首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Specific activities of succinate:coenzyme Q reductase, ubiquinone:cytochrome c reductase, cytochrome oxidase, succinate:cytochrome c reductase, succinate oxidase, and ubiquinol oxidase have been measured in rat liver mitochondria in the presence of Triton X-100. The last three activities are much more sensitive to Triton X-100 than the first ones; the data suggest that the electron transport chain components cannot react with each other in the presence of the detergent. At least in the case of succinate:cytochrome c reductase, reconstitution of the detergent-treated membranes with externally added phospholipids reverses the inhibition produced by Triton X-100. These results support the idea that the respiratory chain components diffuse at random in the plane of the inner mitochondrial membrane; the main effect of the detergent would be to impair lateral diffusion by decreasing the area of lipid bilayer. When detergent-treated mitochondrial suspensions are centrifuged in order to separate the solubilized from the particulate material, only the first three enzyme activities mentioned above are found in the supernatants. After centrifugation, a latent ubiquinol:cytochrome c oxidase activity becomes apparent, whereas the same centrifugation process produces inhibition of cytochrome c oxidase in the presence of certain Triton X-100 concentrations. These effects could be due either to a selective solubilization of regulatory or catalytic subunits or to a conformational change of the enzyme-detergent complex.  相似文献   

2.
Musatov A  Robinson NC 《Biochemistry》2002,41(13):4371-4376
Bovine heart cytochrome c oxidase (CcO), solubilized by either nonionic detergents or phospholipids, completely dimerizes upon the addition of bile salts, e.g., sodium cholate, sodium deoxycholate, or CHAPS. Bile salt induced dimerization occurs whether dodecyl maltoside, decyl maltoside, or Triton X-100 is the primary solubilizing detergent or the enzyme is dispersed in phosphatidylcholine, phosphatidylethanolamine, or mixtures thereof. In each case, complete CcO dimerization can be verified by sedimentation velocity and sedimentation equilibrium after correction for bound detergent and/or phospholipid. The relative concentration of the bile salt is critical for production of homogeneous, dimeric CcO. For example, enzyme solubilized by 2 mM detergent requires an equal molar concentration of sodium cholate. Similarly, enzyme dispersed in 20 mM phospholipid requires 50 mM sodium cholate, concentrations that are commonly used to reconstitute CcO into small unilamellar vesicles. Bile salts do more than just stabilize dimeric CcO and prevent detergent-induced dissociation into monomers. They are able to completely reverse detergent-induced monomerization and cause completely monomeric CcO to reassociate. Dimeric CcO so generated is no more stable than the original complex and easily dissociates into monomers if the bile salt is removed. The dimerization process is dependent upon a full complement of subunits; e.g., if subunits VIa and VIb are removed, the resulting monomeric CcO will not reassociate upon the addition of sodium cholate. These results support four important consequences: (1) dissociation of dimeric CcO into monomers is reversible; (2) stable dimers can be produced under solution conditions; (3) dimers can be stabilized even at relatively high pH and low enzyme concentration; and (4) subunits VIa and VIb are required for dimerization.  相似文献   

3.
A discontinuous gradient polyacrylamide gel electrophoresis under nondenaturing conditions has been used to demonstrate monodispersity of procaryotic and eucaryotic cytochrome c oxidase preparations. Alkaline treated bovine enzyme which contains nine subunits as analysed by subsequent discontinuous SDS-polyacrylamide gel electrophoresis is a monodisperse dimer in 0.1% Triton X-100 and a monomer in 0.1% dodecyl maltoside. The Mr-values corrected for bound detergent are 286,000 in Triton X-100 and 152,000 in dodecyl maltoside respectively. The two-subunit bacterial cytochrome c oxidase of Paracoccus denitrificans is proved to be a monomer with a corrected Mr of 76,000 in both nonionic detergents Triton X-100 and dodecyl maltoside.  相似文献   

