共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
BACKGROUND: Plasminogen activator inhibitor type 2 (PAI-2) is a member of the serine protease inhibitor (SERPIN) superfamily and forms stable complexes with urokinase type plasminogen activator (uPA). uPA can be found on the cell surface attached to its specific receptor (uPAR), allowing for controlled degradation of the extracellular matrix by the activation of plasminogen into plasmin. The aim of this study was to evaluate if PAI-2 could also be detected on the cell surface, providing a means of regulating the activity of cell surface uPA. METHODS: Intact or permeabilized cell lines or human peripheral blood leukocytes were assayed by flow cytometry for cell surface uPA or PAI-2. Plasma membrane-enriched preparations prepared from Jurkat, HaCaT, THP-1, U937, or MM6 cells were assayed by enzyme-linked immunosorbent assay (ELISA) or Western blotting for PAI-2 antigen. RESULTS: By flow cytometry, cell surface PAI-2 was not detected on monocytes from human peripheral blood, MM6, or HaCaT cells. Cell surface PAI-2 was only detected very weakly on the surface of U937 cells. In contrast, PAI-2 could be detected in all of these cells when fixed and permeabilized. By ELISA, PAI-2 was very abundant in the cytosol-enriched preparations of U937, MM6, and HaCaT cells, but was present in lower amounts in the plasma membrane-enriched preparations. By Western blotting, monomeric nonglycosylated PAI-2, but not uPA/PAI-2 complexes, could be detected in the cytosol and plasma membrane-enriched preparations. CONCLUSIONS: These results indicate that PAI-2 cannot be detected on the surface of PAI-2-expressing cells, and confirm that PAI-2 is predominantly a cytosolic protein. 相似文献
5.
6.
7.
The influence of diacylglycerols, which are physiological activators of protein kinase C, on the production of tissue-type plasminogen activator (tPA) and plasminogen activator inhibitor type 1 (PAI-1) by human umbilical vein endothelial cells (HUVEC) was studied in order to gain insight into the regulation of fibrinolysis by these cells. 1,2-dioctanoyl-sn-glycerol (diC8) stimulated tPA production in a dose- and time-dependent manner. The tPA antigen in cell supernatants increased from 0.9 ng/10(6) cells in unstimulated cells to 12.4 ng (10(6) cells after incubation with 400 microM diC8 for 24 hours. In contrast, PAI-1 production was not influenced by diC8, whereas phorbol 12-myristate 13-acetate (PMA) or thrombin stimulated both, tPA and PAI-1 production by HUVEC. Staurosporine and H7, which are inhibitors of protein kinase C, inhibited tPA synthesis by HUVEC. The degree of inhibition was dependent on the agonist used. While diC8-induced tPA production was inhibited to more than 80% by H7 (10 microM) and staurosporine (10 nM), higher doses of inhibitors were required to inhibit thrombin- and PMA-induced tPA production. Thrombin-induced PAI-1 production was inhibited to more than 80% by H7 (10 microM) and to about 50% by staurosporine, whereas PMA-induced PAI-1 production was not inhibited by staurosporine, and only to about 50% by higher doses of H7 (30 microM). These data suggest that activation of protein kinase C is a common intracellular trigger mechanism for the induction of tPA synthesis by HUVEC. Protein kinase C is most likely also involved in the regulation of PAI-1 synthesis by HUVEC. 相似文献
8.
9.
10.
11.
12.
13.
14.
Nitric oxide produced in various human tissues by nitric oxide synthase is involved in the regulation of many physiological processes. Mechanism of its action is diverse. The most important physiological activity of nitric oxide is guanylate cyclase activation and an increase of cGMP synthesis. At low concentrations NO plays a pivotal role in vessel relaxation and possesses antithrombotic, antiproliferative and anti-inflammatory features as well. An excessive production of nitric oxide can disturb vascular hemostasis and contribute to development of cardiovascular diseases. Studies provide that NO also participate in fibrynolysis regulation by the influence on the PAI-1 and t-PA expression, what may have important clinical implications. The aim of this review is to present current knowledge about the role of nitric oxide in the regulation of these plasminogen activation system factors. 相似文献
15.
16.
17.
18.
