首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
DNA damage induced by photosensitization is not only responsible for the genotoxic effects of various types of drugs in the presence of light, but is also relevant for some of the adverse effects of sunlight, in particular in the UVA and visible range of the spectrum. The types of DNA modifications induced are very diverse and include pyrimidine dimers, covalent adducts, various base modifications generated by oxidation, single-strand breaks and (regular and oxidized) sites of base loss. The ratios in which the various modifications are formed (damage spectra) can be regarded as a fingerprint of the damaging mechanism. Here, we describe the damage spectra of various classes of photosensitizers in relation to the underlying damaging mechanisms. In mammalian cells irradiated with solar radiation, damage at wavelengths <400 nm is characteristic for a (not yet identified) endogenous type-I or type-II photosensitizer. In the UVA range, however, both direct DNA excitation and photosensitized damage appear to be relevant, and there are indications that other chromophore(s) are involved than in the visible range.  相似文献   

2.
We investigated the effect of catechol derivatives, including dopa, dopamine, adrenaline and noradrenaline, on DNA damage and the mechanisms of DNA strand breakage and formation of 8-hydroxyguanine (8HOG). The catechol derivatives caused strand breakage of plasmid DNA in the presence of ADP-Fe(3+). The DNA damage was prevented by catalase, mannitol and dimethylsulfoxide, suggesting hydroxyl radical (HO..)-like species are involved in the strand breakage of DNA. Iron chelators, such as desferrioxamine and bathophenanthroline, and reduced glutathione also inhibited the DNA damage. Deoxyribose, a molecule that is used to detect HO,, was not degraded by dopa in the presence of ADP-Fe(3+). By adding EDTA, however, dopa induced the marked deoxyribose degradation in the presence of ADP-Fe(3+), indicating that EDTA may extract iron from ADP-Fe(3+) to catalyze HO. formation by dopa. Thus, EDTA was a good catalyst for HO.-generation, whereas it did not promote the strand breakage of DNA. However, calf thymus DNA base damage, which was detected as 8-HOG formation, was caused by dopa in the presence of EDTA-Fe(3+), but not in the presence of ADP-Fe(3+). The 8HOG formation was also inhibited by catalase and HO. scavengers, indicating that HO&z.rad; was involved in the base damage. These results suggest that DNA strand breakage is due to ferryl species rather than HO., and that 8HOG formation is due to HO. rather than ferryl species.  相似文献   

3.
The DNA damage induced in a human breast cancer cell line treated with 1,5 (10)-estradiene-3,4,17-trione (3,4-estrone-o-quinone; 3,4-EQ) has been measured qualitatively and quantitatively. Single-strand (ss) but not double-strand (ds) DNA breaks were formed in MCF-7 cells treated with 3,4-EQ. The ss DNA breaks formed in MCF-7 cells were partially repaired after incubation of cells in 3,4-EQ-free media for 2 and 4 h (i.e. 33 and 23% repair, respectively, as compared to the ss DNA breaks in cells after a 1-h exposure to 3,4-EQ without a recovery period). The formation of interstrand DNA cross-links was demonstrated in MCF-7 cells exposed to the bifunctional alkylating agent, mitomycin C, but not in those exposed to 3,4-EQ. Protein-linked DNA breaks were detected in MCF-7 cells after exposure to camptothecin and etoposide but not 3,4-EQ, suggesting that the ss DNA breaks induced by 3,4-EQ are unlikely to be mediated via topoisomerases. The induction of ss DNA breaks was detected in the estrogen receptor-negative cell line, BT-20, after exposure to 3,4-EQ. Furthermore, excess estradiol in culture media did not prevent 3,4-EQ-induced ss DNA breaks, suggesting that the DNA damage was not mediated via the estrogen receptor. Evaluation of the newly synthesized quinone analogue, 5,6,7,8-tetrahydro-1-2-naphthoquinone, in the ss DNA breakage assay revealed that the A and B ring moiety of 3,4-EQ is sufficient to produce ss DNA breaks in MCF-7 cells.  相似文献   