4.
Cytochrome P-45011 beta has been solubilized and partially purified from bovine adrenal cortex mitochondria using chromatography on Octyl-Sepharose CL-4B or DEAE-Sepharose CL-6B. The partially purified P-450 preparations were about 90% pure as judged by SDS-polyacrylamide gel electrophoresis. In the presence of purified preparations of adrenodoxin reductase and adrenodoxin, the partially purified P-450 preparations catalyzed NADPH-supported 11 beta-hydroxylation of unconjugated and sulphoconjugated deoxycorticosterone. In presence of Triton X-100 the partially purified cytochrome P-45011 beta had a Stoke's radius of 4.5 nm, a sedimentation coefficient of 3.1 S and a partial specific volume of about 0.85 cm3/g. These results indicate that the cytochrome P-45011 beta-Triton X-100 complex has a molecular weight of about 100 000 and that P-45011 beta bound about 1.1 g of Triton X-100 per g of protein. The P-45011 beta-Triton X-100 complex was catalytically active in hydroxylation reactions supported by NADPH or the hydroxylating agent ortho-nitroiodosobenzene, suggesting that the monomer of cytochrome P-45011 beta is an active form of the protein.  相似文献   

5.
Membrane-associated sialoglycopolypeptides of rat ovaries were oxidized with NaIO4, reduced with NaB3H4 and solubilized with Triton X-100. The solubilized proteins carrying the 3H label were subjected to affinity chromatography on human choriogonadotropin coupled to agarose. Polyacrylamide-gel electrophoresis in sodium dodecyl sulphate followed by fluorography revealed a single component of apparent Mr 90000. This component was abolished when ovaries saturated with choriogonadotropin were used as starting material. The above result is identical to that obtained previously by conventional detection methods [ Metsikk ö & Rajaniemi (1982) Biochem. J. 208, 309-316] and indicates that the 3H-labelled lutropin/choriogonadotropin sialoglycopolypeptide was observed. The affinity-purified 3H-labelled protein co-eluted with the choriogonadotropin-binding activity solubilized with Triton X-100 from rat ovarian particles, showed a Stokes' radius of 6.2 nm and sedimented as a single band with a sedimentation coefficient of 5.1 S. The sedimentation coefficient of this 3H-labelled protein was not significantly altered when boiled in 1% sodium dodecyl sulphate, indicating that non-covalently associated subunits were not present. The 3H-labelled protein cosedimented with the choriogonadotropin-binding activity solubilized with Triton X-100 from rat ovary. When 125I-choriogonadotropin-receptor complex was covalently crosslinked with glutaraldehyde, an Mr 130000 component was produced as detected by sodium dodecyl sulphate gel electrophoresis. This component was extracted from the polyacrylamide gel and subjected to sucrose-density-gradient centrifugation in 0.1% Triton X-100. A single band sedimenting at the position of the 125I-choriogonadotropin-receptor complex solubilized from a prelabelled ovary was observed, exhibiting a sedimentation coefficient of 6.5S. These data suggest that the lutropin-binding site is a single sialoglycopolypeptide of Mr 90000, which binds one molecule of hormone resulting in an apparent Mr 130000 complex. The large Stokes' radius (6.2 nm) of the binding site is accounted for by bound detergent.  相似文献   

