首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A comparative study of the 30S ribosomal subunit in the complex with protein S1 and the subunit depleted of this protein has been carried out by the hot tritium bombardment method. Differences in exposure of some ribosomal proteins within the 30S subunit depleted of S1 and within the 30S–S1 complex were found. It was concluded that protein S1 binds in the region of the neck of the 30S ribosomal subunit inducing a conformational change of its structure.  相似文献   

2.
Pigment epithelium-derived factor (PEDF) is a noninhibitory serpin found in plasma and in the extracellular space. The protein is involved in different biological processes including cell differentiation and survival. In addition, it is a potent inhibitor of angiogenesis. The function is likely associated with binding to cell surface receptors in a heparin-dependent way (Alberdi, E. M., Weldon, J. E., and Becerra, S. P. (2003) BMC Biochem. 4, 1). We have investigated the structural basis for this observation and show that heparin induces a conformational change in the vicinity of Lys(178). This structural change was evident both when binding to intact heparin and specific heparin-derived oligosaccharides at physiological conditions or simply when exposing PEDF to low ionic strength. Binding to other glycosaminoglycans, heparin-derived oligosaccharides smaller than hexadecasaccharides (dp16), or type I collagen did not affect the structure of PEDF. The conformational change is likely to expose the epitope involved in binding to the receptor and thus regulates the interactions with cell surface receptors.  相似文献   

3.
4.
Möbitz H  Friedrich T  Boll M 《Biochemistry》2004,43(5):1376-1385
Benzoyl-CoA reductase (BCR) from the denitrifying bacterium Thauera aromatica catalyzes the ATP driven two-electron reduction of the aromatic moiety of benzoyl-CoA (BCoA) to a nonaromatic cyclic diene (2 ATP/2 e(-)). The enzyme contains two similar but nonidentical ATP-binding sites of the acetate kinase/sugar kinase/Hsp70/actin family. To obtain further insights into the overall catalytic cycle of BCR, the binding affinities and stoichiometries of all substrates as well as their effects on reduction kinetics were studied by stopped-flow UV/vis spectroscopy, freeze-quench EPR spectroscopy, and equilibrium dialysis. BCR bound maximally two nucleotides and a single BCoA. The binding of a single nucleotide induced a molecular switch (BCR --> BCR) as evidenced as follows: (i) the reduction rate of BCR by sulfoxide radical anion was significantly decreased in the nucleotide-bound state, (ii) the binding of BCoA to the reduced enzyme strictly depended on bound nucleotides, and (iii) the nucleotide binding affinities increased up to 60-fold compared to the steady-state values. The "ATP-binding switch" is distinguished from the previously described "low-spin/high-spin switch" of a [4Fe-4S] cluster which strictly depends on ATP hydrolysis. The two nucleotide binding sites were occupied sequentially; binding constants of the two sites differed by a factor of 10-40. The kinetic data obtained suggest that the ATP-binding switch is a rather fast process (>100 s(-)(1)) with a switch equilibrium constant of 54 +/- 10. In contrast, the reverse switch back of the MgADP-bound enzyme (BCR --> BCR) is considered rate-limiting in the overall catalytic cycle of BCR (4 +/- 1 s(-)(1)). The binding of nucleotides did not affect the redox potential of the [4Fe-4S](+1/+2) clusters; the switch is rather considered to alter the kinetics of internal electron transfer. Implications for the overall catalytic cycle of benzoyl-CoA reductase are discussed and compared with other ATP-hydrolyzing enzymes.  相似文献   

5.
The hexameric central subunit (Mr = 360,000) of the multi-subunit complex transcarboxylase has been crystallized by bulk dialysis against 250 mM-sodium acetate (pH 5.5). The crystals are cubic, a = 193.1 A, space group P4(1)32 or enantiomorph. The number of molecules per unit cell is four and was deduced from the density of the crystals (1.10 g cm-3) and the mother liquor (1.01 g cm-3) and the specific volume of the protein calculated from molecular dimensions obtained from electron microscopy studies. Four molecules per cell requires the central subunits to lie on 3-fold axes, which are perpendicular to 2-fold rotation axes, so that the molecules satisfy 32 symmetry giving one subunit as the asymmetric unit. Of the four possible models that have been considered for the quaternary structure of transcarboxylase, only that with antiparallel subunits, two sets of isologous binding sites and D3 symmetry is in agreement with the symmetry requirements of the cubic crystals.  相似文献   

