首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Receptor-mediated regulation of guanylate cyclase activity in spermatozoa   总被引:2,自引:0,他引:2  
Two peptides, speract (Gly-Phe-Asp-Leu-Asn-Gly-Gly-Gly-Val-Gly) and resact (Cys-Val-Thr-Gly-Ala-Pro-Gly-Cys-Val-Gly-Gly-Gly-Arg-Leu-NH2), which activate sperm respiration and motility and elevate cyclic GMP concentrations in a species-specific manner, were tested for effects on guanylate cyclase activity. The guanylate cyclase of sea urchin spermatozoa is a glycoprotein and it is localized entirely on the plasma membrane. When intact sea urchin sperm cells were incubated with the appropriate peptide for time periods as short as 5 s and subsequently homogenized in detergent, guanylate cyclase activity was found to be as low as 10% of the activity of cells not treated with peptide. The peptides showed complete species specificity and analogues of one peptide (speract) caused decreases in enzyme activity coincident with their receptor binding properties. The peptides did not inhibit enzyme activity when added after detergent solubilization of the enzyme. When detergent-solubilized spermatozoa were incubated at 22 degrees C, guanylate cyclase activity declined in previously nontreated cells to the peptide-treated level. The rate of decline was dependent on temperature and protein concentration. When spermatozoa were first incubated with 32P, the decrease in guanylate cyclase activity was accompanied by a shift in the apparent molecular weight of a major plasma membrane protein (160,000-150,000) and a loss of 32P label from the 160,000 band. Other agents (Monensin A, NH4Cl) which were capable of stimulating sperm respiration and motility also caused decreases of guanylate cyclase activity when added to intact but not detergent-solubilized spermatozoa. The maximal decrease in guanylate cyclase activity occurred 5-10 min after addition of these agents. The enzyme response to Monensin A required extracellular Na+ suggestive that the ionophore caused the effect on guanylate cyclase activity by virtue of its ability to catalyze Na+/H+ exchange. These studies demonstrate that guanylate cyclase activity of sperm cells can be altered by the specific interaction of egg-associated peptides with their plasma membrane receptors.  相似文献   

2.
The amino acid sequence of the Tetrahymena calmodulin was determined. The protein is composed of 147 amino acids and the amino-terminal is acetylated. Compared to bovine brain calmodulin, there were eleven substitutions and one deletion of amino acid residues. The substitutions and deletion were concentrated in the carboxyl-terminal half of the molecule. Among the substitutions, those at positions 86 (Arg → Ile), 135 (Gln → His) and 143 (Gln → Arg) may introduce the functional difference. The deletion occurred near the carboxyl-terminal, this region being assumed to be exposed to the surface area (R.H. Kretsinger and C.D. Barry (1975)). The change in the sequence at this terminal region may be attributable to the specific activation of guanylate cyclase.  相似文献   

3.
Tetrahymena calmodulin (CaM) differs from mammalian CaM in its ability to activate Tetrahymena guanylate cyclase. Of 12 differences in amino acid sequence, two occur near the carboxyl terminus (Gln-143----Arg and Thr-146----deletion). To investigate the functional significance of the carboxyl-terminal region in activation of the guanylate cyclase, three mutated CaMs were engineered by using cassette mutagenesis of rat CaM cDNA: Gln-143----Arg (CaM.A), Thr-146----deletion (CaM.D), and Gln-143----Arg/Thr-146 deletion (CaM.AD). Recombinant wild type CaM (wCaM), CaM.A, CaM.D, and CaM.AD were indistinguishable in their ability to activate cyclic AMP phosphodiesterase. The two mutated CaMs (CaM.A and CaM.AD) with the Gln-143 replacement activated guanylate cyclase of Tetrahymena plasma membrane in the presence of Ca2+, with the maximal activation being half of that produced by Tetrahymena CaM. In contrast, neither CaM.D nor wCaM could stimulate the cyclase activity. A CaM antagonist, W-7 (N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide), prevented the cyclase activation by either Tetrahymena CaM, CaM.A, or CaM.AD. Thus, we conclude that Arg-143 is in a region of the molecule involved in activation of Tetrahymena guanylate cyclase. The data also suggest that the cyclase activation by Tetrahymena CaM requires complex macromolecular interactions between the entire CaM molecule and the enzyme.  相似文献   

4.
Saccharin (2,3-dihydro-3-oxobenzisosulfonazole) decreased the activity of rat guanylate cyclase (E.C. 4.6.1.2) 60 to 75 percent in urinary bladder. Inhibition was also seen in kidney, liver, stomach, and lung. Since a number of mutagenic chemical carcinogens decrease guanylate cyclase activity, this effect of saccharin may account for its mutagenicity.  相似文献   