B. Lyons-Giordano C.-S. Chen G. Lazarus P. J. Jensen D. Loskutoff M. Keeton 《Histochemistry and cell biology》1994,101(2):105-112
The plasminogen activator (PA) proteolytic cascade has been implicated in the regulation of cell activities, including proliferation and differentiation, both of which occur continuously in normal human epidermis and are aberrant in psoriatic epidermis. To elucidate further the mechanisms by which PA is regulated in epidermis, we evaluated the levels of PA inhibitors type 1 (PAI-1) and type 2 (PAI-2) in normal and psoriatic epidermis. PAI-2, but not PAI-1, was detectable by mRNA, antigen, and activity assays, indicating that PAI-2 is the predominant epidermal PA inhibitor. In situ hybridization revealed that PAI-2 mRNA occurred throughout normal epidermis, although the signal was most intense in the granular layers. Similarly, PAI-2 antigen was most prominent in the granular layers; its distribution in these differential layers was along the cell periphery. Diffuse, fainter staining for PAI-2 was also detected in the basal cells and in some spinous layers of normal epidermis. Extracts of normal epidermis contained PA inhibitory activity identified as PAI-2 by immunoprecipitation with specific antibody. In psoriatic epidermis, PAI-2 mRNA and antigen were most prominent in the more superficial layers beneath the cornified cells. As with normal epidermis, PAI-2 assumed a pericellular distribution in the psoriatic cells. These data demonstrate that PAI-2 is constitutively expressed in vivo by keratinocytes in human epidermis and indicate that this protein is the predominant inhibitor of PA activity in normal and psoriatic human epidermis. 相似文献
19.
Cytokine activation of vascular endothelium. Effects on tissue-type plasminogen activator and type 1 plasminogen activator inhibitor 总被引:26,自引:0,他引:26
R R Schleef M P Bevilacqua M Sawdey M A Gimbrone D J Loskutoff 《The Journal of biological chemistry》1988,263(12):5797-5803
Regulation of the fibrinolytic system of cultured human umbilical vein endothelial cells (HUVECs) by recombinant interleukin 1 beta (rIL-1 beta) and tumor necrosis factor alpha (rTNF alpha) was investigated. Functional and immunologic assays indicated that both cytokines decreased HUVEC tissue-type plasminogen activator (tPA) and increased type 1 plasminogen activator inhibitor (PAI-1) in a dose- and time-dependent manner. Maximal effects (50% decrease in tPA antigen; 300-400% increase in PAI-1 activity) were achieved with 2.5 units/ml rIL-1 beta and 200 units/ml rTNF alpha. Combinations of rIL-1 beta and rTNF alpha were not additive at these maximal concentrations. After a 24-h pretreatment with rIL-1 beta, HUVECs secreted tPA at one-quarter of the rate of control cells and released PAI-1 at a rate that was 5-fold higher than controls. Neither the basal rate of PAI-1 release nor the increased rate of release of PAI-1 in response to rIL-1 beta was affected by subsequently treating the cells with secretagogues (e.g. phorbol myristate acetate) suggesting that PAI-1 is not contained within a rapidly releasable, intracellular storage pool. Northern blot analysis using a PAI-1 cDNA probe indicated that the cytokines increased the steady-state levels of the 3.2- and 2.3-kb PAI-1 mRNA species, but with a preferential increase in the larger mRNA form. The fact that both rIL-1 beta and rTNF alpha act in a similar manner strengthens the hypothesis that the local development of inflammatory/immune processes could reduce endothelial fibrinolytic activity. 相似文献
20.
Summary We have assessed the DNA sequence requirements for the correct spatial pattern and phenotypic expression of y in the late embryo/larvae. The wild-type larval phenotype requires both the regions between-294 bp and-92 bp and a portion of the intron; the sequence element(s) located within the intron can act in a position independent manner to effect the wild-type larval phenotype. The larval expression pattern was examined by tissue experiments in situ and by staining germline transformants derived from various y/lacZ fusion constructs. The larval expression of y is restricted to the mouthparts, microsetae and anal plates. While the-495 bp to+194 bp region alone cannot effect a wild-type larval expression pattern, this region in conjunction with the intron appears to be sufficient to drive -gal expression in an essentially wild-type pattern. Our data further suggest that the-294 bp to-92 bp region contains elements which specify the larval pattern and that the element(s) in the intron normally act to enhance the level of expression necessary for the wild-type larval phenotype. We also present a phenotypic analysis of the adult cuticle structures of germline transformants derived from a variety of deletion and rearrangement constructs of the y gene. This analysis has revealed several new features associated with the regulation of y expression. 相似文献