首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A protocol for Agrobacterium-mediated stable transformation for scored, whole leaf explants of the apricot (Prunus armeniaca) cultivar Helena was developed. Regenerated shoots were selected using a two-step increased concentrations of paromomycin sulphate. Different factors affecting survival of transformed buds, including possible toxicity of green fluorescent protein (GFP) and time of exposure to high cytokine concentration in the regeneration medium, were examined. Transformation efficiency, based on PCR analysis of individual putative transformed shoots from independent lines was 5.6%, when optimal conditions for bud survival were provided. Southern blot analysis on four randomly chosen PCR-positive shoots confirmed the presence of the nptII transgene. This is the first time that stable transformation of an apricot cultivar is reported and constitutes also one of the few reports on the transformation of Prunus cultivars.  相似文献   

2.
Various aspects of transformation and regeneration processes were examined in efforts to improve the efficiency of production of transgenic cotton (Gossypium hirsutum L.). Green fluorescent protein (GFP) proved to be a valuable tool in elucidating the timing and localization of transient gene expression and in visualizing conversion of transient events to stable transformation events. By day 4 after infection, there was maximal transient activity in the cells at the cut edge of Agrobacterium-infected cotyledon disks. We were able to visualize conversion of some of these events to stable transformation by day 8. The effects of Agrobacterium strains, acetosyringone, and temperature on stable transformation were also evaluated. Strain LBA4404 proved to be significantly better than EHA105. Acetosyringone increased significantly the stable transformation efficiency in cotton. Cocultivation at 21°C, compared to 25°C, consistently resulted in higher transformation frequencies. GFP expression in stably transformed callus was useful in studying the efficiency of selection during early stages of culture. We found that the survival of individual callus lines on selection medium was influenced by their original size and initial transgene expression status. Larger-size calluses and calluses expressing the transgene (GFP) had a higher rate of survival. Survival could be improved by an additional two-week culture on medium high in cytokinin and low in auxin before transfer to a medium to induce embryogenesis. However, this treatment delayed embryogenesis. Various other important aspects of the regeneration process are described and an overall scheme for producing transgenic cotton is presented.  相似文献   

3.
Almond (Prunus dulcis Mill.) leaves were transformed with the marker genes gusA (β-glucuronidase) and nptII (neomycin phosphotransferase II) via Agrobacterium-mediated transformation. Bacterial strains and preculture of explants affected efficiency of gene transfer evaluated by transient expression assays. Following transformation, shoots were induced from primary explants on medium without kanamycin and exposed to selection 20 days after cocultivation. From 1419 original leaves, four shoots (A, B, C and D) were obtained that showed amplification of the predicted DNA fragments by polymerase chain reaction (PCR). After micropropagation of these shoots, only those cloned from shoot D gave consistently positive results in histochemical GUS detection and PCR amplification. Southern blot hybridisation confirmed stable transgene integration in clone D, which was also negative in PCR amplification of an Agrobacterium gene. Additional molecular analysis suggested that the remaining three shoots (A, B and C) were chimeric. Received: 28 March 1998 / Revision received: 18 April 1998 / Accepted: 12 May 1998  相似文献   

4.
Chen Y  Lu L  Deng W  Yang X  McAvoy R  Zhao D  Pei Y  Luo K  Duan H  Smith W  Thammina C  Zheng X  Ellis D  Li Y 《Plant cell reports》2006,25(10):1043-1051
An in vitro plant regeneration method and an Agrobacterium tumefaciens-mediated genetic transformation protocol were developed for Euonymus alatus. More than 60% of cotyledon and 70% of hypocotyl sections from 10-day-old seedlings of E. alatus produced 2–4 shoots on woody plant medium (WPM) supplemented with 5.0 mg/l 6-benzylaminopurine (BA) plus 0.2 mg/l α-naphthalene acetic acid (NAA), and 77% of shoots produced roots on WPM medium with 0.3 mg/l NAA and 0.5 mg/l Indole-3-butyricacid (IBA). On infection with Agrobacterium tumefaciens strain EHA105 harboring a gusplus gene that contained a plant recognizable intron from the castor bean catalase gene to ensure plant-specific β-glucuronidase (GUS) expression, 16% of cotyledon and 15% of hypocotyl explants produced transgenic shoots using kanamycin as a selection agent, and 67% of these shoots rooted. Stable insertion of T-DNA into the host genome was determined with organ- and tissue-specific expression of the gusplus gene and further confirmed with a PCR-based molecular analysis.  相似文献   