5.
Guanylate cyclase [EC 4.6.1.2] activity in Tetrahymena pyriformis cells was associated with particulate fractions, but not with soluble fractions. Mg2+ was much more effective than Mn2+ in activating the cyclase activity. Both specific and total cyclase activities with Mg2+ in the particulate fraction were very much lower than those in the original homogenate. The addition of the soluble fraction resulted in a marked enhancement of the particulate-bound cyclase activity, while the adenylate cyclase [EC 4.6.1.1] activity was not enhanced. The enhancement was dependent on Ca2+, and the activating factor is suggested to be a protein.  相似文献   

6.
Bovine brain calmodulin (B-CaM) was shown to inhibit the native Tetrahymena calmodulin (T-CaM)-dependent activation of guanylate cyclase in Tetrahymena at the concentrations that failed to affect the basal enzyme activity. The enzyme inhibition was completely reversed by high concentration of T-CaM, but not by Ca2+. The antagonistic interaction between T-CaM and B-CaM was not observed in the calmodulin-dependent cyclic nucleotide phosphodiesterase from bovine brain. Two calmodulins migrated independently on 15% polyacrylamide gel system. These results suggest that B-CaM exerts its inhibitory effect on the guanylate cyclase activation by interacting with the calmodulin-binding site of this enzyme.  相似文献   

7.
Tryptic bovine brain calmodulin fragments 1-77 or 1-106 reactivated La-inactivated ciliary guanylate cyclase from Paramecium dose-dependently up to 60%. They were 20-fold less potent compared to bovine brain calmodulin. Fragment 78-148 was even less active. Concomitant addition of fragments 1-77 and 78-148 had no additive effect. Genetically engineered calmodulin lacking a blocked amino terminus and trimethyllysine at position 115 reactivated La-treated guanylate cyclase as good as bovine brain calmodulin. After detergent solubilization of La-inactivated guanylate cyclase intact bovine brain calmodulin and calmodulin fragments 1-77 and 78-148 were equipotent. 80% Reactivation was obtained with 40 microM of either fragment.  相似文献   

8.
Both soluble and particulate forms of human platelet guanylate cyclase were found to be sensitive to sub-micromolar concentrations of free Ca2+; soluble enzyme activity increased as Ca2+ was increased from 10 nM to 1 microM; particulate enzyme activity showed a biphasic response to Ca2+, with maximal enzyme activity between 1 and 10 nM free Ca2+ and inhibition occurring at higher Ca2+ concentrations. Neither Ca2+-sensitivity appeared to be calmodulin-dependent.  相似文献   

9.
A Ca2+-binding protein (TCBP), which was isolated from Tetrahymena pyriformis, enhanced about 20-fold particulate-bound guanylate cyclase activity in Tetrahymena cells in the presence of a low concentration of Ca2+, while the adenylate cyclase activity was not increased. The enhancement was eliminated by ethylene glycol-bis (β-aminoethyl ether)-N,N′-tetraacetic acid. The enzyme activity was not stimulated by rabbit skeletal muscle troponin-C, the Ca2+-binding component of troponin, or other some proteins. In the presence of TCBP, stimulating effect of calcium ion on the enzyme activity was observed within the range of pCa 6.0 to 4.6, and was immediate and reversible.  相似文献   

10.
The calmodulin-dependent guanylate cyclase of Tetrahymena pyriformis was shown previously to be localized in surface membranes (ciliary and pellicular membranes) (Kudo, S, Nakazawa, K, Nagao, S & Nozawa, Y, Japan j exp med 52 (1952) 193) [21], whereas in a recent report Schultz et al, (Schultz, J E, Schonefeld, U & Klumpp, S, Eur j biochem 137 (1983) 89) [12] demonstrated the localization of this enzyme in ciliary membrane, arguing against its presence in pellicular membrane. To examine the discrepancy, the activities of guanylate and adenylate cyclases were examined in cilia and cell bodies of Tetrahymena pyriformis during transition from early log to stationary growth phase. The guanylate cyclase activity in the cell bodies increased significantly with growth of age, while in cilia the activity was rather consistent. In contrast, adenylate cyclase did not show any growth-dependent activity changes in both cilia and cell bodies. The increase of guanylate cyclase activity was not related to the increase of its activator calmodulin, because the change in enzyme activity could not be negated by addition of a saturating amount of calmodulin. These results suggest that the content of guanylate cyclase itself would be increased in the cell bodies during growth.  相似文献   