6.
Cytochrome P-45011beta has been solubilized and partially purified from bovine adrenal cortex mitochondria by means of chromatography on Octyl-Sepharose CL-4B or DEAE-Sepharose CL-6B. The partially purified P-450 preparations were about 90% pure as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, but had a low specific content of P-450 (between 1 and 2 nmol of P-450 per mg of protein). In the presence of purified preparations of adrenodoxin reductase and adrenodoxin, the partially purified P-450 preparations catalyzed NADPH-supported 11beta-hydroxylation of unconjugated and sulfoconjugated deoxycorticosterone. In the reconstituted system the hydroxylation of deoxycorticosterone sulfate proceeded at a much higher rate than in intact mitochondria, indicating that in the former case interactions between the hydrophilic substrate and P-450 were facilitated. In the presence of Triton X-100 the partially purified cytochrome P-45011beta had a Stokes radius of 4.5 nm, a sedimentation coefficient of 3.1 S, and a partial specific volume of about 0.85 cm3/g. These results indicate that the cytochrome P-45011beta . Triton X-100 complex had a molecular weight of about 100,000 and that P-45011beta bound about 1.1 g of Triton X-100 per g of protein. The P-45011beta . Triton X-100 complex was catalytically active in hydroxylation reactions supported by NADPH or the hydroxylating agent ortho-nitroiodosobenzene, suggesting that the monomer of cytochrome P-45011beta is the active form of the protein.  相似文献   

7.
A prostaglandin F2 alpha receptor localized in plasma membranes of bovine corpus luteum cells was solubilized by treatment with Triton X-100. Sepharose chromatographies of ([3H]prostaglandin F2 alpha)-receptor complex gave a Stokes' radius of 630 nm. In the absence of detergent, aggregated forms of the receptor appeared. Sedimentation experiments of solubilized receptor in sucrose/H2O and sucrose/2H2O density gradients gave the following values: sedimentation coefficient (S20, w) 4.6 S; partial specific volume (VB) 0.78 cm3/g and frictional ratio (f/fo) 1.6. Based on the sedimentation coefficient and the Stokes' radius and assuming that the receptor is a non-glycosylated protein the molar mass of the receptor-(Triton X-100) complex was 144000 g/mol. The VB value indicated that ca. 26% of the weight represented bound detergent and that the molecular weight of the prostaglandin F2 alpha receptor is approximately 107000.  相似文献   

8.
Succinate dehydrogenase (SDH) was solubilized from membranes of Mycobacterium phlei by Triton X-100 with a recovery of about 90%. The solubilized SDH was purified about 90-fold by Sephacryl S-300, DEAE-cellulose, hydroxylapatite, and isoelectric focusing in the presence of Triton X-100 with a 20% recovery. SDH was homogeneous, as determined by polyacrylamide gel electrophoresis in nondenaturing gels containing Triton X-100. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the enzyme revealed two subunits with molecular weights of 62,000 and 26,000. SDH is a flavoprotein containing 1 mol of flavin adenine dinucleotide, 7 to 8 mol of nonheme iron, and 7 to 8 mol of acid-labile sulfide per mol of protein. Using phenazine methosulfate and 2,6-dichloroindophenol as electron acceptors, the enzyme had an apparent Km of 0.12 mM succinate. SDH exhibited a sigmoidal relationship of rate to succinate concentration, indicating cooperativity. The enzyme was competitively inhibited by fumarate with a Ki of 0.15 mM. In the absence of Triton X-100, the enzyme aggregated, retained 50% of the activity, and could be resolubilized with Triton X-100 with full restoration of activity. Cardiolipin had no effect on the enzyme activity in the absence of Triton X-100, but it stimulated the activity by about 30% in the presence of 0.1% Triton X-100 in the assay mixture. Menaquinone-9(2H), isolated from M. phlei, had no effect on the enzyme activity either in the presence or absence of Triton X-100.  相似文献   

