首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Notch signaling influences a variety of cell fate decisions during development, and constitutive activation of the pathway can provoke unbridled cell growth and cancer. The mechanisms by which Notch affects cell growth are not well established. We describe here a novel link between Notch and cell cycle control. We found that Mv1Lu epithelial cells harboring an oncogenic form of Notch (NICD) are resistant to the cell cycle-inhibitory effects of transforming growth factor beta (TGF-beta). NICD did not affect TGF-beta signaling per se but blocked induction of the Cdk inhibitor p15(INK4B). c-Myc, whose down-regulation by TGF-beta is required for p15(INK4B) induction, remained elevated in the NICD-expressing cells. c-Myc expression was also maintained in low serum, indicating that Notch's effects on c-Myc are not specific to TGF-beta. Our results are consistent with a model in which a strong Notch signal indirectly deregulates c-Myc expression and thereby renders Mv1Lu epithelial cells resistant to growth-inhibitory signals.  相似文献   

3.
4.
Rb independent inhibition of cell growth by p15(INK4B).   总被引:2,自引:0,他引:2  
The INK4 cyclin dependent kinase inhibitors (CDKI), such as p15(INK4B) and p16(INK4A), block cell cycle progression from G to S phase. This is mediated by inhibition of phosphorylation of proteins, including the retinoblastoma susceptibility protein (Rb), by cyclin dependent kinases. Ectopic over-expression of the p16(INK4A) CDKI can inhibit growth of cell lines depending on Rb status. Cell lines lacking Rb, with few exceptions, are resistant to growth inhibition by p16(INK4A). The effects of ectopic over-expression of p15(INK4B) in cell lines with and without wild type Rb were examined by measuring cell recovery. Proliferation was inhibited in cells lacking Rb as well as in cells with wild type Rb expression. Experiments analyzing the effectiveness of chimeric p15(INK4B)/p16(INK4A) proteins indicated that the Rb independent growth inhibition required N-terminal residues of p15(INK4B). Linker insertion mutation of p15(INK4B) showed that the inhibition was dependent on intact ankyrin structures. Double staining flow cytometry found that the growth inhibition correlated with a decrease in cells in G2/M phases of the cell cycle. These findings are consistent with Rb independent inhibition of the progression from G1 to S caused by overexpression of p15(INK4B).  相似文献   

5.
The migratory behaviour of malignant gliomas relies on the interaction of integrins with extracellular matrix (ECM) components. Transforming growth factor-beta(1) (TGF-beta(1)) potently stimulates glioma cell motility whereas TGF-beta(2) is known for its immunosuppressive properties. Here, we show that both TGF-beta(1) and TGF-beta(2) promote migration of glioma cells. In parallel, TGF-beta(1) and TGF-beta(2) induce alpha(V) and beta(3) intergrin mRNA expression and enhance cell surface expression of alpha(V)beta(3) integrin. TGF-beta-mediated promotion of migration is abrogated by echistatin, a Arg-Gly-Asp (RGD) peptide antagonist of alpha(V)beta(3) integrin, and by a neutralizing anti-alpha(V)beta(3) integrin antibody. Taken together, we report a novel mechanism by which TGF-beta modulates cell ECM interactions and promotes glioma cell motility.  相似文献   

6.
Mutations of the Smad4 gene, a member of a group of TGF-beta signal transduction components, occur in several types of cancer suggesting that its inactivation significantly affects TGF-beta responsiveness in these tumors. To further investigate the role of Smad4 with respect to TGF-beta signaling and carcinogenesis, we re-expressed the Smad4 gene in the Smad4-deficient cancer cell line FaDu by microcell-mediated chromosome transfer (MMCT) and retroviral infection to closely approximate physiological protein levels. The Smad4-expressing FaDu clones were then evaluated for TGF-beta responsiveness to assess the role of Smad4 in TGF-beta-induced growth inhibition and target gene regulation. We found that the re-expression of the Smad4 gene by either method partially restored TGF-beta responsiveness in FaDu cells with respect to both growth inhibition and expression of p21WAF1/CIP1 and p15INK4B. However, only the microcell hybrids showed growth retardation in organotypic raft culture and an enhanced ability to upregulate fibronectin. In contrast, the re-expression of Smad4 by either method failed to suppress tumorigenicity. These results suggest that in addition to a homozygous deletion of Smad4, FaDu cells contain additional defects within the TGF-beta signaling pathway, thereby limiting the extent of TGF-beta responsiveness upon Smad4 re-expression and perhaps accounting for the inability to induce p15INK4B to a high level. They also demonstrate the advantages of providing a physiological extracellular environment, when assessing TGFbeta responsiveness.  相似文献   

