首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hydrolysis of acetylsalicylic acid (ASA, aspirin), an antiplatelet drug commonly used in the prevention of stroke and myocardial infarction, seems to play a crucial role in its pharmacological action. Thirty-eight healthy volunteers and 38 type 2 diabetic patients were enrolled to test the hypothesis that the enhanced plasma degradation and lowered bioavailability of ASA in diabetic patients is associated with the attenuation of platelet response. Aspirin esterase activities were tested at pH 7.4 and 5.5. A significantly higher overall aspirin esterase activity was noted at pH 7.4 in the diabetic patients (P<0.003), corresponding to faster ASA hydrolysis (P<0.006). This increased activity was attributable to butyrylcholinesterase and probably to albumin, because it was effectively inhibited by eserine and 4-bis-nitrophenyl phosphate (P<0.01). No significant differences between control and diabetic subjects were found at pH 5.5 in either enzymatic activities or ASA hydrolysis rates. The enhanced plasma ASA degradation in diabetic subjects was significantly associated with the refractoriness of blood platelets to ASA (P<0.05) and modulated by plasma cholesterol (P<0.01). No direct effects of plasma pH or albumin were observed. In conclusion, higher aspirin esterase activity contributes to the lowered response of diabetic platelets to ASA-mediated antiplatelet therapy.  相似文献   

2.
Our aim was to analyze the plasma proteome in aspirin (acetylsalicylic acid [ASA])-sensitive and ASA-resistant coronary ischemic patients. Plasma from 19 ASA-sensitive and 19 ASA-resistant patients was analyzed. For the proteomic study, two-dimensional electrophoresis was performed. The expression of one isotype of the fibrinogen gamma chain and three isotypes of haptoglobin was increased in ASA-resistant patients. Three vitamin D binding protein isotypes were increased in ASA-resistant patients. In vitro incubation of vitamin D binding protein (DBP) with blood from healthy volunteers reduced the inhibitory effect of ASA on thromboxane A2 production. DBP may be a new regulator of the inhibitory effect of ASA on platelets.  相似文献   

3.
We describe the role of plasma and platelet cholesterol content in the ability of acetylsalicylic acid (ASA) to acetylate platelet proteins and inhibit platelet function. Platelet susceptibility to ASA was monitored in subjects differing in plasma total cholesterol and in suspensions of cholesterol-enriched or cholesterol-depleted platelets. Platelets from subjects with higher plasma cholesterol (>6 mmol/l) showed reduced platelet sensitivity to ASA (inhibition of platelet aggregation and thromboxane generation by 60% and 68% in 'lower-' vs. 32% and 56% in 'higher-cholesterol' donors; n=13 in each group; p=0.056 and p<0.04, respectively). [Acetyl-1-(14)C] incorporation to platelet proteins in subjects with higher plasma cholesterol was significantly reduced (11.0 vs. 14.6 nmol/g protein, p<0.0001) and correlated significantly with blood total cholesterolemia (R(K)=-0.430, p<0.003) and LDL-cholesterol (R(K)=-0.349, p<0.012), but not with platelet cholesterol content. In conclusion, elevated plasma cholesterol is an important determinant of ASA-induced acetylation of platelets and platelet diminished sensitivity to ASA. The molecular basis of such an association remains obscure, notwithstanding it may constitute a link between sub-optimal platelet response to aspirin and lipid metabolic disorders.  相似文献   

4.
Recent work revealed that mice in which platelet function was inhibited by acetylsalicylic acid (ASA) treatment showed evidence of increased platelet production. It was proposed that poorly functioning platelets gave rise to elevated thrombocytopoiesis by causing the release and action of thrombopoietin. However, direct evidence is lacking. Therefore, in the work reported here, plasma from mice treated with ASA was injected into normal recipient mice in an attempt to document the existence of the humoral factor. Compared with control mice given normal plasma, the injection of mice with plasma from ASA-treated mice resulted in increased thrombocytopoiesis, as evidenced by significant increases in the percentage of 35S incorporation into platelets, larger platelet size, and elevated megakaryocyte precursor cells (the small acetylcholinesterase-positive cell). For a positive control, additional mice were treated with plasma from animals made thrombocytopenic by an injection of antiplatelet serum. These mice also showed significant increases in thrombocytopoiesis. The results support the hypothesis that platelet production in ASA-treated mice is elevated by release and action of thrombopoietin.  相似文献   

