首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The synthesis of chromosomal proteins and the incorporation of labelled proteins into chromosomes in the mitotic cell cycle ofHaplopappus gracilis, 2n=4, were traced autoradiographically with3H-arginine,3H-lysine, and3H-tryptophane. The duration of the mitotic cell cycle in the root tip cells was determined by3H-thymidine autoradiography and was measured to be 13.0 hr (G1 1.3 hr, S 6.5 hr, G2 3.8 hr and M 1.4 hr).3H-arginine labelled proteins which were synthesized at S and G2 were found to be incorporated into chromosomes to a greater extent than proteins which were synthesized either at G1, at the transition phase from late S to early G2, or at the mitotic phase. Such varied incorporation was also found in3H-lysine labelled proteins, but not in3H-tryptophane labelled proteins. These findings indicate that the chromosomal proteins are synthesized mainly at S and G2. Some of the3H-arginine labelled proteins which were synthesized during the first mitotic cell cycle, were found to be incorporated into the chromosomes of the second mitotic cell cycle. The incorporation of the proteins synthesized at one stage of the mitotic cell cycle was found to occur locally in some regions of the chromosomes, while the pattern of incorporation was observed to be similar between euchromatic and heterochromatic regions.  相似文献   

2.
The incorporation of thymidine-H3 and lysine-H3 into human leukocyte chromosomes was studied in order to determine the temporal relationships between the syntheses of chromosomal deoxyribonucleic acid and chromosomal protein. The labeled compounds were incorporated into nuclei of interphase cells. Label from both precursors became apparent over the chromosomes of dividing cells. Incorporation of thymidine-H3 occurred during a restricted period of midinterphase (S) which was preceded by a nonsynthetic period (G1) and followed by a nonsynthetic period (G2). Incorporation of lysine-H3 into chromosomal protein occurred throughout interphase. Grain counts made over chromosomes of dividing cells revealed that the rate of incorporation of lysine-H3 into chromosomal protein differed during various periods of interphase. The rate of incorporation was diminished during G1. During early S period the rate of incorporation increased, reaching a peak in late S. The high rate continued into G2. Thymidine-H3 incorporated into DNA was distributed to mitotic chromosomes of daughter cells in a manner which has been referred to as a "semi-conservative segregation." No such semi-conservative mechanism was found to affect the distribution of lysine-H3 to the mitotic chromosomes of daughter cells. Therefore, it is concluded that synthesis of chromosomal protein and its distribution to chromosomes of daughter cells are not directly influenced by synthesis and distribution of the chromosomal DNA with which the protein is associated.  相似文献   

3.
R. D. MacLeod 《Chromosoma》1969,27(3):327-337
Roots of Vicia faba were given a one hour pulse label with. 3H-TdR (1 C/ml), either before or after a three hour treatment with a 10–5 M solution of 2,4,5-trichlorophenoxyacetic acid (TCPA). The durations of the various phases of the mitotic cycle were derived from labeled prophase curves, prepared from autoradiographs of lateral root apical meristems. — TCPA was found to lengthen the duration of the mitotic cycle, primarily because it extended the duration of the period of DNA synthesis (S), though post-synthetic interphase (G2) was also longer. No measurements could be made with respect to the duration of presynthetic interphase (G1), because of rapid changes in the lengths of the G2 and S periods following treatment. — As well as extending the duration of S, TCPA treatment also resulted in at least an initial increase in the rate of DNA synthesis and a decrease in the actual number of cells in S. These results have been discussed with respect to the control of the organization of the root apical meristem.Supported by a grant from the Assistant Professor Research Fund of the University of Missouri.  相似文献   

4.
Several responses of synchronized populations of HeLa S3 cells were measured after irradiation with 220 kev x-rays at selected times during the division cycle. (1) Survival (colony-forming ability) is maximal when cells are irradiated in the early post-mitotic (G1) and the pre-mitotic (G2) phases of the cycle, and minimal in the mitotic (M) and late G1 or early DNA synthetic (S) phases. (2) Markedly different growth patterns result from irradiation in different phases: (a) Prolongation of interphase (division delay) is minimal when cells are irradiated early in G1 and rises progressively through the remainder of the cycle. (b) Cells irradiated while in mitosis are not delayed in that division, but the succeeding division is delayed. (c) Persistence of cells as metabolizing entities does not depend on the phase of the division cycle in which they are irradiated. (3) Characteristic perturbations of the normal DNA synthetic cycle occur: (a) Cells irradiated in M suffer a small delay in the onset of S, a slight prolongation of S, and a slight depression in the rate of DNA synthesis; the major delay occurs in G2. (b) Cells irradiated in G1 show no delay in the onset of S, and essentially no alteration in the duration or rate of DNA synthesis; G2 delay is minimal. (c) Cells irradiated in S suffer an appreciable S prolongation and a decreased rate of DNA synthesis; G2 delay is shorter than S delay.  相似文献   

