首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pre-term neonates and neonates in general exhibit physiological vitamin E deficiency and are at increased risk for the development of acute lung diseases. Apoptosis is a major cause of acute lung damage in alveolar type II cells. In this paper, we evaluated the hypothesis that vitamin E deficiency predisposes alveolar type II cells to apoptosis. Therefore, we measured markers of apoptosis in alveolar type II cells isolated from control rats, vitamin E deficient rats and deficient rats that were re-fed a vitamin E-enriched diet. Bax and cytosolic cytochrome c increased, and the mitochondrial transmembrane potential and Hsp25 expression was reduced in vitamin E deficiency. Furthermore, increased DNA-fragmentation and numbers of early and late apoptotic cells were seen, but caspases 3 and 8 activities and expression of Fas, Bcl-2, Bcl-x and p53 remained unchanged. Vitamin E depletion did not change the GSH/GSSG ratio and the activities of antioxidant enzymes. Thus, vitamin E deficiency may induce a reversible pro-apoptotic response in lung cells and sensitise them for additional insult. In agreement with this hypothesis, we demonstrate that in vivo hyperoxia alone does not induce apoptosis in type II cells of control rats but reversibly increases DNA-fragmentation and numbers of early apoptotic type II cells in vitamin E-depleted cells.  相似文献   

2.
Reactive oxygen species play an important role in development of lung injury. Neonates exhibit a high risk of developing acute and/or chronic lung disorder, often associated with surfactant deficiency, and in parallel they show low vitamin E concentration. We investigated whether the vitamin E status of adult rats affects the content of phospholipids (PL) in bronchoalveolar lavage and alveolar type II cells. Phosphatidylcholine (PtdCho) is the dominant and functional most important PL in lung surfactant. Therefore, we determined its formation via de novo synthesis and reacylation of lyso-PtdCho in type II cells. Vitamin E depletion caused a decrease of PL content in bronchoalveolar lavage and type II cells and decreased glycerol-3-phosphate O-acyltransferase (G3P-AT) activity, de novo synthesis of PtdCho, and reacylation of lyso-PtdCho in type II cells. Preincubation of type II cell homogenates with dithiothreitol restored the activity of G3P-AT and de novo synthesis but inhibited reacylation. Reacylation was strongly reduced by chelerythrine-mediated inhibition of protein kinase C. We conclude that antioxidant and PKC-modulating properties of vitamin E regulate de novo synthesis of PtdCho and reacylation of lyso-PtdCho in alveolar type II cells. Vitamin E depletion reduced the two pathways of PL synthesis and caused a decrease of PL content in alveolar surfactant of rats.  相似文献   

3.
Pang  Qianqian  Liu  Chunyi  Qiao  Yulong  Zhao  Jian  Lam  Sin Man  Mei  Mei  Shui  Guanghou  Bao  Shilai  Li  Qiuling 《中国科学:生命科学英文版》2022,65(1):193-205
Science China Life Sciences - Pulmonary surfactant is a lipid-protein complex secreted by alveolar type II epithelial cells and is essential for the maintenance of the delicate structure of...  相似文献   

4.
Mouse marrow, which contains osteoblast and osteoclast precursors, was grown in the presence of calcitriol and/or basic fibroblast growth factor (FGF-2). RAW 264.7 cells were differentiated into osteoclast-like cells in the presence of receptor activator of NF-kappaB-Ligand (RANK-L) and/or FGF-2. FGF-2 alone supported osteoclastogenesis in mouse marrow cultures, but not by RAW 264.7 cells alone. Although FGF-2 supported low levels of osteoclastogenesis in mouse marrow cultures, it strongly inhibited the high levels of osteoclastogenesis triggered by calcitriol. Adding excess recombinant-RANK-L to the cultures did not relieve this inhibition. After mouse marrow osteoclasts were differentiated, FGF-2 dose-dependently inhibited bone resorptive activity. FGF-2 increased the tendency of RAW 264.7 osteoclast-like cells to fuse into very large giant cells and induced reorganizations of the actin cytoskeleton in mature, RANK-L-induced RAW 264.7 osteoclast-like cells. These results suggest that FGF-2 has both direct and indirect effects on osteoclast formation and bone resorption.  相似文献   

5.
LINCR was identified as a glucocorticoid-attenuated response gene induced in the lung during endotoxemia. The LINCR protein has structural similarities to Drosophila Neuralized, which regulates the developmentally important Notch signaling pathway. Endotoxemia-induced LINCR expression in vivo was localized by in situ hybridization to alveolar epithelial type II cells, and shown to be induced by LPS and inflammatory cytokines in the T7 alveolar epithelial type II cell line. RING domain-dependent ubiquitin E3 ligase activity of LINCR was demonstrated using full-length FLAG-LINCR or a deletion mutant lacking the RING domain expressed in 293T cells, and using a GST-LINCR RING fusion protein expressed in Escherichia coli. LINCR preferentially interacted with the ubiquitin-conjugating enzyme UbcH6 and preferentially generated polyubiquitin chains linked via non-canonical lysine residues. We conclude that LINCR is a novel inflammation-induced ubiquitin E3 ligase expressed in alveolar epithelial type II cells, and discuss its potential role in the lung response to inflammation.  相似文献   