11.
12.
13.
J Singh  S Chatterjee 《Cytobios》1988,55(221):95-103
The level of calmodulin (CaM), a ubiquitous calcium-binding protein of eukaryotic cells was determined at different phases of the cell cycle in a synchronized Tetrahymena population. It was found that the concentration of CaM at G1 was approximately half of the concentration of S and this 2 x G1 level of CaM was maintained through the G2 and M stages of the cell cycle. To ascertain the role of CaM in the initiation of DNA synthesis, the cells were treated with trifluoperazine (TFP), a CaM antagonist, and EGTA (Ca2+-chelator) at the G1/S boundary. It was found that DNA synthesis was inhibited in these drug-treated cells. The uptake of the nucleotide precursor was not affected in TFP and EGTA treated cells, thus excluding the possibility of alteration in the membrane transport properties. Treatment with TFP failed to inhibit the synchronous mitotic division in Tetrahymena. The existence of a variable content of CaM through the cell cycle of Tetrahymena was demonstrated, suggesting the possible involvement of this Ca2+-binding protein in the nuclear DNA replication process.  相似文献   

14.
Soluble guanylate cyclase (sGC) is a receptor for endogenous and exogenous nitric oxide (NO) and is activated many fold upon its binding, making it a core enzyme in the nitric oxide signal transduction pathway. Much effort has been made to understand the link between binding of NO at the sGC heme and activation of the cyclase activity. We report here the first direct evidence for the role of conformational changes in transmitting the signal between the heme and cyclase domains. Using both circular dichroism (CD) and fluorescence spectroscopies, we have probed the effect that the sGC activators NO and 3-(5'-hydroxymethyl-2'-furyl)-1-benzyl-indazole (YC-1) and the inhibitor 1H-[1,2,4]-oxadiazolo-[4,3-a]-quinoxalin-1-one (ODQ) have on the structure of the protein. Surprisingly, binding of either ODQ or YC-1 to NO-bound sGC cause virtually identical changes in the far-UV CD spectra of sGC, reflecting a perturbation in the secondary structure of the enzyme. This change is absent upon binding of NO, YC-1 or ODQ alone. Using this and previous data, we propose a working model for the mechanism of activation of sGC by NO and YC-1 and inhibition by ODQ.  相似文献   

15.
The involvement of calmodulin as an activator of adenylate cyclase activity was examined in isolated guinea-pig enterocytes and in a membrane preparation. In enterocytes, which responded to prostaglandin E1, vasoactive intestinal peptide and cholera toxin with a significant increase in the rate of cAMP formation trifluoperazine, a calmodulin antagonist, completely inhibited cAMP formation. In a membrane preparation adenylate cyclase activity was stimulated 10-20-fold by the GTP analog, guanosine 5'-[beta-imido]5'-triphosphate (Gpp[NH]p). Prostaglandin E1 and vasoactive intestinal peptide enhanced cAMP formation in this system by 2-3- and 1.2-1.6-fold. respectively. Addition of 200 nM calmodulin to membranes, in which endogenous calmodulin was decreased from 1.4 microgram/mg protein to 0.5 microgram/mg protein by washing with buffer containing EGTA and EDTA, resulted in a 3-4-fold increase of adenylate cyclase activity. The absolute increment in adenylate cyclase activity caused by calmodulin (10-15 pmol cAMP/min per mg protein) was approximately the same in the absence or presence of Gpp[NH]p. The apparent Ka for Gpp[NH]p (6 . 10-7 M) was not significantly changed by the addition of calmodulin. Although endogenous calcium (approx. 10 microM) in the enzyme assay was adequate to affect stimulation by calmodulin, a maximal effect was observed at a calcium concentration of 100 microM. These findings indicate that a calmodulin-sensitive form of adenylate cyclase is present in guinea-pig enterocytes, and that stimulation of cAMP formation in the intestinal mucosa may involve a calmodulin-mediated mechanism.  相似文献   

16.
Summary The objective of the present investigation was to determine if melatonin at physiological concentrations might have part of its mechanism of action through enhancement of guanylate cyclase (E.C.4.6.1.2) activity. Melatonin enhanced guanylate cyclase activity two-three fold in rat anterior pituitary, thyroid, testis, ovary, liver and small intestine at the 1 nanomolar concentration. Some stimulation of hepatic guanylate cyclase activity by melatonin was seen at concentrations as low as 1 picomolar. There was no stimulation of guanylate cyclase activity at concentrations below 1 picomolar. Maximal enhancement of guanylate cyclase activity was seen at the 1 nanomolar concentration of melatonin with no further enhancement being observed with increasing the concentration to the micromolar range. Thus, the data in the present investigation indicates that at concentrations at which melatonin is known to cause physiological effects, melatonin does cause an enhancement of the activity of the guanylate cyclase-cyclic GMP system.  相似文献   