6.
To study the properties of the extracellular epidermal growth factor (EGF) binding domain of the human EGF receptor, we have infected insect cells with a suitably engineered baculovirus vector containing the cDNA encoding the entire ectodomain of the parent molecule. This resulted in a correctly folded, stable, 110 kd protein which possessed an EGF binding affinity of 200 nM. The protein was routinely purified in milligram amounts from 1 litre insect cell cultures using a series of three standard chromatographic steps. The properties of the ectodomain were studied before and after the addition of different EGF ligands, using both circular dichroism and fluorescence spectroscopic techniques. A secondary structural analysis of the far UV CD spectrum of the ectodomain indicated significant proportions of alpha-helix and beta-sheet in agreement with a published model of the EGF receptor. The ligand additions to the receptor showed differences in both the near- and far-UV CD spectra, and were similar for each ligand used, suggesting similar conformational differences between uncomplexed and complexed receptor. Steady-state fluorescence measurements indicated that the tryptophan residues present in the ectodomain are buried and that the solvent-accessible tryptophans in the ligands become buried on binding the receptor. The rotational correlation times measured by fluorescence anisotropy decay for the receptor-ligand complexes were decreased from 6 to 2.5 ns in each case. This may indicate a perturbation of the tryptophan environment of the receptor on ligand binding. Ultracentrifugation studies showed that no aggregation occurred on ligand addition, so this could not explain the observed differences from CD or fluorescence.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Covalent binding of L-methionine as an external aldimine to the pyridoxal 5'-phosphate-cofactor in the K41A mutant of O-acetylserine sulfhydrylase from Salmonella typhimurium induces a large conformational change in the protein. Methionine mimics the action of the substrate O-acetyl-L-serine during catalysis. The alpha-carboxylate moiety of L-methionine in external aldimine linkage with the active site pyridoxal 5'-phosphate forms a hydrogen bonding network to the "asparagine-loop" P67-T68-N69-G70 which adopts a different conformation than in the native protein. The side-chain nitrogen of Asn69 moves more than 7 A to make a hydrogen bond to the alpha-carboxylate group of the inhibitor. As the external aldimine is formed, the PLP tilts by 13 degrees along its longitudinal axis such that C4' moves toward the entrance to the active site and the side-chain of the methionine is directed toward the active site entrance. The local rearrangement acts as a trigger to induce a large global conformational change in the protein. A subdomain comprised of beta-strand 4, alpha-helix 3, beta-strand 5 and alpha-helix 4 moves towards the active site by a rotation of 7 degrees. This subdomain movement results in a reduction of the severe twist of its central beta-sheet and reduces the active site entrance to a small hole, giving access only to small molecules like sulfide, the second substrate, or acetate, the first product.  相似文献   

8.
A model is proposed which assumes that the codon-anti-codon interaction induces a conformational change in the tertiary structure of AA-tRNA exposing the hidden T-Ψ-C-G sequence for binding to the C-G-A-A sequence in the 5S RNA of the 50S ribosomal subunit. The model is supported by binding experiments with C-G-(3H)A-(3H)A and by the inhibition of poly(Phe) synthesis by C-G-A-A. The process is dependent on the 30S subunit, the template, and the AA-tRNA × EF-Tu × GTP complex.  相似文献   

9.
10.
Vacuolar H+-ATPase (V-ATPase) consists of a catalytic head, a stalk part and a membrane domain. We indirectly investigated the interaction between the A subunit (catalytic head) and the E subunit (stalk part) using an ATP analogue, adenosine 5'-[beta,gamma-imino]triphosphate (AMP-PNP), which holds the enzyme in the substrate-binding state. AMP-PNP treatment caused a mobility shift of the E subunit with a faster migration in SDS/polyacrylamide gel electrophoresis without a reductant, while ATP treatment did not. A mobility shift of the E subunit has been detected in several plants. As polypeptides with intramolecular disulfide bonds migrate faster than those without disulfide bonds, the mobility shift may be due to the formation of an intramolecular disulfide bond by two cysteine residues conserved among several plant species. The mobility shift may be involved in the binding of AMP-PNP to the ATP-binding site, which exists in the A and B subunits, as it was inhibited by the addition of ATP. Pretreatment with 2'-3'-O-(4-benzoylbenzoyl)-ATP (Bz-ATP), which modifies the ATP-binding site of the B subunit under UV illumination, did not inhibit the mobility shift of the E subunit caused by AMP-PNP treatment. The response of V-ATPase following the AMP-PNP binding may cause a conformational change in the E subunit into a form that is susceptible to oxidation of cysteine residues. This is the first demonstration of interaction between the A and E subunits in the substrate-binding state of a plant V-ATPase.  相似文献   