5.
Summary The varying sensitivity to radiation in the different phases of the cell cycle was investigated using L-929 cells of the mouse. The cells were synchronized by mechanical selection of mitotic cells. The synchronous populations were X-irradiated with a single dose of 10 Gy in the middle of the G1-phase, at the G1/S-transition or in the middle of the S-phase, respectively. The radiation effect was determined in 2 h intervals a) by14C-TdR incorporation (IT) into the DNA, b) by autoradiography (AR), c) by flow cytometry (FCM). The incorporation rate decreased in all three cases, but the reasons appeared to be different, as can be derived from FCM and AR data: After irradiation in G1, a fraction of cells was prevented from entering S-phase, after irradiation at G1/S a proportion of cells was blocked in the S-phase, and after irradiation in S, DNA synthesis rate was reduced. As a consequence of these effects, the mean transition time through S-phase increased. The G2 blocks, obtained after irradiation at the three stages of the cycle were also different: Cells irradiated in G1 are partly released from the block after 10 h. Irradiation at G1/S caused a persisting accumulation of 50% of the cells in G2, and for irradiation in S more than 80% of the cells were arrested in G2.  相似文献   

6.
P. W. Barlow 《Planta》1976,131(3):235-243
Summary Ethylene at a concentration of 100 l l–1 causes a slight increase in the duration of the mitotic cycle in the primary root meristems of both Pisum sativum L. and Zea mays L. This is due to a lengthening of the G 1 phase; other phases of the cycle are unaffected. Autoradiography and microdensitometry show that the rate of 3H-thymidine incorporation into nuclei of Pisum is maximal when about half the DNA has been replicated, and that ethylene has no effect upon this rate. Ethylene causes a reduction of the number of dividing cells in the root meristem, particularly in Pisum.Abbreviations Duration of the S phase, the G 1 phase, the G 2 phase of the mitotic cell cycle, respectively - T C Duration of the complete mitotic cell cycle - QC Quiescent centre - LI, MI Labelling index, Mitotic index (i.e. fraction of the population labelled or in mitosis, respectively) - PF Proliferative fraction (i.e. fraction of the population making progress towards mitosis) - [3H]dT tritiated thymidine  相似文献   

7.
Mitochondrial protein synthesis was measured in line CHO cells after phases of the cell cycle were synchronized by isoleucine deprivation or mitotic selection. Maximum incorporation of [3H] leucine into mitochondrial polypeptides occurred within 2 hours after isoleucine was added to initiate G1 traverse. In cells synchronized in G1 by mitotic selection, the rate of mitochondrial protein synthesis was fairly constant throughout the cell cycle. SDS-polyacrylamide gel electrophoretic profiles of labeled mitochondrial polypeptides were similar in cells synchronized by either isoleucine deprivation or mitotic selection. Obvious changes in the distribution of polypeptides were not detected during various phases of the cell cycle. The increased rate of incorporation of [3H] leucine into mitochondrial polypeptides after reversal of G1-arrest may indicate that mitochondrial protein synthesis and possibly mitochondrial biogenesis are synchronized in CHO cells deprived of isoleucine.  相似文献   

8.
M. Wierzbicka 《Protoplasma》1999,207(3-4):186-194
Summary Allium cepa (L.) adventitious roots were treated with lead (2.5 mg of Pb2+ [from Pb(NO3)2] per dm3) for 30–72 h. The cell cycle was studied by pulse labeling with [3H]thymidine. Mitotic activity kinetics, occurrence of disturbed mitoses (c-mitoses), and level of DNA synthesis were examined. It was found that lead prolonged the cell cycle and that cells in two phases of the cycle, G2 and S, differed in their sensitivity to lead. Cells in G2 were more sensitive; lead lengthened their cycle by 216% and disturbed the course of cell division by causing c-mitoses. Cells in S phase were less sensitive. Their cell cycle was longer by 55%. They went through their G2 phase without major disturbances, mitosis in these cells was normal. During treatment ofA. cepa with lead, its destructive effects on cells were exerted only during the first few hours (around 6 h) of incubation. That is when the inhibition of mitotic activity, numerous disturbances of cell division, a decline in the number of cells synthesizing DNA, and a lower level of DNA synthesis were observed. As the incubation continued, the above processes were found to return to normal. In the discussion, data are presented supporting the hypothesis that during the initial period of exposure ofA. cepa to lead, this metal enters both the root apoplast and symplast, exerting a destructive effect on cells, while later, lead penetrates only into the root apoplast, and in this way remains harmless to cells.  相似文献   