7.
8.
Transforming growth factor beta (TGF-beta) potently suppresses Mv1Lu mink epithelial cell growth, whereas hepatocyte growth factor (HGF) counteracts TGF-beta-mediated growth inhibition and induces Mv1Lu cell proliferation (J. Taipale and J. Keski-Oja, J. Biol. Chem. 271:4342-4348, 1996). By addressing the cell cycle regulatory mechanisms involved in HGF-mediated release of Mv1Lu cells from TGF-beta inhibition, we show that increased DNA replication is accompanied by phosphorylation of the retinoblastoma protein and alternative regulation of cyclin-Cdk-inhibitor complexes. While TGF-beta treatment decreased the expression of Cdk6, this effect was counteracted by HGF, followed by partial restoration of cyclin D2-associated kinase activity. Notably, HGF failed to prevent TGF-beta induction of p15 and its association with Cdk6. However, HGF reversed the TGF-beta-mediated decrease in Cdk6-associated p27 and cyclin D2-associated Cdk6, suggesting that HGF modifies the TGF-beta response at the level of G1 cyclin complex formation. Counteraction of TGF-beta regulation of Cdk6 by HGF may in turn affect the association of p27 with Cdk2-cyclin E complexes. Though HGF did not differentially regulate the total levels of p27 in TGF-beta-treated cells, p27 immunodepletion experiments suggested that upon treatment with both growth factors, less p27 is associated with Cdk2-cyclin E complexes, in parallel with restoration of the active form of Cdk2 and the associated kinase activity. The results demonstrate that HGF intercepts TGF-beta cell cycle regulation at multiple points, affecting both G1 and G1-S cyclin kinase activities.  相似文献   

9.
10.
The genes encoding the cyclin-dependent kinase inhibitors p16INK4A (CDKN2A) and p15INK4B (CDKN2B) are frequently homozygously deleted in a variety of tumor cell lines and primary tumors, including glioblastomas in which 40-50% of primary tumors display homozygous deletions of these two loci. Although the role of p16 as a tumor suppressor has been well documented, it has remained less well studied whether p15 plays a similar growth-suppressing role. Here, we have used replication-defective recombinant adenoviruses to compare the effects of expressing wild-type p16 and p15 in glioma cell lines. After infection, high levels of p16 and p15 were observed in two human glioma cell lines (U251 MG and U373 MG). Both inhibitors were found in complex with CDK4 and CDK6. Expression of p16 and p15 had indistinguishable effects on U251 MG, which has homozygous deletion of CDKN2A and CDKN2B, but a wild-type retinoblastoma (RB) gene. Cells were growth-arrested, showed no increased apoptosis, and displayed a markedly altered cellular morphology and repression of telomerase activity. Transduced cells became enlarged and flattened and expressed senescence-associated beta-galactosidase, thus fulfilling criteria for replicative senescence. In contrast, the growth and morphology of U373 MG, which expresses p16 and p15 endogenously, but undetectable levels of RB protein, were not affected by exogenous overexpression of either inhibitor. Thus, we conclude that overexpression of p15 has a similar ability to inhibit cell proliferation, to cause replicative senescence, and to inhibit telomerase activity as p16 in glioma cells with an intact RB protein pathway.  相似文献   