11.
Resonance energy transfer studies using a pyrene-labeled phospholipid derivative 1-palmitoyl-2-[10-(pyren-1-yl)decanoyl]-sn-glycero-3-phosphoglycerol (donor) and the heme (acceptor) of cytochrome c (cyt c) have indicated that ATP causes changes in the conformation of the lipid-bound protein (Ryt?maa, M., Mustonen, P., and Kinnunen, P. K. J. (1992) J. Biol. Chem. 267, 22243-22248). Accordingly, after binding cyt c via its so called C-site to neat phosphatidylglycerol liposomes (mole fraction of PG = 1.0) has commenced, further quenching of donor fluorescence is caused by ATP, saturating at 2 mm nucleotide. ATP-induced conformational changes in liposome-associated cyt c could be directly demonstrated by CD in the Soret band region (380-460 nm). The latter data were further supported by time-resolved spectroscopy using the fluorescent cyt c analog with a Zn(2+)-substituted heme moiety. A high affinity ATP-binding site has been demonstrated in cyt c (Craig, D. B., and Wallace, C. J. A. (1993) Protein Sci. 2, 966-976) that is compromised by replacing the invariant Arg(91) to norleucine. Although no major effects on conformation and function of cyt c were concluded due to the modification, a significantly reduced effect by ATP on the lipid-bound [Nle(91)]cyt c was evident, implying that this modulation is mediated via the Arg(91)-containing binding site.  相似文献   

12.
Gating induces a conformational change in the outer vestibule of ENaC   总被引:3,自引:0,他引:3  
The epithelial Na(+) channel (ENaC) is comprised of three homologous subunits (alpha, beta, and gamma). The channel forms the pathway for Na(+) absorption in the kidney, and mutations cause disorders of Na(+) homeostasis. However, little is known about the mechanisms that control the gating of ENaC. We investigated the gating mechanism by introducing bulky side chains at a position adjacent to the extracellular end of the second membrane spanning segment (549, 520, and 529 in alpha, beta, and gammaENaC, respectively). Equivalent "DEG" mutations in related DEG/ENaC channels in Caenorhabditis elegans cause swelling neurodegeneration, presumably by increasing channel activity. We found that the Na(+) current was increased by mutagenesis or chemical modification of this residue and adjacent residues in alpha, beta, and gammaENaC. This resulted from a change in the gating of ENaC; modification of a cysteine at position 520 in betaENaC increased the open state probability from 0. 12 to 0.96. Accessibility to this side chain from the extracellular side was state-dependent; modification occurred only when the channel was in the open conformation. Single-channel conductance decreased when the side chain contained a positive, but not a negative charge. However, alterations in the side chain did not alter the selectivity of ENaC. This is consistent with a location for the DEG residue in the outer vestibule. The results suggest that channel gating involves a conformational change in the outer vestibule of ENaC. Disruption of this mechanism could be important clinically since one of the mutations that increased Na(+) current (gamma(N530K)) was identified in a patient with renal disease.  相似文献   

13.
Transcarboxylase (TC) from Propionibacterium shermanii, a biotin-dependent enzyme, catalyzes the transfer of a carboxyl group from methylmalonyl-CoA to pyruvate to form propionyl-CoA and oxalacetate. Within the multi-subunit enzyme complex, the 1.3S subunit functions as the carboxyl group carrier and also binds the other two subunits to assist in the overall assembly of the enzyme. The 1.3S subunit is a 123 amino acid polypeptide (12.6 kDa) to which biotin is covalently attached at Lys 89. The three-dimensional solution structure of the full-length holo-1.3S subunit of TC has been solved by multidimensional heteronuclear NMR spectroscopy. The C-terminal half of the protein (51-123) is folded into a compact all-beta-domain comprising of two four-stranded antiparallel beta-sheets connected by short loops and turns. The fold exhibits a high 2-fold internal symmetry and is similar to that of the biotin carboxyl carrier protein (BCCP) of acetyl-CoA carboxylase, but lacks an extension that has been termed "protruding thumb" in BCCP. The first 50 residues, which have been shown to be involved in intersubunit interactions in the intact enzyme, appear to be disordered in the isolated 1.3S subunit. The molecular surface of the folded domain has two distinct surfaces: one side is highly charged, while the other comprises mainly hydrophobic, highly conserved residues.  相似文献   

14.
Transcarboxylase (TC) from Propionibacterium shermanii, a biotin-dependent enzyme, catalyzes the transfer of a carboxyl group from methylmalonyl-CoA to pyruvate in two partial reactions. Within the multisubunit enzyme complex, the 1.3S subunit functions as the carboxyl group carrier. The 1.3S is a 123-amino acid polypeptide (12.6 kDa), to which biotin is covalently attached at Lys 89. We have expressed 1.3S in Escherichia coli with uniform 15N labeling. The backbone structure and dynamics of the protein have been characterized in aqueous solution by three-dimensional heteronuclear nuclear magnetic resonance (NMR) spectroscopy. The secondary structure elements in the protein were identified based on NOE information, secondary chemical shifts, homonuclear 3J(HNHalpha) coupling constants, and amide proton exchange data. The protein contains a predominantly disordered N-terminal half, while the C-terminal half is folded into a compact domain comprising eight beta-strands connected by short loops and turns. The topology of the C-terminal domain is consistent with the fold found in both carboxyl carrier and lipoyl domains, to which this domain has approximately 26-30% sequence similarity.  相似文献   