5.
Genetically transformed plants of Cymbidium were regenerated after cocultivating protocorm-like bodies (PLB) with Agrobacterium tumefaciens strain EHA101 (pIG121Hm) that harbored genes for β-glucuronidase (gus), hygromycin phosphotransferase (hpt) and neomycin phosphotransferase II (nptII). PLB of three genotypes maintained in liquid new Dogashima medium (NDM), were subjected to transformation experiments. The PLB inoculated with Agrobacterium produced secondary PLB, 4 weeks after transfer onto 2.5 g L−1 gellan gum-solidified NDM containing 10 g L−1 sucrose, 20 mg L−1 hygromycin and 40 mg L−1 meropenem. Transformation efficiency was affected by genotype and the presence of acetosyringone during cocultivation. The highest transformation efficiency was obtained when PLB from the genotype L4 were infected and cocultivated with Agrobacterium on medium containing 100 μM acetosyringone. Transformation of the hygromycin-resistant plantlets regenerated from different sites of inoculated PLB was confirmed by histochemical GUS assay, PCR analysis and Southern blot hybridization.  相似文献   

6.
The insertion of foreign DNA in plants occurs through a complex interaction between Agrobacteria and host plant cells. The marker gene β-glucuronidase of Escherichia coli and cytological methods were used to characterize competent cells for Agrobacterium-mediated transformation, to study early cellular events of transformation, and to identify the potential host-cell barriers that limit transformation in Arabidopsis thaliana L. Heynh. In cotyledon and leaf explants, competent cells were mesophyll cells that were dedifferentiating, a process induced by wounding and-or phytohormones. The cells were located either at the cut surface or within the explant after phytohormone pretreatment. In root explants, competent cells were present in dedifferentiating pericycle, and were produced only after phytohormone pretreatment. Irrespective of their origin, the competent cells were small, isodiametric with thin primary cell walls, small and multiple vacuoles, prominent nuclei and dense cytoplasm. In both cotyledon and root explants, histological enumeration and β-glucuronidase assays showed that the number of putatively competent cells was increased by preculture treatment, indicating that cell activation and cell division following wounding were insufficient for transformation without phytohormone treatment. Exposure of explants for 48 h to A. tumefaciens produced no characteristic stress response nor any gradual loss of viability nor cell death. However, in the competent cell, association between the polysaccharide of the host cell wall and that of the bacterial filament was frequently observed, indicating that transformation required polysaccharide-to-polysaccharide contact. Flow cytofluorometry and histological analysis showed that abundant transformation required not only cell activation (an early state exhibiting an increase in nuclear protein) but also cell proliferation (which in cotyledon tissue occurred at many ploidy levels). Noncompetent cells could be made competent with the appropriate phytohormone treatments before bacterial infection: this should aid analysis of critical steps in transformation procedures and should facilitate developing new strategies to transform recalcitrant plants.  相似文献   

7.
Agrobacterium-mediated transformation of Solanum phureja   总被引:1,自引:0,他引:1  
A population of transgenic plants was produced by the transformation of internodal explants of Solanum phureja, DB337/37 (the cultivar Mayan Gold) using an Agrobacterium tumefaciens LBA4404-based vector containing a phytoene synthase gene (crtB). The regeneration strategy utilised a two-step protocol, with a 12-day callus induction stage mediated by 1.07 M -napthaleneacetic acid (NAA), 7.10 M zeatin riboside and 0.06 M gibberellic acid (GA3), followed by a prolonged (up to 90 day) shoot induction stage on medium containing 0.11 M NAA, 7.10 M zeatin riboside and 0.06 M GA3 supplemented with kanamycin at 50 mg l–1 as the selection agent. Southern analysis of the transgenic population revealed that the transgene copy number varied between one and five in the lines tested. Northern blot analysis showed significant expression of the introduced crtB gene in some lines during tuber development. Cytological analysis of the material showed a high incidence of chromosome doubling in the transgenic population with over 80% of all lines tested having doubled their chromosome complement during the transformation process.  相似文献   