9.
Chloramphenicol sensitive [3H]leucine incorporation into protein (due to mitochondrial protein synthesis) in synchronized HeLa cells has been found to continue throughout interphase, its rate per cell approximately doubling from the G1 to the G2 phase. This increase in the rate of [3H]leucine incorporation during the cycle does not seem to parallel closely the increase in cell mass. In fact, the observations made on cultures incubated at 34.5 °C, where the G1 and S phases are better resolved than at 37 °C, indicate that the rate remains constant during the G1 phase, and starts to accelerate with the onset of nuclear DNA synthesis. Correspondingly, on a per unit mass basis, there appears to be a slight decline in the rate of [3H]leucine incorporation into protein during the G1 phase, which is compensated by an increase in the early S phase. No significant variations were observed in the mitochondrial leucine pool labeling during the cell cycle; therefore, the observed pattern of [3H]leucine incorporation into protein should reflect fairly accurately the behavior of mitochondrial protein synthesis. Evidence has been obtained indicating a depression in the rate of incorporation of [3H]leucine into protein in mitochondria of mitotic cells. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of the products of mitochondrial protein synthesis has not revealed any differences in the size distribution of the proteins synthesized in the various portions of the cell cycle.  相似文献   

10.
Summary Mitotic cells of a diploid strain of Saccharomyces cerevisiae with appropriate markers for the detection of mitotic crossing-over and mitotic gene conversion were irradiated with X-rays. Induction of these recombinational events was strong. After irradiation, cells were incubated in a rich growth medium and samples were removed for studying the possible formation of synaptonemal complexes up to a time when most cells had completed the first post-irradiation cell division. No complexes were found during the entire period of sampling, during which mitotic recombination in G1 (mitotic gene conversion), DNA replication and G2 (mitotic crossing-over) had occurred. These results are interpreted to mean that synaptonemal complexes are not required for mitotic recombination.  相似文献   

11.
Murine resting (G0) T lymphocytes contained no detectable mRNA of 3-phosphoglycerate dehydrogenase (PHGDH) catalyzing the first step in the phosphorylated pathway of l-serine biosynthesis. Immobilized anti-CD3 activation of G0 T cells expressed the PHGDH mRNA in G1 with a maximum level in S phase. G0 T cells activated with either immobilized anti-CD3 plus CsA or PBu2, which failed to drive the activated T cells to enter S phase, did not express the PHGDH mRNA unless exogenous rIL-2 was added. Blocking of IL-2R signaling by adding anti-IL-2 and anti-IL-2Rα resulted in no expression of the PHGDH mRNA during immobilized anti-CD3 activation of G0 T cells. Deprivation of l-serine from culture medium or addition of antisense PHGDH oligonucleotide significantly reduced [3H]TdR incorporation of activated T cells. These results indicate that the PHGDH gene expression, dictated by IL-2R signaling, is a crucial event for DNA synthesis during S phase of activated T cells.  相似文献   

12.
The proliferation kinetics of cells of the line NHIK 1922 grown in vitro and as solid tumours in the athymic mutant nude mouse has been studied. In vitro, growth curves were determined for exponentially growing populations and for populations synchronized by mitotic selection. The phase durations for these populations were determined by flow cytofluorometric measurements of DNA-histograms and pulsed incorporation of [3H]TdR respectively. The generation time and the phase durations for synchronized populations were found to be about equal to those for exponentially growing populations. The duration of the phases G1, S and G2+ M was found to be 8·5–9·5, 11·0–12·0 and 6·0–6·5 hr respectively, i.e. the generation time was 26·5–27·0 hr. The proliferation kinetics in vivo were studied by flow cytofluorometry and by the technique of percentage labelled mitoses. The median duration of S-phase and (G2+ M)-phase in vivo was found to be approximately the same as that observed in vitro, while the median duration of G1-phase was found to be approximately 5 hr longer in vivo than under the present in vitro growth conditions. The growth fraction in vivo was estimated to be approximately 50%. The non-proliferative compartment of the tumour cells was found to consist mainly of cells with the DNA-content of cells in G1-phase. It is concluded that the reduced rate of proliferation of NHIK 1922 cells in vivo is correlated with alterations in the duration of G1-phase and, hence, the proportion of cells in G1-phase.  相似文献   