9.
Human platelet membrane glycoproteins IIb and III are two major integral membrane components that have been identified as sites mediating thrombin-induced aggregation. For purposes of our study, glycoproteins IIb and III were solubilized by extracting platelet plasma membranes with a buffer containing 0.1% Triton X-100 and were separated by gel filtration chromatography on Sephacryl S-300, employing Triton X-100-containing column buffers with or without urea or guanidine hydrochloride. The physical properties of the purified glycoproteins were: for glycoprotein IIb, Rs = 61 A, s20.w = 4.7, f/f0 = 1.7, Mr = 125,000 (hydrodynamic values), Mr = 136,000 (sodium dodecyl sulfate gels); for glycoprotein III, Rs = 67 A, s20,w = 3.2 f/f0 = 2.1, Mr = 93,000 (hydrodynamic values), Mr = 95,000 (sodium dodecyl sulfate gels). Although the amino acid compositions of the two glycoproteins were similar, antibodies raised against glycoprotein IIb did not crossreact with glycoprotein III. If divalent cations were not chelated in the Triton extract, glycoproteins IIb and III coeluted during gel filtration chromatography (apparent Stokes radius of 71 A) and co-sedimented on sucrose gradients (apparent s20.w of 8.6), from which Mr = 265,000 was calculated. Glycoproteins IIb and III were coprecipitated by an antibody monospecific for glycoprotein IIb. The two glycoproteins dissociated into monomers when EDTA was added to Triton lysates. Readdition of Ca2+ caused them to reassociate into a complex with physical properties similar to those of the complex in the original Triton lysate. The data show that glycoproteins IIb and III are a heterodimer complex, that complex formation depends upon the presence of Ca2+, and that chelation of Ca2+ causes dissociation into monomeric glycoproteins.  相似文献   

10.
Mitochondrial ATPase and cytochrome c oxidase activities are not severely affected by Triton X-100 concentrations between 0.1 and 2.0% (w/v). The former is solubilized by the effect of the detergent, while the latter is not. Succinate: cytochrome c reductase and rotenone-sensitive NADH: cytochrome c reductase activities are destroyed even a low detergent concentrations. Succinate:coenzyme Q oxidoreductase is affected by the surfactant in a more complex way, so that selective solubilization of some subunit(s) could be involved.  相似文献   

11.
D S Lyles  V A Varela  J W Parce 《Biochemistry》1990,29(10):2442-2449
The envelope glycoprotein (G protein) of vesicular stomatitis virus probably exists in the viral envelope as a trimer of identical subunits. Depending on the conditions of solubilization, G protein may dissociate into monomers. G protein solubilized with the detergent octyl glucoside was shown to exist as oligomeric forms by sedimentation velocity analysis and chemical cross-linking. G protein was modified with either fluorescein isothiocyanate or rhodamine isothiocyanate. Resonance energy transfer between fluorescein and rhodamine labels was observed upon mixing the two labeled G proteins in octyl glucoside. This result provided further evidence that G protein in octyl glucoside is oligomeric and indicated that the subunits are capable of exchange to form mixed oligomers. Resonance energy transfer was independent of G protein concentration in the range examined (10-80 nM) and was not observed when labeled G proteins were mixed with fluorescein or rhodamine that was not conjugated to protein. Resonance energy transfer decreased upon incorporation of G protein into Triton X-100, consistent with sedimentation velocity data that G protein in Triton X-100 is primarily monomeric. Kinetic analysis showed that the subunit exchange reaction had a half-time of about 3 min at 27 degrees C that was independent of G protein concentration. These data indicate that the exchange occurs through dissociation of G protein trimers into monomers and dimers followed by reassociation into timers. Thus, in octyl glucoside, G protein must exist as an equilibrium between monomers and oligomers. This implies that monomers are capable of self-assembly into trimers.  相似文献   