11.
TGF-beta1 modulation of cell cycle components was assessed in an experimental model in which the synthetic progestin medroxyprogesterone acetate (MPA) induced mammary tumors in Balb/c mice. TGF-beta1 inhibited both MPA-induced proliferation of progestin-dependent C4HD epithelial cells and proliferation of the progestin-independent variant cell type C4HI, arresting cells in G(1) phase of the cell cycle. Progestin-independent 60 epithelial cells evidenced reduced response to TGF-beta1 antiproliferative effects. TGF-beta1 inhibition of cyclins D1 and A expression and up-regulation of p21(CIP1) levels were the common findings in all three cell types. In addition, a significant content reduction of cyclin D1/cdk4 and cyclin A/cdk2 complexes was found after TGF-beta1 inhibition of MPA-dependent and -independent proliferation. TGF-beta1 inhibited cyclin D2 expression and up-regulated p27(KIP1) levels only when acting as inhibitor of MPA-induced proliferation of C4HD cells. Regulation of these two cell cycle components resulted in decreased cyclin D2/cdk2 complex and in increased p27(KIP1) association with cdk2 in C4HD cells treated with TGF-beta1. These two molecular mechanisms, unobserved in progestin-independent growth of C4HI or 60 cells, were associated with a significantly higher degree of inhibition of cdk2 kinase activity in C4HD cells compared to that found in TGF-beta-treated C4HI or 60 cells. Reduced sensitivity of 60 cells to the growth-inhibitory effects of TGF-beta1 correlated with significantly lower levels of p15(INK4B), p21(CIP1), and p27(KIP1) expressed in these cells, compared to the levels present in C4HD or C4HI cells, and correlated as well with lack of expression of p16(INK4). Thus, common targets were found to exist in TGF-beta1 inhibitory action on breast cancer cells, but regulation of specific targets was found when TGF-beta1-inhibited proliferation driven by the progesterone receptor.  相似文献   

12.
Transforming growth factor beta (TGF-beta) induces cell cycle arrest of most nontransformed epithelial cell lines. In contrast, many human carcinomas are refractory to the growth-inhibitory effect of TGF-beta. TGF-beta overexpression inhibits tumorigenesis, and abolition of TGF-beta signaling accelerates tumorigenesis, suggesting that TGF-beta acts as a tumor suppressor in mouse models of cancer. A screen to identify agents that potentiate TGF-beta-induced growth arrest demonstrated that the potential anticancer agent rapamycin cooperated with TGF-beta to induce growth arrest in multiple cell lines. Rapamycin also augmented the ability of TGF-beta to inhibit the proliferation of E2F1-, c-Myc-, and (V12)H-Ras-transformed cells, even though these cells were insensitive to TGF-beta-mediated growth arrest in the absence of rapamycin. Rapamycin potentiation of TGF-beta-induced growth arrest could not be explained by increases in TGF-beta receptor levels or rapamycin-induced dissociation of FKBP12 from the TGF-beta type I receptor. Significantly, TGF-beta and rapamycin cooperated to induce growth inhibition of human carcinoma cells that are resistant to TGF-beta-induced growth arrest, and arrest correlated with a suppression of Cdk2 kinase activity. Inhibition of Cdk2 activity was associated with increased binding of p21 and p27 to Cdk2 and decreased phosphorylation of Cdk2 on Thr(160). Increased p21 and p27 binding to Cdk2 was accompanied by decreased p130, p107, and E2F4 binding to Cdk2. Together, these results indicate that rapamycin and TGF-beta cooperate to inhibit the proliferation of nontransformed cells and cancer cells by acting in concert to inhibit Cdk2 activity.  相似文献   

13.
Reciprocal cooperative signaling by integrins and growth factor receptors at G1 phase during cell cycle progression is well documented. By contrast, little is known about the cross-talk between integrin and transforming growth factor (TGF)-beta signaling. Here, we show that integrin signaling counteracts the inhibitory effects of TGF-beta on cell growth and that this effect is mediated by p130Cas (Crk-associated substrate, 130 kDa). Adhesion to fibronectin or laminin reduces TGF-beta-induced Smad3 phosphorylation and thus inhibits TGF-beta-mediated growth arrest; loss of p130Cas abrogates these effects. Loss and gain of function studies demonstrated that, once tyrosine-phosphorylated via integrin signaling, p130Cas binds to Smad3 and reduces phosphorylation of Smad3. That in turn leads to inhibition of p15 and p21 expression and facilitation of cell cycle progression. Thus, p130Cas-mediated control of TGF-beta/Smad signaling may provide an additional clue to the mechanism underlying resistance to TGF-beta-induced growth inhibition.  相似文献   