8.
Among the major grain legume crops, Vicia faba belongs to those where the production of transgenic plants has not yet convincingly been reported. We have produced stably transformed lines of faba bean with an Agrobacterium tumefaciens-mediated gene transfer system. Stem segments from aseptically germinated seedlings were inoculated with A. tumefaciens strains EHA101 or EHA105, carrying binary vectors conferring (1) uidA, (2) a mutant lysC gene, coding for a bacterial aspartate kinase insensitive to feedback control by threonine, and (3) the coding sequence for a methionine-rich sunflower 2S-albumin, each in combination with nptII as selectable marker. Kanamycin-resistant calluses were obtained on callus initiation medium at a frequency of 10–30%. Shoot regeneration was achieved on thidiazuron containing medium in a second culture step. A subsequent transfer of shoots to BA-containing medium was necessary for stem elongation and leaf development. Shoots were rooted or grafted onto young seedlings in vitro and mature plants were recovered. Molecular analysis confirmed the integration of the transgenes into the plant genome. Inheritance and expression of the foreign genes was demonstrated by Southern blot, PCR, western analysis and enzyme activity assays. Although at present the system is time-consuming and of relatively low efficiency, it represents a feasible approach for the production of genetically engineered faba beans.  相似文献   

9.
Agrobacterium-mediated genetic transformation of a Dendrobium orchid   总被引:1,自引:0,他引:1  
A protocol was developed to obtain stable transgenic orchids (Dendrobium nobile) via Agrobacterium-mediated transformation of protocorm-like bodies (PLBs). Agrobacterium tumefaciens strains AGL1 and EHA105 were used, with each containing a binary vector pCAMBIA1301 with the hpt gene as a selectable marker for hygromycin resistance and an intron-containing -glucuronidase gene (gus-int) as a reporter gene. PLBs were co-cultivated with A. tumefaciens, which had been activated with 100 M acetosyringone (AS), for 2–3 days until the growth of A. tumefaciens was observed on co-cultivation medium containing 100 M AS. Following co-cultivation, PLBs were cultured on selective medium containing 30 mg l–1 hygromycin and 250 mg l–1 cefotaxime. Proliferating PLBs were repeatedly selected for hygromycin resistance. A high efficiency of transformation (18%) was obtained with a total of 73 stably transformed lines produced. Incorporation and expression of the transgenes were confirmed by Southern blot analysis and GUS histochemical assay.  相似文献   

10.
Rapid and reproducible Agrobacterium-mediated transformation of sorghum   总被引:6,自引:0,他引:6  
A rapid and reproducible Agrobacterium-mediated transformation protocol for sorghum has been developed. The protocol uses the nptII selectable marker gene with either of the aminoglycosides geneticin or paromomycin. A screen of various A. tumefaciens strains revealed that a novel C58 nopaline chromosomal background carrying the chrysanthopine disarmed Ti plasmid pTiKPSF2, designated NTL4/Chry5, was most efficient for gene transfer to sorghum immature embryos. A NTL4/Chry5 transconjugant harboring the pPTN290 binary plasmid, which carries nptII and GUSPlus TM expression cassettes, was used in a series of stable transformation experiments with Tx430 and C2-97 sorghum genotypes and approximately 80% of these transformation experiments resulted in the recovery of at least one transgenic event. The transformation frequencies among the successful experiments ranged from 0.3 to 4.5%, with the average transformation frequency being approximately 1% for both genotypes. Over 97% of the transgenic events were successfully established in the greenhouse and were fully fertile. Co-expression of GUSPlus TM occurred in 89% of the transgenic T0 events. Seed set for the primary transgenic plants ranged from 145 to 1400 seed/plant. Analysis of T1 progeny demonstrated transmission of the transgenes in a simple Mendelian fashion in the majority of events.  相似文献   

11.
A high throughput genetic transformation system in maize has been developed with Agrobacterium tumefaciens mediated T-DNA delivery. With optimized conditions, stable callus transformation frequencies for Hi-II immature embryos averaged approximately 40%, with results in some experiments as high as 50%. The optimized conditions include N6 medium system for Agrobacterium inoculation, co-cultivation, resting and selection steps; no AgNo3 in the infection medium and adding AgNo3 in co-cultivation, resting and selection medium; Agrobacterium concentration at 0.5×109 c.f.u. ml–1 for bacterium inoculation; 100 mg l–1 carbenicillin used in the medium to eliminate Agrobacterium after inoculation; and 3 days for co-cultivation and 4 days for resting. A combination of all of these conditions resulted in establishing a high throughput transformation system. Over 500 T0 plants were regenerated and these plants were assayed by transgene expression and some of them were also analyzed by Southern hybridization. T1 plants were analyzed and transmission of transgenes to the T1 generation was verified. This represents a highly reproducible and reliable system for genetic transformation of maize Hi-II.  相似文献   