4.
Cryopreservation of human semen can cause DNA damages, which compromise the fertilization and normal embryo development. The present study showed that the antioxidant resveratrol prevents these damages both in fertile and infertile men. The addition of ascorbic acid before cryopreservation can reduce DNA damages only in infertile men. Although further studies are needed, the present work showed that resveratrol could be considered in human cryopreservation procedures to avoid/minimize DNA damages and preserve sperm integrity.  相似文献   

5.
Human exposure to microcystins, which are produced by freshwater cyanobacterial species, is of growing concern due to increasing appearance of cyanobacterial blooms as a consequence of global warming and increasing water eutrophication. Although microcystins are considered to be liver-specific, there is evidence that they may also affect other tissues. These substances have been shown to induce DNA damage in vitro and in vivo, but the mechanisms of their genotoxic activity remain unclear. In human peripheral blood lymphocytes (HPBLs) exposure to non-cytotoxic concentrations (0, 0.1, 1 and 10μg/ml) of microcystin-LR (MCLR) induced a dose- and time-dependent increase in DNA damage, as measured with the comet assay. Digestion of DNA from MCLR-treated HPBLs with purified formamidopyrimidine-DNA glycosylase (Fpg) displayed a greater number of DNA strand-breaks than non-digested DNA, confirming the evidence that MCLR induces oxidative DNA damage. With the cytokinesis-block micronucleus assay no statistically significant induction of micronuclei, nucleoplasmic bridges and nuclear buds was observed after a 24-h exposure to MCLR. At the molecular level, no changes in the expression of selected genes involved in the cellular response to DNA damage and oxidative stress were observed after a 4-h exposure to MCLR (1μg/ml). After 24h, DNA damage-responsive genes (p53, mdm2, gadd45a, cdkn1a), a gene involved in apoptosis (bax) and oxidative stress-responsive genes (cat, gpx1, sod1, gsr, gclc) were up-regulated. These results provide strong support that MCLR is an indirectly genotoxic agent, acting via induction of oxidative stress, and that lymphocytes are also the target of microcystin-induced toxicity.  相似文献   

6.
Natural genetic transformation in the bacterium Bacillus subtilis provides a model system to explore the evolutionary function of sexual recombination. In the present work, we study the response of transformation to UV irradiation using donor DNAs that differ in sequence homology to the recipient's chromosome and in the mechanism of transformation. The four donor DNAs used include homologous-chromosomal-DNA, two plasmids containing a fragment of B. subtilis trp+ operon DNA and a plasmid with no sequence homology to the recipient cell's DNA. Transformation frequencies for these DNA molecules increase with increasing levels of DNA damage (UV radiation) to recipient cells, only if their transformation requires homologous recombination (i.e. is recA+-dependent). Transformation with non-homologous DNA is independent of the recipient's recombination system and transformation frequencies for it do not respond to increases in UV radiation. The transformation frequency for a selectable marker increases in response to DNA damage more dramatically when the locus is present on small, plasmid-borne, homologous fragments than if it is carried on high molecular weight chromosomal fragments. We also study the kinetics of transformation for the different donor DNAs. Different kinetics are observed for homologous transformation depending on whether the homologous locus is carried on a plasmid or on chromosomal fragments. Chromosomal DNA- and non-homologous-plasmid-DNA-mediated transformation is complete (maximal) within several minutes, while transformation with a plasmid containing homologous DNA is still occurring after an hour. The results indicate that DNA damage directly increases rates of homologous recombination and transformation in B. subtilis. The relevance of these results and recent results of other labs to the evolution of transformation are discussed.  相似文献   

7.
Reactive oxygen species produced during vigorous exercise may permeate into cell nuclei and induce oxidative DNA damage, but the supporting evidence is still lacking. By using a 42 km marathon race as a model of massive aerobic exercise, we demonstrated a significant degree of unrepaired DNA base oxidation in peripheral immunocompetent cells, despite a concurrent increase in the urinary excretion of 8-hydroxy-2'-deoxyguanosine. Single cell gel electrophoresis with the incorporation of lesion-specific endonucleases further revealed that oxidized pyrimidines (endonuclease III-sensitive sites) contributed to most of the postexercise nucleotide oxidation. The oxidative DNA damage correlated significantly with plasma levels of creatinine kinase and lipid peroxidation metabolites, and lasted for more than 1 week following the race. This phenomenon may be one of the mechanisms behind the immune dysfunctions after exhaustive exercise.  相似文献   