12.
The extent to which bovine cytochrome c oxidase (COX) dimerizes in nondenaturing detergent environments was assessed by sedimentation velocity and equilibrium. In contrast to generally accepted opinion, the COX dimer is difficult to maintain and is the major oligomeric form only when COX is solubilized with a low concentration of dodecylmaltoside, i.e., approximately 1 mg/mg protein. The dimer form is intrinsically unstable and dissociates into monomers with increased detergent concentration, i.e., >5 mg/mg protein. The structure of the solubilizing detergent, however, greatly alters detergent effectiveness by inducing either monomerization or aggregation. Triton X-100 is most effective at solubilizing COX, but it destabilizes COX dimers, even at low concentration. Undecylmaltoside, decylmaltoside, and octaethyleneglycolmonododecyl ether (C(12)E(8)) are less effective at solubilizing COX. Each prevents COX aggregation at high detergent concentration, but also destabilizes the COX dimer. Other detergents, e.g., Tween 20, sodium cholate, sodium deoxycholate, CHAPS, or CHAPSO, are completely ineffective COX solubilizers and do not prevent aggregation even at 10-40 mg/mL. The transition from dimers to monomers depends on many factors other than detergent structure and concentration, e.g., protein concentration, phospholipid content and pH. We conclude that the intrinsic dimeric structure of COX can be maintained only after solubilization with low concentrations of dodecylmaltoside at near neutral pH, and even then precautions must be taken to prevent its dissociation into monomers.  相似文献   

13.
Receptors for thyrotropin-releasing hormone were solubilized by Triton X-100. Membrane fractions from GH3 pituitary tumor cells were incubated with thyrotropin-releasing hormone in order to saturate specific receptor sites before the addition of detergent. The amount of protein-bound hormone solubilized by Triton X-100 was proportional to the fractional saturation of specific membrane receptors. Increasing detergent: protein ratios from 0.5 to 20 led to a progressive loss of hormone · receptor complex from membrane fractions with a concomitant increase in soluble protein-bound hormone. The soluble hormone · receptor complex was not retained by 0.22 μm filters and remained soluble after ultracentrifugation. Following incubation with high (2.5–10%) concentration of Triton X-100 and other non-ionic detergents, or following repeated detergent extraction, at least 18% of specifically bound thyrotropin-releasing hormone remained associated with particulate material. Unlike the hormone receptor complex, the free hormone receptor was inactivated by Triton X-100. A 50% loss of binding activity was obtained with 0.01% Triton X-100, corresponding to a detergent: protein ratio of 0.033.The hormone · receptor complex was included in Sepharose 6B and exhibited an apparent Stokes radius of 46 Å in buffers containing Triton X-100. The complex aggregated in detergent-free buffers. Soluble hormone receptors were separated from excess detergent and thyrotropin-releasing hormone by chromatography on DEAE-cellulose. Thyrotropin-releasing hormone dissociated from soluble receptors with a half-time of 120 min at 0°c, while the membrane hormone · receptor complex was stable for up to 5 h at 0°C.  相似文献   

14.
The cytochrome d complex is a component of the aerobic respiratory system of Escherichia coli. The enzyme functions as a terminal oxidase, oxidizing ubiquinol-8 within the cytoplasmic membrane and reducing oxygen to water. The enzyme is of particular interest because it is a coupling site in the electron transfer chain. The electron transfer reaction catalyzed by this enzyme is coupled to the translocations of protons across the membrane (H+/e-approximately equal to 1). The oxidase contains two subunits by sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis, with molecular weights of 58,000 and 43,000. In this paper, the question of the quaternary structure is addressed. Quantitative N-terminal analysis of the isolated enzyme and relative mass quantitation following sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicate the subunits are present in equimolar amounts. Sedimentation velocity and sedimentation equilibrium studies were used to characterize the hydrodynamic properties of the purified enzyme solubilized in Triton X-100, under conditions where the enzyme is active. It is concluded that the active enzyme in Triton X-100 is a heterodimer, containing one copy of each subunit. This is likely the structure of the enzyme in the E. coli membrane.  相似文献   