12.
The development of an efficient transformation system is required to alter the expression of symbiosis-regulated genes and to develop insertional mutagenesis in the ectomycorrhizal basidiomycete Laccaria bicolor S238N. Vegetative mycelium of this fungus was transformed by Agrobacterium tumefaciens-mediated gene transfer. The selection marker was the hygromycin resistance gene of Escherichia coli (hph) under the control of the gpd promoter from Agaricus bisporus and the CaMV 35S terminator as part of the T-DNA. PCR amplification of hph and Southern blot analyses showed that the genome of the hygromycin-resistant transformants contained the cassette. The latter proved mostly single copy and random integration of part of the transgene into the fungal genome. A. tumefaciens-mediated gene transfer should facilitate future development of insertional mutagenesis, targeted gene disruption and RNA interference technology in L. bicolor.  相似文献   

13.
Summary The evaluation of the genetic stability of Prunus Ferlenain plants regenerated from cryopreserved apices was investigated. The analysis of plants recovered from frozen material was performed at the phenotypic (developmental competence), cytological (chromosomal preparations) and molecular level [random amplified polymorphic DNA (RAPD) and amplified fragment length polymorphism (AFLP)]. No genetic change was detected among the plantlets regenerated from frozen apices in comparison to the non-frozen material, including leaves of the mother tree kept in an orchard and vitroplantlets regenerated from non-frozen apices. This result suggested that the procedure used for Prunus cryopreservation could be used for long-term conservation. The relevance of each strategy for the genetic stability evaluation of the cryopreserved material is discussed.  相似文献   

14.
Summary White clover (Trifolium repens L.) plants from the cultivars Grasslands Huia and Grasslands Tahora have been transformed using Agrobacterium-mediated T-DNA transfer. Transgenic plants regenerated directly from cells of the cotyledonary axil. To transform white clover, shoot tips from 3 day old seedlings were co-cultivated with A. tumefaciens strain LBA4404 carrying the plasmid vector pPE64. This vector contains the neomycin phosphotransferase II gene (nptII) and -glucuronidase reporter gene (gus) both under the control of the CaMV 35S promoter. Kanamycin-resistant plants regenerated within 42 days after transfer onto selective media. Integration of the nptII and gus genes into the white clover genome was confirmed using Southern blotting, and histochemical analysis indicated that the gus gene was expressed in a variety of tissues. In reciprocal crosses between a primary transformant and a non-transformed plant the introduced gus gene segregated as a single dominant Mendelian trait.Abbreviations BAP 6-benzylaminopurine - NAA -naphthaleneacetic acid - MS Murashige and Skoog - GUS -glucuronidase - X-GLUc 5-bromo-4-chloro-3-indolyl--D-glucuronide - MUG methylumbelliferyl--D-glucuronide - CaMV Cauliflower Mosaic Virus - NPTII neomycin phosphotransferase II - OCS octopine synthase - 4-MU 4-methyl umbelliferone  相似文献   

15.
Four long-term embryogenic lines of Asparagus officinalis were co-cultured with the hypervirulent Agrobacterium tumefaciens strain AGL1Gin carrying a uidA gene and an nptII gene. 233 embryogenic lines showing kanamycin resistance and -glucuronidase (GUS) activity were obtained. Transformation frequencies ranged from 0.8 to 12.8 transformants per gram of inoculated somatic embryos, depending on the line. Southern analysis showed that usually 1 to 4 T-DNA copies were integrated. Regenerated plants generally exhibited the same insertion pattern as the corresponding transformed embryogenic line. T1 progeny were obtained from crosses between 6 transformed plants containing 3 or 4 T-DNA copies and untransformed plants. They were analysed for GUS activity and kanamycin resistance. In three progenies, Mendelian 1:1 segregations were observed, corresponding to one functional locus in the parent transgenic plants. Southern analysis confirmed that T-DNA copies were inserted at the same locus. Non-Mendelian segregations were observed in the other three progenies. T2 progeny also exhibited non-Mendelian segregations. Southern analysis showed that GUS-negative and kanamycin-sensitive plants did not contain any T-DNA, and therefore inactivation of transgene expression could not be responsible for the abnormal segregations.  相似文献   