8.
Ozone has been shown to induce lung tumors in mice. The reactivity of ozone with DNA in an aqueous solution was investigated by a DNA sequencing technique using 32P-labeled DNA fragments. Ozone induced cleavages in the deoxyribose-phosphate backbone of double-stranded DNA, which were reduced by hydroxyl radical scavengers, suggesting the participation of hydroxyl radicals in the cleavages. The ozone-induced DNA cleavages were enhanced with piperidine treatment, which induces cleavages at sites of base modification, but the inhibitory effect of hydroxyl radical scavengers on the piperidine-induced cleavages was limited. Main piperidine-labile sites were guanine and thymine residues. Cleavages at some guanine and thymine residues after piperidine treatment became more predominant with denatured single-stranded DNA. Exposure of calf thymus DNA to ozone resulted in a dose-dependent increase of the 8-oxo-7,8-dihydro-2'-deoxyguanosine formation, which was partially inhibited by hydroxyl radical scavengers. ESR studies using 5,5-dimethylpyrroline-N-oxide (DMPO) showed that aqueous ozone produced the hydroxyl radical adduct of DMPO. In addition, the fluorescein-dependent chemiluminescence was detected during the decomposition of ozone in a buffer solution and the enhancing effect of D2O was observed, suggesting the formation of singlet oxygen. However, no or little enhancing effect of D2O on the ozone-induced DNA damage was observed. These results suggest that DNA backbone cleavages were caused by ozone via the production of hydroxyl radicals, while DNA base modifications were mainly caused by ozone itself and the participation of hydroxyl radicals and/or singlet oxygen in base modifications is small, if any. A possible link of ozone-induced DNA damage to inflammation-associated carcinogenesis as well as air pollution-related carcinogenesis is discussed.  相似文献   

9.
When Go human lymphocytes are exposed either to gamma-rays or to d(50)-Be neutrons and then immediately incubated in presence of cytosine arabinoside, the frequency of chromosomal aberrations which is normally observed after radiation exposure only is sharply increased. This enhancement of the aberrations, particularly the dicentrics, is, however, less marked when cytosine arabinoside is administered at longer intervals of time after irradiation. For gamma-rays, the treatment with cytosine arabinoside has no effect on the dicentrics yield when given 5 h after irradiation, indicating that the repair is completed within the 5 h after irradiation and that the lesions are not anymore available to produce exchange aberrations. For d(50)-Be neutrons, the time of repair takes approximately 5 h after a dose of 2.0 Gy, whereas it appears to be shorter (3 h) after a dose of 0.5 Gy.  相似文献   

10.
Repair of DNA lesions induced by oxygen radicals, generated by xanthine/xanthine oxidase (X/XO), was studied in human peripheral blood lymphocytes and in PHA-stimulated proliferating lymphocytes from 4 healthy subjects. The lesions included DNA-strand breaks (SSB) and other lesions that are converted to SSB under alkaline conditions. The frequencies of SSB were estimated by fluorometric analysis of DNA unwinding. Maximum production of SSB occurred within 10 min of incubation with X/XO at 22 degrees C; with 0.5 mM or higher concentrations of xanthine; and with 0.1-0.5 units/ml of xanthine oxidase. Proliferating lymphocytes repaired X/XO-induced SSB about 4 times more rapidly than lymphocytes. Lymphocytes repaired X/XO-induced SSB more slowly than SSB caused by gamma-radiation. These findings are consistent with the evidence that a number of DNA-repair enzymes have greater activity in proliferating cells than in resting cells. These findings also support the view that there are differences between the DNA damage due to oxygen radicals and that due to ionizing radiation.  相似文献   