13.
Endosymbiosis is an intriguing plant–animal interaction in the dinoflagellate–Cnidaria association. Throughout the life span of the majority of corals, the dinoflagellate Symbiodinium sp. is a common symbiont residing inside host gastrodermal cells. The mechanism of regulating the cell proliferation of host cells and their intracellular symbionts is critical for a stable endosymbiotic association. In the present study, the cell cycle of a cultured Symbiodinium sp. (clade B) isolated from the hermatypic coral Euphyllia glabrescens was investigated using flow cytometry. The results showed that the external light–dark (L:D) stimulation played a pivotal role in regulating the cell cycle process. The sequential light (40–100 μmol m−2 s−1 ~ 12 h) followed by dark (0 μmol m−2 s−1 ~ 12 h) treatment entrained a single cell cycle from the G1 to the S phase, and then to the G2/M phase, within 24 h. Blue light (~450 nm) alone mimicked regular white light, while lights of wavelengths in the red and infrared area of the spectrum had little or no effect in entraining the cell cycle. This diel pattern of the cell cycle was consistent with changes in cell motility, morphology, and photosynthetic efficiency (F v /F m ). Light treatment drove cells to enter the growing/DNA synthesis stage (i.e., G1 to S to G2/M), accompanied by increasing motility and photosynthetic efficiency. Inhibition of photosynthesis by 3-(3, 4-dichlorophenyl)-1, 1-dimethyl-urea (DCMU) treatment blocked the cell proliferation process. Dark treatment was required for the mitotic division stage, where cells return from G2/M to G1. Two different pools of adenylyl cyclase (AC) activities were shown to be involved in the growing/DNA synthesis and mitotic division states, respectively. Communicated by Biology Editor Dr Michael Lesser  相似文献   

14.
Schizosaccharomyces pombe cells respond to nutrient deprivation by altering G2/M cell size control. The G2/M transition is controlled by activation of the cyclin-dependent kinase Cdc2p. Cdc2p activation is regulated both positively and negatively. cdr2+ was identified in a screen for regulators of mitotic control during nutrient deprivation. We have cloned cdr2+ and have found that it encodes a putative serine-threonine protein kinase that is related to Saccharomyces cerevisiae Gin4p and S. pombe Cdr1p/Nim1p. cdr2+ is not essential for viability, but cells lacking cdr2+ are elongated relative to wild-type cells, spending a longer period of time in G2. Because of this property, upon nitrogen deprivation cdr2+ mutants do not arrest in G1, but rather undergo another round of S phase and arrest in G2 from which they are able to enter a state of quiescence. Genetic evidence suggests that cdr2+ acts as a mitotic inducer, functioning through wee1+, and is also important for the completion of cytokinesis at 36°C. Defects in cytokinesis are also generated by the overproduction of Cdr2p, but these defects are independent of wee1+, suggesting that cdr2+ encodes a second activity involved in cytokinesis.  相似文献   

15.
New techniques for cell cycle analysis are presented. Using HeLa cells, methods are described for the selection of a narrow window or cohort of lightly [3H]-labeled cells located either at the very beginning or the very end of S phase. The cohort cells are tagged by a labeling procedure which entails alternating pulses of high and low levels of [3H]thymidine and are identified autoradiographically. Additional methods are described for following the progress of cohort cells through the cell cycle. Theoretically, with the methods described, it should be possible to follow the ‘early S cohort’ cells as they exit from S phase, as they enter and exit M and as they enter the subsequent S phase. This would allow a determination of S, S + G2, S + G2+ M and T. It should theoretically be possible to follow ‘late S cohort’ cells in a similar manner, allowing a determination of G2, G2+ M and G2+ M + G1. To test these predictions, several experiments are presented in which the progress of the two cohorts is monitored. The best data were obtained from the mitotic curves of cohort cells. For each of the cohorts, values were obtained for the time required for peak concentration of cells in mitosis, the coefficients of variation and of skew. The curve of cohort cells passing through mitosis is shown to fit a log-normal curve better than a normal curve. In addition, the mitotic curves are used to estimate the length of M and to estimate the loss of cohort synchrony. Other uses of these methods are discussed.  相似文献   