15.
Purification of phosphatidylethanolamine N-methyltransferase from rat liver   总被引:5,自引:0,他引:5  
Phosphatidylethanolamine (PE) N-methyltransferase catalyzes the synthesis of phosphatidylcholine by the stepwise transfer of methyl groups from S-adenosylmethionine to the amino head group of PE. PE N-methyltransferase was solubilized from a microsomal membrane fraction of rat liver using the nonionic detergent Triton X-100 and purified to apparent homogeneity. Specific activities of PE N-methyltransferase with PE, phosphatidyl-N-monomethylethanolamine (PMME), and phosphatidyl-N,N-dimethylethanolamine (PDME) as substrates were 0.63, 8.59, and 3.75 mumol/min/mg protein, respectively. The purified enzyme was composed of a single subunit with a molecular mass of 18.3 kDa as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Methylation activities dependent on the presence of PE, PMME, and PDME and the 18.3-kDa protein co-eluted when purified PE N-methyltransferase was subjected to gel filtration on Sephacryl S-300 in the presence of 0.1% Triton X-100. All three methylation activities eluted with a Stokes radius 2.1 A greater than that determined for pure Triton micelles (molecular mass difference of 27.4 kDa). Two-dimensional analysis of PE N-methyltransferase employing nonequilibrium pH gradient gel electrophoresis and sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicates that the enzyme is composed of a single isoform. Analysis of enzyme activity using PE, PMME, and PDME at various Triton X-100 concentrations indicated the enzyme follows the "surface dilution" model proposed for other enzymes that act at the surface of mixed micelle substrates. Initial velocity data for all three lipid substrates (at fixed concentrations of Triton X-100) were highly cooperative in nature. Hill numbers for PMME and PDME ranged from 3 at 0.5 mM Triton to 6 at 2.0 mM Triton. All three methylation activities had a pH optimum of 10. These results provide evidence that a single membrane-bound enzyme catalyzes all three methylation steps for the conversion of PE to phosphatidylcholine.  相似文献   

16.
In order to characterize and partially purify solubilized dopamine receptors, canine brain striatum microsomes were solubilized with 1% digitonin, and enriched by either gel permeation chromatography, preparative vertical column isoelectric focusing, or sucrose gradient ultracentrifugation. Chromatography on Sephacryl S-300 in buffer (contaning 0.05% Triton X-100) yielded a Stokes radius of 5.8 nm. Isoelectric focusing of the solubilized, radiolabelled receptor produced peaks of [3H]spiperone radioactivity corresponding to isoelectric values of 5.0 and 7.8, of which the former has been shown elsewhere to be the intact D2 dopamine receptor. Sucrose density gradient ultracentrifugation, again in buffer containing 0.05% Triton X-100, indicated a hydrodynamic mol. wt of 136,000 Daltons, which corresponds closely to the value of 123,000 Daltons estimated using radiation inactivation. Such molecular characterization will aid in the distinction of dopamine receptor subtypes.  相似文献   

17.
The electron transfer complexes, succinate: ubiquinone reductase, ubiquinone: cytochrome c reductase, and cytochrome c: O2 oxidase were isolated from the mitochondrial membranes of Neurospora crassa by the following steps. Modification of the contents of the complexes in mitochondria by growing cells on chloramphenicol; solubilisation of the complexes by Triton X-100; affinity chromatography on immobilized cytochrome c and ion exchange and gel chromatography. Ubiquinone reductase was obtained in a monomeric form (Mr approximately 130 000) consisting of a flavin subunit (Mr 72 000) an iron-sulfur subunit (Mr 28 000) and a cytochrome b subunit (Mr probably 14 000). Cytochrome c reductase was obtained in a dimeric form (Mr approximately 550 000), the monomeric unit comprising the cytochromes b (Mr each 30 000), a cytochrome c1 (Mr 31 000), the iron-sulfur subunit (Mr 25 000), and six subunits without known prosthetic groups (Mr 9000, 11 000, 14 000, 45 000, 45 000, and 52 000). Cytochrome c oxidase was also isolated in a dimeric form (Mr approximately 320 000) comprising two copies each of seven subunits (Mr 9000, 12 000, 14 000, 18 000, 21 000, 29 000, and 40 000). The complexes were essentially free of phospholipid. Each bound one micelle of Triton X-100 (Mr approximately 90 000). After isolation, the bound Triton X-100 could be replaced by other nonionic detergents such as: alkylphenyl polyoxyethylene ethers, alkyl polyoxyethylene ethers and acyl polyoxyethylene sorbitan esters.  相似文献   