11.
Endogenous cellular oxidation of omega6-polyunsaturated fatty acids (PUFAs) has long been recognized as a contributing factor in the development of various cancers. The accrual of DNA damage as a result of reaction with free radical and electrophilic aldehyde products of lipid peroxidation is believed to be involved; however, the genotoxic and mutation-inducing potential of specific membrane PUFAs remains poorly defined. In the present study we have examined the ability of peroxidizing arachidonic acid (AA, 20:4omega6) to induce DNA strand breaks, base modifications, and mutations. The time-dependent induction of single-strand breaks and oxidative base modifications by AA in genomic DNA was quantified using denaturing glyoxal gel electrophoresis. Mutation spectra were determined in XP-G fibroblasts and a repair-proficient line corrected for this defect by c-DNA complementation (XP-G(+)). Mutation frequencies were elevated from approximately 5- to 30-fold over the background following reaction of DNA with AA for various times. The XPG gene product was found to be involved in the suppression of mutations after extended reaction of DNA with AA. Arachidonic acid-induced base substitutions were consistent with the presence of both oxidized and aldehyde base adducts in DNA. The frequency of multiple-base substitutions induced by AA was significantly reduced upon correction for the XPG defect (14% vs 2%, P = 0.0015). Evidence is also presented which suggests that the induced frequency of multiple mutations is lesion dependent. These results are compared to published data for mutations stimulated by alpha,beta-unsaturated aldehydes identified as products of lipid peroxidation.  相似文献   

12.
N K Hayward  M F Lavin 《Life sciences》1985,36(21):2039-2046
p-Aminophenol inhibits DNA synthesis and alters the structure of DNA. A decrease in sedimentation of nucleoids from cells treated with p-aminophenol was observed and this decrease in sedimentation was considerably less when cells were incubated with p-aminophenol in an atmosphere of nitrogen or at lower pH values. This compound was also shown to be cytotoxic to cells in culture. These results demonstrate that conditions retarding the autoxidation of p-aminophenol lead to reduced effects on DNA structure and a lesser cytotoxic effect.  相似文献   

13.
The choice of a suitable species to translate pollution signals into a quantitative monitor is a fundamental step in biomonitoring plans. Here we present the results of three years of biomonitoring at a new coal power plant in central Italy using three different aquatic and terrestrial wildlife species in order to compare their reliability as sentinel organisms for genotoxicity. The comet assay was applied to the common land snail Helix spp., the lagoon fish Aphaniusfasciatus, and the green frog Rana esculenta sampled in the area potentially exposed to the impact of the power station. The tissue concentration of some expected pollutants (As, Cd, Ni, Pb, Cr) was analysed in parallel samples collected in the same sampling sites. The three species showed different values in the comet assay (Tail Intensity) and different accumulation profiles of heavy metals. Aphanius fasciatus showed an increasing genotoxic effect over time that paralleled the temporal increase of the heavy metals, especially arsenic, and the highest correlation between heavy metals and DNA damage. Helix spp. showed levels of damage inversely related to the distance from the source of pollution and in partial accordance with the total accumulation of trace elements. On the contrary, Rana esculenta showed a low capability to accumulate metals and had inconsistent results in the comet test. The fish appeared to be the most efficient and sensitive species in detecting chemical pollution. Overall, both the fish and the snail reflected a trend of increasing pollution in the area surrounding the power plant across time and space [Current Zoology 60 (2): 308-321, 2014].  相似文献   

14.
Higher plant cells have a long tradition of use in the studies on environmental mutagenesis in situ, especially in relation to human health risk determination. The studies on the response of plant and human cells to physical and chemical mutagens showed differences in their sensitivity. The differences in the presence of cell components in plants and humans could influence such response. Additionally, the level of the organization of the employed material could influence DNA-damaging effect: leukocytes are isolated cells and plant--an intact organism. To preclude these obstacles, the effects of direct treatment of isolated nuclei with genotoxic agents were determined to compare the sensitivity of plant and human cells. In the present study, we have determined the DNA-damaging effects of two chemical mutagens: maleic acid hydrazide (MH) and N-methyl-N-nitroso-urea (MNU) applied to isolated nuclei of both plant and human cells. In order to compare the sensitivity of the nuclei of Nicotiana tabacum var. xanthi and the nuclei of leukocytes, the acellular Comet assay was carried out. The results showed higher sensitivity of the nuclei of leukocytes as compared to the nuclei of plant cells to mutagenic treatment with the applied doses of MH and MNU.  相似文献   