15.
The type I interferon (IFN) receptor plays a key role in innate immunity against viral and bacterial infections. Here, we show by intramolecular Förster resonance energy transfer spectroscopy that ligand binding induces substantial conformational changes in the ectodomain of ifnar1 (ifnar1-EC). Binding of IFNα2 and IFNβ induce very similar conformations of ifnar1, which were confirmed by single-particle electron microscopy analysis of the ternary complexes formed by IFNα2 or IFNβ with the two receptor subunits ifnar1-EC and ifnar2-EC. Photo-induced electron-transfer-based fluorescence quenching and single-molecule fluorescence lifetime measurements revealed that the ligand-induced conformational change in the membrane-distal domains of ifnar1-EC is propagated to its membrane-proximal domain, which is not involved in ligand recognition but is essential for signal activation. Temperature-dependent ligand binding studies as well as stopped-flow fluorescence experiments corroborated a multistep conformational change in ifnar1 upon ligand binding. Our results thus suggest that the relatively intricate architecture of the type I IFN receptor complex is designed to propagate the ligand binding event to and possibly even across the membrane by conformational changes.  相似文献   

16.
Using fluorescence resonance energy transfer spectroscopy we demonstrate that thymosin beta(4) (tbeta(4)) binding induces spatial rearrangements within the small domain (subdomains 1 and 2) of actin monomers in solution. Tbeta(4) binding increases the distance between probes attached to Gln-41 and Cys-374 of actin by 2 A and decreases the distance between the purine base of bound ATP (epsilonATP) and Lys-61 by 1.9 A, whereas the distance between Cys-374 and Lys-61 is minimally affected. Distance determinations are consistent with tbeta(4) binding being coupled to a rotation of subdomain 2. By differential scanning calorimetry, tbeta(4) binding increases the cooperativity of ATP-actin monomer denaturation, consistent with conformational rearrangements in the tbeta(4)-actin complex. Changes in fluorescence resonance energy transfer are accompanied by marked reduction in solvent accessibility of the probe at Gln-41, suggesting it forms part of the binding interface. Tbeta(4) and cofilin compete for actin binding. Tbeta(4) concentrations that dissociate cofilin from actin do not dissociate the cofilin-DNase I-actin ternary complex, consistent with the DNase binding loop contributing to high-affinity tbeta(4)-binding. Our results favor a model where thymosin binding changes the average orientation of actin subdomain 2. The tbeta(4)-induced conformational change presumably accounts for the reduced rate of amide hydrogen exchange from actin monomers and may contribute to nucleotide-dependent, high affinity binding.  相似文献   

17.
The matrix protein VP40 from Ebola virus is targeted to the plasma membrane, where it is thought to induce assembly and budding of virions through its association with the lipid bilayer. Ebola virus VP40 is expressed as a monomeric molecule in solution, consisting of two loosely associated domains. Here we show that a C-terminal truncation of seven residues destabilizes the monomeric closed conformation and induces spontaneous hexamerization in solution, as indicated by chemical cross-linking and electron microscopy. Three-dimensional reconstruction of electron microscopy images shows ring-like structures consisting of the N-terminal domain along with evidence for flexibly attached C-terminal domains. In vitro destabilization of the monomer by urea treatment results in similar hexameric molecules in solution. In addition, we demonstrate that membrane association of wild-type VP40 also induces the conformational switch from monomeric to hexameric molecules that may form the building blocks for initiation of virus assembly and budding. Such a conformational change induced by bilayer targeting may be a common feature of many viral matrix proteins and its potential inhibition may result in new anti-viral therapies.  相似文献   

18.
19.
A paper recently published in Cell describes ATP-triggered conformational changes in the GroEL folding machine deciphered by use of cryo-electron microscopy, molecular engineering, and X-ray crystallographic data. Mechanistically crucial allosteric effects of ATP binding arise from rearrangement of interdomain electrostatic contacts.  相似文献   

20.
The TREX enzymes process DNA as the major 3′→5′ exonuclease activity in mammalian cells. TREX2 and TREX1 are members of the DnaQ family of exonucleases and utilize a two metal ion catalytic mechanism of hydrolysis. The structure of the dimeric TREX2 enzyme in complex with single-stranded DNA has revealed binding properties that are distinct from the TREX1 protein. The TREX2 protein undergoes a conformational change in the active site upon DNA binding including ordering of active site residues and a shift of an active site helix. Surprisingly, even when a single monomer binds DNA, both monomers in the dimer undergo the structural rearrangement. From this we have proposed a model for DNA binding and 3′ hydrolysis for the TREX2 dimer. The structure also shows how TREX proteins potentially interact with double-stranded DNA and suggest features that might be involved in strand denaturation to provide a single-stranded substrate for the active site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号