16.
Michio Ito 《Planta》1969,90(1):22-31
Summary In protonemata of Pteris vittata grown for 6 days under red light, which brings about a marked depression of mitotic activity, the first division of the cells was synchronously induced by irradiation with blue light, and subsequent cell divisions were also promoted. The peak of the mitotic index reached a maximum of about 70% at 11.5 hrs, and 90% of all protonemata divided between the 11th and 13th hour after exposure to blue light. When the protonemata were continuously irradiated with blue light, synchronism of the next cell division in the apical cells decreased to a mitotic index of about 30%, and further divisions occurred randomly.The synchronization of cell division was found to be a combined effect of red and blue light. Red light maintained the cells in the early G1 phase of the cell cycle; blue light caused the cells to progress synchronously through the cell cycle, with an average duration of 12 hr. By using 3H-thymidine, the average duration of the G1, S, G2 and M phases was determined to be about 3.5, 5, 2.5 and 1 hr, respectively.Synchronous cell division could be induced in older protonemata grown for 6 to 12 days in red light and even in protonemata having two cells. It could be repeated in the same protonema by reexposure to red light for 24 hrs or more before another irradiation with blue light.  相似文献   

17.
CELLULAR AND NUCLEAR VOLUME DURING THE CELL CYCLE OF NHIK 3025 CELLS   总被引:7,自引:0,他引:7  
The distribution of cellular and nuclear volume in synchronous populations of NHIK 3025 cells, which derive from a cervix carcinoma, have been measured by electronic sizing during the first cell cycle after mitotic selection. Cells given an X-ray dose of 580 rad in G1, were also studied. During the entire cell cycle the volume distribution of both cells and nuclei is an approximately Gaussian peak with a relative width at half maximum of about 30%. About half of this width is due to imperfect synchrony whereas the rest is associated with various time invariant factors. During S the mean volume of the cells grows exponentially whereas the nuclear volume increases faster than for exponential kinetics. Hence, although cellular and nuclear volumes are closely correlated, their ratio does not remain constant during the cell cycle. Volume growth during the first half of G1 is negligible especially for nuclei where the growth appears to be closely associated with DNA-synthesis. For unirradiated cells the growth of cellular and nuclear volume is negligible also during G2+ M. In contrast, the X-irradiated cells continue to grow during the 6 hr mitotic delay with a rate that is constant and about half of that observed in late S. Hence, radiation induced mitotic delay does not appear merely as a lengthening of an otherwise normal G2. During G1 and S the irradiated cells were identical to unirradiated ones with respect to all the parameters measured.  相似文献   

18.
The present study analyzed the heterogeneous cell-cycle dependence and fate of single cancer cells in a population treated with UVB using a fluorescence ubiquitination-based cell-cycle (FUCCI) imaging system. HeLa cells expressing FUCCI were irradiated by 100 or 200 J/m2 UVB. Modulation of the cell-cycle and apoptosis were observed by time-lapse confocal microscopy imaging every 30 min for 72 h. Correlation between cell survival and factors including cell-cycle phase at the time of the irradiation of UVB, mitosis and the G1/S transition were analyzed using the Kaplan–Meier method along with the log rank test. Time-lapse FUCCI imaging of HeLa cells demonstrated that UVB irradiation induced cell-cycle arrest in S/G2/M phase in the majority of the cells. The cells irradiated by 100 or 200 J/m2 UVB during G0/G1 phase had a higher survival rate than the cells irradiated during S/G2/M phase. A minority of cells could escape S/G2/M arrest and undergo mitosis which significantly correlated with decreased survival of the cells. In contrast, G1/S transition significantly correlated with increased survival of the cells after UVB irradiation. UVB at 200 J/m2 resulted in a greater number of apoptotic cells.  相似文献   

19.
20.
SYNOPSIS. Relationships between the cell cycle and the beginning of conjugation were analyzed for 3 hypotrichs: Diophrys scutum, Oxytricha bifaria, and Euplotes crassus. The first 2 species enter conjugation with micronuclei in G1; the latter species with a micronucleus in G2. The 1st micronuclear division of conjugating E. crassus is mitotic. Thus meiotic DNA replication occurs when the cells of each species have already entered the mating process. Cells from asynchronous populations start conjugation with their macronuclei primarily in G1 or more rarely at the beginning of the S stage in a percentage significantly different from that expected on the basis of random mating among all cells in the population. Also, macronuclear replication, when already begun, was blocked in cells undergoing conjugation. Therefore only the G1 or the very early S stages of the cell cycle are compatible with conjugation in the 3 analyzed species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号