flagella are released into the culture fluid as swarmer cells differentiate into stalked cells. The released flagellum is composed of a filament, hook, and rod. The molecular weight of purified flagellin (subunit of flagella filament) is 25,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The formation of a flagellum opposite the stalk has been observed by microscope during the differentiation of a stalked cell in preparation for cell division. By pulsing synchronized cultures with (14)C-amino acids it has been demonstrated that the synthesis of flagellin occurs approximately 30 to 40 min before cell division. Flagellin, therefore, is synthesized at a discrete time in the cell cycle and is assembled into flagella at a specific site on the cell. A mutant of C. crescentus that fails to synthesize flagellin has been isolated.  相似文献   

14.
In recent years, serum-free medium for mammalian cell cultivation has attracted a lot of attention, considering the high cost of production and environmental load involved in developing the conventional animal sera. The use of alternative growth-promoting products in mammalian cell cultivation such as extracts from microalgae has proven to be quite beneficial and environmental-friendly. This research aims to cultivate mammalian cells with growth-promoting factors derived from Chlorococcum littorale. We have established a simple extraction using the ultrasonication method and applied the extract in place of serum on mammalian C2C12 cell lines, 3T3 cell lines, and CHO cell lines to compare and analyze the effectiveness of the extract. Cell passage was conducted in a suspended culture condition with the addition of the extract. The results indicate that the extract from microalgae shows a high proliferation rate in all cell lines without fetal bovine serum. Moreover, it is eco-friendly and has huge potential to replace the traditional cell culture system. It could be applied in the fields of regenerative medicine, gene/cell therapies, as well as cultured meat production.  相似文献   

15.
16.
Biomechanical properties of cells have been identified as an important factor in a broad range of biological processes. Based on measurements of mechanical properties by atomic force microscopy (AFM) particularly cell elasticity has been linked with human diseases, such as cancer. AFM has been widely used as a nanomechanical tool to probe the elasticity of living cells, however, standard methods for characterizing cell elasticity are still lacking. The local elasticity of a cell is conventionally used to represent the mechanical property of the cell. However, since cells have highly heterogeneous regions, elasticity mapping over the entire cell, rather than at a few points of measurement, is required. Using human aortic endothelial cells (HAECs) as a model, we have developed in this study a new method to evaluate cell elasticity more quantitatively. Based on the height information of the cell, a new characterization method was proposed to evaluate the elasticity of a cell. Using this method, elasticities of cells on different substrates were compared. Results showed that the elasticity of HAECs on softer substrate also has higher value compared to those on harder substrate given a certain height where the statistical distribution analysis confirmed that higher actin filaments density was located. Thus, the elasticity of small portions of a cell could not represent the entire cell property and may lead to invalid characterization. In order to gain a more comprehensive and detailed understanding of biomechanical properties for future clinical use, elasticity and cell morphology should therefore be correlated with discussion.  相似文献   

17.
Embryonic stem (ES) cell is well known as a totipotent cell, which is derived from a blastcyst and has potential to differentiate into every kind of somatic cell. ES cell bears self-renewal characteristic as well as differentiation potential. ES cell bears telomerase activity to avoid telomere shortening, which is a characteristic of differentiated somatic cells. As the differentiation of ES cells proceeds, their telomerase activity is losing. However, it has not been convinced whether suppression of the telomerase activity promotes progression of ES cell differentiation. The effect of telomerase inhibitor on the differentiation potential of marmoset ES cell was assessed, counting cells expressing embryonic markers (alkaline phosphatase and TPA-1-60) under existence of a telomerase inhibitor. Telomerase inhibitor showed a promotional effect for the marmoset ES cell differentiation. This result suggests that exogenous inhibition of telomerase activity leads to induction of an early differentiation of primate ES cell.  相似文献   

18.
19.
Control of cell wall assembly by a histone-like protein in Mycobacteria   总被引:1,自引:0,他引:1  
Bacteria coordinate assembly of the cell wall as well as synthesis of cellular components depending on the growth state. The mycobacterial cell wall is dominated by mycolic acids covalently linked to sugars, such as trehalose and arabinose, and is critical for pathogenesis of mycobacteria. Transfer of mycolic acids to sugars is necessary for cell wall biogenesis and is mediated by mycolyltransferases, which have been previously identified as three antigen 85 (Ag85) complex proteins. However, the regulation mechanism which links cell wall biogenesis and the growth state has not been elucidated. Here we found that a histone-like protein has a dual concentration-dependent regulatory effect on mycolyltransferase functions of the Ag85 complex through direct binding to both the Ag85 complex and the substrate, trehalose-6-monomycolate, in the cell wall. A histone-like protein-deficient Mycobacterium smegmatis strain has an unusual crenellated cell wall structure and exhibits impaired cessation of glycolipid biosynthesis in the growth-retarded phase. Furthermore, we found that artificial alteration of the amount of the extracellular histone-like protein and the Ag85 complex changes the growth rate of mycobacteria, perhaps due to impaired down-regulation of glycolipid biosynthesis. Our results demonstrate novel regulation of cell wall assembly which has an impact on bacterial growth.  相似文献   

20.
Research on programmed cell death in plants is providing insight into the primordial mechanism of programmed cell death in all eukaryotes. Much of the attention in studies on animal programmed cell death has focused on determining the importance of signal proteases termed caspases. However, it has recently been shown that cell death can still occur even when the caspase cascade is blocked, revealing that there is an underlying oncotic default pathway. Many programmed plant cell deaths also appear to be oncotic. Shared features of plant and animal programmed cell death can be used to deduce the primordial components of eukaryotic programmed cell death. From this perspective, we must ask whether the mitochondrion is a common factor that can serve in plant and animal cell death as a stress sensor and as a dispatcher of programmed cell death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号