6.
7.
MicroRNA (miRNA) critically controls gene expression in many biological processes, including lung growth and pulmonary surfactant biosynthesis. The present study was conducted to investigate whether miR‐20a‐5p had such regulatory functions on alveolar type II (AT‐II) cells. To accomplish this, miR‐20a‐5p–overexpressed and miR‐20a‐5p–inhibited adenoviral vectors were constructed and transfected into cultured AT‐II cells that were isolated from rat foetal lungs of 19 days' gestation. Transfection efficiency was confirmed by observing the fluorescence of green fluorescent protein (GFP) carried by the viral vector, whereas miR‐20a‐5p levels were verified by real‐time PCR. The CCK‐8 assay was used to compare the proliferation ability of AT‐II cells that had over‐ or underexpressed miR‐20a‐5p. The expression of surfactant‐associated proteins (SPs) and phosphatase and tensin homolog (PTEN) was measured by real‐time PCR and Western blotting. In AT‐II cells, transfection resulted in over‐ or under‐regulation of miR‐20a‐5p. While overexpression of miR‐20a‐5p promoted pulmonary surfactant gene expression, its underexpression inhibited it. Consistent with its role in negatively regulating the pulmonary surfactant gene, an opposite pattern was observed for miR‐20a‐5p regulation of PTEN. As a result, when miR‐20a‐5p was rendered overexpressed, PTEN was down‐regulated. By contrast, when miR‐20a‐5p was underexpressed, PTEN was up‐regulated. Neither overexpression nor underexpression of miR‐20a‐5p altered the cell proliferation. miR‐20a‐5p plays no role in proliferation of foetal AT‐II cells but is a critical regulator of surfactant gene expression. The latter appears to be achieved through a regulatory process that implicates expression of PTEN.  相似文献   

8.
9.
10.
Surfactant proteins (SPs) are important lipoprotein complex components, expressed in alveolar epithelial cells type II (AEC-II), and playing an essential role in maintenance of alveolar integrity and host defence. Because expressions of SPs are regulated by cyclic adenosine monophosphate (cAMP), we hypothesized that phosphodiesterase (PDE) inhibitors, influence SP expression and release. Analysis of PDE activity of our AEC-II preparations revealed that PDE4 is the major cAMP hydrolysing PDE in human adult AEC-II. Thus, freshly isolated human AEC-II were stimulated with two different concentrations of the PDE4 inhibitor roflumilast-N-oxide (3 nM and 1 μM) to investigate the effect on SP expression. SP mRNA levels disclosed a large inter-individual variation. Therefore, the experiments were grouped by the basal SP expression in low and high expressing donors. AEC-II stimulated with Roflumilast-N-oxide showed a minor increase in SP-A1, SP-C and SP-D mRNA mainly in low expressing preparations. To overcome the effects of different basal levels of intracellular cAMP, cyclooxygenase was blocked by indomethacin and cAMP production was reconstituted by prostaglandin E2 (PGE2). Under these conditions SP-A1, SP-A2, SP-B and SP-D are increased by roflumilast-N-oxide in low expressing preparations. Roflumilast-N-oxide fosters the expression of SPs in human AEC-II via increase of intracellular cAMP levels potentially contributing to improved alveolar host defence and enhanced resolution of inflammation.  相似文献   

11.
12.
13.
Alveolar epithelial cell (AEC) injury and repair during hyperoxia exposure and recovery have been investigated for decades, but the molecular mechanisms of these processes are not clear. To identify potentially important genes involved in lung injury and repair, we studied the gene expression profiles of isolated AEC II from control, 48-h hyperoxia-exposed (>95% O(2)), and 1-7 day recovering rats using a DNA microarray containing 10,000 genes. Fifty genes showed significant differential expression between two or more time points (P<0.05, fold change >2). These genes can be classified into 8 unique gene expression patterns. Real-time PCR verified 14 selected genes in three patterns related to hyperoxia exposure and early recovery. The change in the protein level for two of the selected genes, bmp-4 and retnla, paralleled that of the mRNA level. Many of these genes were found to be involved in cell proliferation and differentiation. In an in vitro AEC trans-differentiation culture model using AEC II isolated from control and 48-h hyperoxia-exposed rats, the expressions of the cell proliferation and differentiation genes identified above were consistent with their predicted roles in the trans-differentiation of AEC. These data indicate that a coordinated mechanism may control AEC differentiation during in vivo hyperoxia exposure and recovery as well as during in vitro AEC culture.  相似文献   

14.
We have examined phospholipid-transfer activities in cytosols from rat and mouse whole lung, isolated rat alveolar type II cells and alveolar type II cell-derived mouse pulmonary adenomas. We report an enrichment in phosphatidylcholine and phosphatidylglycerol (but not phosphatidylinositol) protein-catalysed transfer in the type II cell and adenoma cytosols compared with the whole-lung cytosols. The activities from these cytosols were resolved using column chromatofocusing, which clearly demonstrated the presence of a phosphatidylcholine-specific transfer protein in each of the four tissues. In addition, two proteins (rat) or three proteins (mouse) catalysing both phosphatidylcholine and phosphatidylglycerol transfer were resolved from whole lung, whereas in both the rat isolated alveolar type II cells and the mouse type II cell-derived adenomas one of these less specific proteins is not present.  相似文献   