17.
Addition of bovine brain calmodulin and S-100 inhibited Tetrahymena calmodulin-induced stimulation of guanylate cyclase, but they did not affect enzymatic activity in the presence of calcium alone. Troponin C shows little effect on the cyclase activity regardless of the presence or absence of Tetrahymena calmodulin. The inhibitory effects of brain calmodulin and S-100 were overcome by the addition of Tetrahymena calmodulin, but not by calcium. Both calmodulins from Tetrahymena and bovine brain elicited stimulation of heart phosphodiesterase, while troponin C and S-100 did not affect the phosphodiesterase activity in the presence and absence of Tetrahymena calmodulin.  相似文献   

18.
Ca2+-regulated guanylate cyclase in ciliary membranes from Paramecium contained tightly bound calmodulin. Antisera against calmodulin from Tetrahymena and soybean inhibited enzyme activity. EGTA did not easily release calmodulin; however, La3+ inhibited guanylate cyclase by dissociation of calmodulin. While La could not replace Ca in the activation of guanylate cyclase, it substituted for Ca2+ in the activation of calmodulin-dependent phosphodiesterase from pig brain independently of whether homologous or Paramecium calmodulin was used. After removal of endogenous calmodulin from guanylate cyclase, reconstitution was achieved with calmodulin from Paramecium, Tetrahymena, pig brain, and soybean. Ca2+-binding proteins lacking trimethyllysine like calmodulin from Dictyostelium, parvalbumin, and troponin C failed to restore enzyme activity. The properties of the native and reconstituted guanylate cyclase/calmodulin complex were compared. Reassociation of calmodulin with its target enzyme was weak since all calmodulin remained in the supernatant after a single centrifugation. While most enzyme characteristics remained unchanged in the reconstituted complex, the inhibition by Ca greater than 100 microM was of a mixed-type compared to noncompetitive inhibition in the native enzyme. The regulation of the enzyme by cations was also altered. Whereas Ca was the most potent and specific activator of the native enzyme, in the reconstituted system Sr was far more effective.  相似文献   

19.
TSH (thyrotropin)-stimulated human thyroid adenylate cyclase has a biphasic response to Ca2+, being activated by submicromolar Ca2+ (optimum 22nM), with inhibition at higher concentrations. Calmodulin antagonists caused an inhibition of TSH-stimulated adenylate cyclase in a dose-dependent manner. Inhibition of TSH-and TSIg-(thyroid-stimulating immunoglobulins)-stimulated activity was more marked than that of basal, NaF- or forskolin-stimulated activity. This inhibition was not due to a decreased binding of TSH to its receptor. Addition of pure calmodulin to particulate preparations of human non-toxic goitre which had not been calmodulin-depleted had no effect on adenylate cyclase activity. EGTA was ineffective in removing calmodulin from particulate preparations, but treatment with the tervalent metal ion La3+ resulted in a loss of up to 98% of calmodulin activity from these preparations. Addition of La3+ directly to the adenylate cyclase assay resulted in a partial inhibition of TSH- and NaF-stimulated activity, with 50% inhibition produced by 5.1 microM and 4.0 microM-La3+ respectively. Particulate preparations with La3+ showed a decrease of TSH- and NaF-stimulated adenylate cyclase activity (approx. 40-60%). In La3+-treated preparations there was a decrease in sensitivity of TSH-stimulated adenylate cyclase to Ca2+ over a wide range of Ca2+ concentrations, but most markedly in the region of the optimal stimulatory Ca2+ concentration. In particulate preparations from which endogenous calmodulin had been removed by La3+ treatment, the addition of pure calmodulin caused an increase (73 +/- 22%; mean +/- S.E.M., n = 8) in TSH-stimulated thyroid adenylate cyclase activity. This was seen in 8 out of 13 experiments.  相似文献   

20.
During cytokinesis the actomyosin-based contractile ring is formed at the equator, constricted, and then disassembled prior to cell abscission. Cofilin stimulates actin filament disassembly and is implicated in the regulation of contractile ring dynamics. However, little is known about the mechanism controlling cofilin activity during cytokinesis. Cofilin is inactivated by phosphorylation on Ser-3 by LIM-kinase-1 (LIMK1) and is reactivated by a protein phosphatase Slingshot-1 (SSH1). Here we show that the phosphatase activity of SSH1 decreases in the early stages of mitosis and is elevated in telophase and cytokinesis in HeLa cells, a time course correlating with that of cofilin dephosphorylation. SSH1 co-localizes with F-actin and accumulates onto the cleavage furrow and the midbody. Expression of a phosphatase-inactive SSH1 induces aberrant accumulation of F-actin and phospho-cofilin near the midbody in the final stage of cytokinesis and frequently leads to the regression of the cleavage furrow and the formation of multinucleate cells. Co-expression of cofilin rescued the inhibitory effect of phosphatase-inactive SSH1 on cytokinesis. These results suggest that SSH1 plays a critical role in cytokinesis by dephosphorylating and reactivating cofilin in later stages of mitosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号