18.
A simple and rapid method for the isolation of a large quantity of cytochrome c oxidase from bovine heart mitochondria was developed, based on selective solubilization of mitochondrial protein with first Triton and then lauryl maltoside. Gel filtration shows that the lauryl maltoside-solubilized oxidase preparation is in a hydrodynamically homogeneous state with a Stokes radius of 7.5 +/- 0.2 nm. It contains 8.0 mumol of haem (with an a/a3 ratio of 1)/g of protein. The catalytic constant (maximum turnover number) with respect to cytochrome c approaches 600 S-1. After further purification of the solubilized enzyme on a sucrose-gradient centrifugation, the purified enzyme has a haem content of 10.3 mumol/g of protein and eight major polypeptide bands shown on SDS/polyacrylamide-gel electrophoresis.  相似文献   

19.
Rat liver plasma membranes bind prostaglandins E1 and E2 (PGE) with high affinity and specificity. We have solubilized plasma membranes, prelabeled with radioactive PGE1, in water solutions of Triton X-100. We sedimented this material into sucrose density gradient containing H2O and D2O. From numerical integration of the sedimentation equation, taking explicitly into account the density and viscosity gradients present during the centrifugation, we have determined a value of s20,w = 5.6 to 5.7 X 10(-13) s and a partial specific volume, v = 0.80 to 0.81 cm3/g, for the PGE binding protein-Triton X-100 composed of 60% (w/w) protein and 40% (w/w) detergent. Gel filtration in water solutions of Triton X-100 gives a Stokes radius of 53 A for the complex. These data imply a molecular weight of 105,000 for the detergent-free binding protein and a frictional ratio of 1.3 for the complex. If the detergent is bound to the protein in a monolayer, about 40% of the PGE binding protein's surface would be covered with detergent. The procedures used in the analysis of the sedimentation behavior of the PGE binding protein-detergent complex, when coupled with a gel filtration measurement of the Stokes radius, allow valid determination of the size, shape, and extent of detergent binding of a wide variety of membrane proteins, even when they are present as minor components of complex mixtures.  相似文献   

20.
The solubilization of four integral membrane proteins (i.e. cytochrome b-561 of the chromaffin granule membrane, cytochrome b5 of the endoplasmic reticulum and the mitochondrial b-type cytochrome(s) as well as cytochrome c oxidase) has been studied at 0 degrees C using the non-ionic detergents of the Triton X-series having the common hydrophobic 4(1,1,3,3-tetramethylbutyl)phenoxy (t-octyl-phenoxy) group and a variable average number (n) of polar ethylene oxide units added. Following a pre-extraction of peripheral membrane and matrix proteins with low and high salt concentration and a weak non-ionic detergent (Tween 20, average hydrophile-lipophile balance (HLB) = 16.7), the amount of heme proteins solubilized by subsequent Triton X-solutions was measured. With the detergents tested the degree of solubilization decreased in the sequence cytochrome b-561 greater than cytochrome b5 greater than mitochondrial cytochrome(s) b and parallelled the effect of the detergents on light scattering and the phospholipid to protein ratio of the three membranes. For all the b-cytochromes, the solubilizing power of the detergent increased with decreasing average length of the polar ethylene oxide chain and the hydrophile-lipophile balance as long as clouding did not occur (e.g. Triton X-114,n = 7.5 and HLB = 12.4). Thus, the greatest difference in the degree os solubilization of the three cytochromes was observed with Triton X-405 (n = 40 and HLB = 17.9). All the cytochromes were most efficiently solubilized (i.e. approx. 90%) by Triton X-100 (n = 9.5 and HLB = 13.5).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号