15.
Molecular mechanisms of surfactant delivery to the air/liquid interface in the lung, which is crucial to lower the surface tension, have been studied for more than two decades. Lung surfactant is synthesized in the alveolar type II cells. Its delivery to the cell surface is preceded by surfactant component synthesis, packaging into specialized organelles termed lamellar bodies, delivery to the apical plasma membrane and fusion. Secreted surfactant undergoes reuptake, intracellular processing, and finally resecretion of recycled material. This review focuses on the mechanisms of delivery of surfactant components to and their secretion from lamellar bodies. Lamellar bodies-independent secretion is also considered. Signal transduction pathways involved in regulation of these processes are discussed as well as disorders associated with their malfunction.  相似文献   

16.
Anti-Mullerian hormone (AMH) is involved in the regression of the Mullerian ducts in mammalian and avian male embryos as well as the right oviduct in avian female embryos. AMH is expressed by granulosa cells of adult hens and mammals and is thought to be involved in the recruitment of follicles from the primordial pool as well as in regulating follicle-stimulating hormone (FSH) sensitivity. We have shown that AMH expression by the granulosa layer of hens is high in the small follicles but decreased in the larger hierarchical follicles. The decline in expression of AMH with increasing follicle size is associated with an increase in expression of the receptor for FSH (FSHR) in the granulosa layer, although the mechanism is not known. In this study, we tested whether vitamin D (1,25-dihydroxyvitamin D3) regulates expression of AMH mRNA in granulosa cells of the hen. Granulosa cell layers were removed from follicles 3-5 mm and 6-8 mm in size, dispersed, and cultured for 24 h in Medium 199 + 5% fetal bovine serum (n = 7). The medium was removed and replaced with Medium 199 + 0.1% bovine serum albumin and vitamin D (at doses of 0, 10, and 100 nM) and cultured for 24 h. Cells were harvested and RNA was extracted for use in quantitative PCR. Parallel 96-well plates were set up to examine cell proliferation. AMH and FSHR mRNA expressions were evaluated, and all values were standardized to 18S reactions. There was a significant (P < 0.05) dose-related decrease in the expression of AMH mRNA in granulosa cells of 3- to 5-mm and 6- to 8-mm follicles in response to vitamin D. Additionally, FSHR mRNA and cell proliferation were significantly (P < 0.05) increased by vitamin D in both groups. Western blot analysis for the vitamin D receptor (VDR) showed doublet bands at the expected sizes (58 and 60 kDa) in protein isolated from the chicken granulosa layer. Immunohistochemistry was used to identify VDR within the follicle, and it predominantly localized to the nucleus of granulosa cells. VDR mRNA expression in the granulosa layer, relative to follicle development, was increased (n = 4; P < 0.05) with follicle development, with greatest expression in the F1 follicle. There was no evidence for expression (mRNA or protein) of the calcium-binding protein, calbindin (CALB1), in the ovary or granulosa layer. Overall, these results suggest that vitamin D regulates AMH expression, and thereby may influence follicle selection in the hen.  相似文献   

17.
18.
Caveolin-1在不同肿瘤中发挥作用不同,既发挥抑癌基因样作用又发挥癌基因样作用.旨在分析caveolin-1 在小鼠肝癌细胞系中的表达情况及建立稳定表达外源caveolin-1的Hepa1-6细胞.利用RT-PCR和Western-blot方法检测caveolin-1在小鼠肝癌H22、Hea-F和Hepa1-6细胞中的表达;通过分子克隆构建小鼠caveolin-1 cDNA真核表达栽体,利用脂质体转染等方法建立稳定表达外源caveolin-1的Hepa1-6细胞株;通过RT-PCR、Western-blot、免疫细胞化学等方法鉴定其稳定表达细胞株.结果显示,caveolin-1在Hepa1-6细胞中表达呈阴性,在H22和Hca-F 中高表达;成功获得小鼠caveolin-1 cDNA真核表达载体pEGFP-N2/Cav-1,筛选并鉴定出高表达外源caveolin-1的Hepa1-6稳定细胞株C1和C4,为进一步分析caveolin-1在肝癌中所发挥的作用奠定了一定的研究基础.  相似文献   

19.
20.
Hemoglobin is the main oxygen carrying heme protein in erythrocytes. In an effort to study the differential gene expression of alveolar epithelial type I and type II cells using DNA microarray technique, we found that the mRNAs of hemoglobin alpha- and beta-chains were expressed in type II cells, but not in type I cells. The microarray data were confirmed by RT-PCR. The mRNA expression of both chains decreased when type II cells trans-differentiated into type I-like cells. Immunocyto/histochemistry revealed that hemoglobin protein was specifically localized in type II cells of a lung cell mixture and rat lung tissue. The endogenous synthesis of hemoglobin in alveolar epithelial cells suggests that hemoglobin may have unidentified functions other than oxygen transport in the lung.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号