16.
Regeneration of pepino (Solanum muricatum Ait.) shoots was achieved both by organogenesis and by embryogenesis. Shoots derived via organogenesis were easily rooted and most regenerated plants appeared phenotypically normal. Transgenic plants were obtained using the binary vector pKIWI110 in the avirulent Agrobacterium tumefaciens strain LBA4404. Optimization of transformation protocols was rapidly achieved by monitoring early expression of the GUS (-D-glucuronidase) reporter gene carried on pKIWI110. Transgenic plants expressed GUS and selectable marker genes for kanamycin resistance and chlorsulfuron resistance. PCR (polymerase chain reaction) and Southern analysis provided molecular evidence for transformation.  相似文献   

17.
In this paper we describe the first procedure for Agrobacterium tumefaciens-mediated genetic transformation of the desiccation tolerant plant Ramonda myconi (L.) Rchb. Previously, we reported the establishment of a reliable and effective tissue culture system based on the integrated optimisation of antioxidant and growth regulator composition and the stabilisation of the pH of the culture media by means of a potassium phosphate buffer. This efficient plant regeneration via callus phase provided a basis for the optimisation of the genetic transformation in R. myconi. For gene delivery, both a standard (method A) and a modified protocol (method B) have been applied. Since the latter has previously resulted in successful transformation of another resurrection plant, Craterostigma plantagineum, an identical protocol was utilized in transformation of R. myconi, as this method may prove general for dicotyledonous resurrection plants. On this basis, physical and biochemical key variables in transformation were evaluated such as mechanical microwounding of plant explants and in vitro preinduction of vir genes. While the physical enhancement of bacterial penetration was proved to be essential for successful genetic transformation of R. myconi, an additional two-fold increase in the transformation frequency was obtained when the above physical and biochemical treatments were applied in combination. All R 0 and R 1 transgenic plants were fertile, and no morphological abnormalities were observed on the whole-plant level. Collaborator via a fellowship under the OECD Co-operative Research Programme: Biological Resource Management for Sustainable Agriculture Systems  相似文献   

18.
19.
We have developed a new Agrobacterium-mediated transformation method for the low-frequency-regenerating pear (Pyrus communis L.) cvs. Silver bell and La France. Leaf sections derived from in vitro shoots were initially used for the transformation procedure. Under optimum transformation conditions, which included culture and selection on 30 mg/l kanamycin (Km) combined with 500 mg/l sulbenicillin, a 3.2% transformation efficiency was obtained for cv. Silver bell, but no transformants of La France were obtained because of the very low regeneration frequency. Axillary shoot meristems were then examined as potential explants for La France. Selection in 5 mg/l Km and 375 mg/l carbenicillin resulted in transformed shoots being produced at an efficiency of 4.8%, and the apparent white Km-sensitive shoots were not formed during a 2-year subculture on micropropagation medium containing 50 mg/l Km. Therefore, transformations using axillary shoot meristems may be an alternative method for pear cultivars recalcitrant to regeneration from leaf sections.  相似文献   

20.
Agrobacterium-mediated genetic transformation is the most widely used technology to obtain overexpression of recombinant proteins in plants. Molecular events that occur within Agrobacterium during interactions with host plants have been studied extensively, and now we have a reasonable understanding the key factors involved in the regulation of T-DNA nuclear import and genomic integration. By contrast, very little is known about the events that take place in the host cells during genetic transformation by Agrobacterium. Here, we describe the plant-related factors including genotype, genes, proteins, competency of target tissues and phenolic compounds that participate in Agrobacterium-mediated genetic transformation and discuss their possible roles in this process. Because Agrobacterium probably adapts existing cellular processes for its life cycle, identifying the processes in host cells during Agrobacterium infection might contribute to better understanding of basic biological processes as cell communication, intracellular transport and DNA repair and recombination as well as to expanding the host range of Agrobacterium as a genetic engineering tool.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号