14.
15.
Due to its immunosuppressive properties, the cytokine transforming growth factor (TGF)-beta has become a promising target in the experimental treatment of human malignant gliomas. Here, we report that the antifibrotic drug 5-methyl-1-phenyl-2-(1H)-pyridone (pirfenidone, PFD) elicits growth-inhibitory effects and reduces TGF-beta2 protein levels in human glioma cell lines. This reduction in TGF-beta2 is biologically relevant since PFD treatment reduces the growth inhibition of TGF-beta-sensitive CCL-64 cells mediated by conditioned media of glioma cells. The downregulation of TGF-beta is mediated at multiple levels. PFD leads to a reduction of TGF-beta2 mRNA levels and of the mature TGF-beta2 protein due to decreased expression and direct inhibition of the TGF-beta pro-protein convertase furin. In addition, PFD reduces the protein levels of the matrix metalloproteinase (MMP)-11, a TGF-beta target gene and furin substrate involved in carcinogenesis. These data define PFD or PFD-related agents as promising agents for human cancers associated with enhanced TGF-beta activity.  相似文献   

16.
We assessed the responsiveness of six human cervical cancer cell lines to transforming growth factor (TGF)-beta with p3TP-lux reporter assay and found that HeLa and SiHa cells were highly responsive to TGF-beta. However, when pSBE4-BV/Luc reporter with four Smad binding elements was used, only the SiHa, not the HeLa, cells showed Smad activation. Smad DNA binding activity was relatively more in SiHa than in HeLa cells upon TGF-beta treatment, and the active complex contained Smad 2 and Smad 4. In 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays, HeLa cells treated with 5 ng/ml of TGF-beta for 24 h showed proliferation, whereas SiHa cells showed growth inhibition under the same conditions. TGF-beta treatment resulted in G(0)/G(1) arrest with a reduction in S-phase only in SiHa cells. A chemical inhibitor of Smad activation (SB203580) blocked the growth inhibitory effect of TGF-beta in SiHa, whereas the proliferative response in HeLa was unaffected. TGF-beta-induced translocation of phospho-Smad 2 was relatively less in HeLa than in SiHa cells. MAPK activation occurred within 5 min and persisted up to 15 min upon TGF-beta treatment in HeLa but was negligible in SiHa cells. TGF-beta activated JNK in HeLa, but SiHa cells showed a down-regulation of its activity. When an inhibitor of MAPK (U0126) was used, the TGF-beta-mediated proliferative response in HeLa cells was completely abolished. SB203580 did not affect MAPK activation induced by TGF-beta in HeLa cells. We report for the first time an activation, presumably independent of Smad activation, of TGF-beta-dependent MAPK within 5 min of treatment that resulted in cell cycle progression in a cervical adenocarcinoma cell line, HeLa.  相似文献   

17.
SMAD3 is one of the intracellular mediators that transduces signals from transforming growth factor-beta (TGF-beta) and activin receptors. We show that SMAD3 mutant mice generated by gene targeting die between 1 and 8 months due to a primary defect in immune function. Symptomatic mice exhibit thymic involution, enlarged lymph nodes, and formation of bacterial abscesses adjacent to mucosal surfaces. Mutant T cells exhibit an activated phenotype in vivo, and are not inhibited by TGF-beta1 in vitro. Mutant neutrophils are also impaired in their chemotactic response toward TGF-beta. Chronic intestinal inflammation is infrequently associated with colonic adenocarcinoma in mice older than 6 months of age. These data suggest that SMAD3 has an important role in TGF-beta-mediated regulation of T cell activation and mucosal immunity, and that the loss of these functions is responsible for chronic infection and the lethality of Smad3-null mice.  相似文献   

18.
19.
Transforming growth factor-beta (TGF-beta) plays an essential role in chondrocyte maturation. It stimulates chondrocyte proliferation but inhibits chondrocyte differentiation. In this study, we found that TGF-beta rapidly induced beta-catenin protein levels and signaling in murine neonatal sternal primary chondrocytes. TGF-beta-increased beta-catenin induction was reproduced by overexpression of SMAD3 and was absent in Smad3(-/-) chondrocytes treated with TGF-beta. SMAD3 inhibited beta-transducin repeat-containing protein-mediated degradation of beta-catenin and immunoprecipitated with beta-catenin following TGF-beta treatment. Both SMAD3 and beta-catenin co-localized to the nucleus after TGF-beta treatment. Although both TGF-beta and beta-catenin stimulated cyclin D(1) expression in chondrocytes, the effect of TGF-beta was inhibited with beta-catenin gene deletion or SMAD3 loss of function. These results demonstrate that TGF-beta stimulates cyclin D(1) expression at least in part through activation of beta-catenin signaling.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号