15.
16.
Wang L  Yan J  Wang S  Cohly H  Fu PP  Hwang HM  Yu H 《Mutation research》2004,556(1-2):143-150
Previous study showed that the cosmetic ingredient chemical azulene and its derivative gauiazulene exhibited photomutagenicity four- to five-fold higher than spontaneous mutation in Salmonella typhimurium TA102. In this study, phototoxicity including photogenotoxicity of azulene in human Jurkat T-cells is reported. When the cell suspensions are irradiated by light (UVA plus visible light) in the presence of azulene, an azulene dose-dependent cellular DNA damage is observed. At the highest azulene concentration of 50 microM, the average DNA fragmentation is 33 +/- 10%, determined by single cell gel electrophoresis (Comet assay). Cell viability assay using fluorescein diacetate indicates that the cells could endure the damage and remain viable. Further study revealed that the combination of light and azulene can cause single-strand cleavage on pure PhiX174 plasmid DNA in solution. Studies using scavengers reveal that singlet oxygen and free radicals are involved in causing DNA cleavage. This suggests that the photomutagenicity of azulene in S. typhimurium TA102 could be due to DNA fragmentation caused by the concurrent exposure to azulene and light.  相似文献   

17.
Delayed chromosomal instability induced by DNA damage.   总被引:12,自引:4,他引:12       下载免费PDF全文
DNA damage induced by ionizing radiation can result in gene mutation, gene amplification, chromosome rearrangements, cellular transformation, and cell death. Although many of these changes may be induced directly by the radiation, there is accumulating evidence for delayed genomic instability following X-ray exposure. We have investigated this phenomenon by studying delayed chromosomal instability in a hamster-human hybrid cell line by means of fluorescence in situ hybridization. We examined populations of metaphase cells several generations after expanding single-cell colonies that had survived 5 or 10 Gy of X rays. Delayed chromosomal instability, manifested as multiple rearrangements of human chromosome 4 in a background of hamster chromosomes, was observed in 29% of colonies surviving 5 Gy and in 62% of colonies surviving 10 Gy. A correlation of delayed chromosomal instability with delayed reproductive cell death, manifested as reduced plating efficiency in surviving clones, suggests a role for chromosome rearrangements in cytotoxicity. There were small differences in chromosome destabilization and plating efficiencies between cells irradiated with 5 or 10 Gy of X rays after a previous exposure to 10 Gy and cells irradiated only once. Cell clones showing delayed chromosomal instability had normal frequencies of sister chromatid exchange formation, indicating that at this cytogenetic endpoint the chromosomal instability was not apparent. The types of chromosomal rearrangements observed suggest that chromosome fusion, followed by bridge breakage and refusion, contributes to the observed delayed chromosomal instability.  相似文献   

18.
Phytohemagglutinin stimulated human lymphocytes exhibit a 20 fold increase in DNA repair synthesis following ionizing radiation damage compared to the level of repair in unstimulated cells. The peak of repair synthesis coincides with that for DNA replication. Stimulated lymphocytes provide a relatively simple assay for ionizing radiation repair defects.  相似文献   

19.
Repair of DNA damage induced by ultraviolet radiation.   总被引:16,自引:1,他引:15       下载免费PDF全文
A B Britt 《Plant physiology》1995,108(3):891-896
  相似文献   

20.
High-efficiency bypass of DNA damage by human DNA polymerase Q   总被引:1,自引:0,他引:1       下载免费PDF全文
Endogenous DNA damage arises frequently, particularly apurinic (AP) sites. These must be dealt with by cells in order to avoid genotoxic effects. DNA polymerase theta; is a newly identified enzyme encoded by the human POLQ gene. We find that POLQ has an exceptional ability to bypass an AP site, inserting A with 22% of the efficiency of a normal template, and continuing extension as avidly as with a normally paired base. POLQ preferentially incorporates A opposite an AP site and strongly disfavors C. On nondamaged templates, POLQ makes frequent errors, incorporating G or T opposite T about 1% of the time. This very low fidelity distinguishes POLQ from other A-family polymerases. POLQ has three sequence insertions between conserved motifs in its catalytic site. One insert of approximately 22 residues into the tip of the polymerase thumb subdomain is predicted to confer considerable flexibility and additional DNA contacts to affect enzyme fidelity. POLQ is the only known enzyme that efficiently carries out both the insertion and extension steps for bypass of AP sites, commonly formed as endogenous genomic lesions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号