5.
Raza H  John A 《PloS one》2012,7(4):e36325
We have previously reported that acetylsalicylic acid (aspirin, ASA) induces cell cycle arrest, oxidative stress and mitochondrial dysfunction in HepG2 cells. In the present study, we have further elucidated that altered glutathione (GSH)-redox metabolism in HepG2 cells play a critical role in ASA-induced cytotoxicity. Using selected doses and time point for ASA toxicity, we have demonstrated that when GSH synthesis is inhibited in HepG2 cells by buthionine sulfoximine (BSO), prior to ASA treatment, cytotoxicity of the drug is augmented. On the other hand, when GSH-depleted cells were treated with N-acetyl cysteine (NAC), cytotoxicity/apoptosis caused by ASA was attenuated with a significant recovery in oxidative stress, GSH homeostasis, DNA fragmentation and some of the mitochondrial functions. NAC treatment, however, had no significant effects on the drug-induced inhibition of mitochondrial aconitase activity and ATP synthesis in GSH-depleted cells. Our results have confirmed that aspirin increases apoptosis by increased reactive oxygen species production, loss of mitochondrial membrane potential and inhibition of mitochondrial respiratory functions. These effects were further amplified when GSH-depleted cells were treated with ASA. We have also shown that some of the effects of aspirin might be associated with reduced GSH homeostasis, as treatment of cells with NAC attenuated the effects of BSO and aspirin. Our results strongly suggest that GSH dependent redox homeostasis in HepG2 cells is critical in preserving mitochondrial functions and preventing oxidative stress associated complications caused by aspirin treatment.  相似文献   

6.
Depression of platelet function with a single intraperitoneal injection of acetylsalicylic acid was found to produce significant increases in several thrombocytopoietic indicators despite no observed change in platelet counts. There was an increase in the number of megakaryocytic precursor cells (small acetylcholinesterase positive or "SAChE+" cells), platelet size, and 35S incorporation into platelets. The results are qualitatively comparable to data from previous experiments showing that treatment of mice with a thrombocytopoiesis-stimulating factor (TSF or thrombopoietin) and rabbit anti-mouse platelet serum will elevate thrombocytopoiesis. The results presented herein indicate that interruption of platelet function by aspirin results in the production of new platelets, presumably by the action of a feedback system controlling thrombocytopoiesis.  相似文献   

7.
M Djaldetti  R Gilgal  D Creter  I Zahavi 《Blut》1988,56(4):165-169
The in vitro effect of pirprofen (Rengasil), an antiinflammatory agent, on the surface ultrastructure and function of human platelets was examined and compared with that of acetylsalicylic acid (Aspirin, ASA), and diclofenac sodium (Voltaren, DS). Incubation with pirprofen induced formation of long, needle-shaped pseudopodia, a phenomenon observed also after incubation of the cells with DS. In contrast with ASA and DS, pirprofen induced a marked increase in platelet protein synthesizing capacity. The drug decreased the platelet aggregation to a degree similar to that of ASA and DS. The release of platelet factors 3 and 4 and the level of beta-thromboglobulin following incubation with the drug remained unaltered.  相似文献   

8.
Do human platelets express COX-2?   总被引:4,自引:0,他引:4  
The rate-limiting enzyme in prostaglandin (PG)- and thromboxane (TX)-synthesis is known as cyclooxygenase (COX). The COX-enzyme family consists of the classical COX-1 and the inducible COX-2-enzyme. To investigate whether platelets contain COX-2, we measured thiobarbituric acid reactive substances (TBARS) after either blocking COX-1 or COX-2 or adding compounds known to affect COX-expression. To stimulate platelets' different reagents such as collagen, thrombin and arachidonic acid (AA) were used. The inhibitors used in this study were acetylsalicylic acid (ASA), indomethacin and NS-398. Using the western-blot technique, we failed to detect COX-2 in platelets while COX-1 was detectable. We were not able to discover COX-2 in platelets using the methods we applied. As the amount of COX-2 in platelets might be below the detection limit of the methods used, the biological relevance COX-2 in platelets, if even existing at low amounts, remains to be established.  相似文献   

9.
In thrombin-induced DIC, acetylsalicylic acid (ASA) prevents the strong initial fall in platelet count and the obturation of the microvasculature of the lung with platelet aggregates. During the DIC reaction increasing inhibition of aggregability of circulating platelets against collagen and ADP is observed. Furthermore, ASA prevents the increase in the plasma haemoglobin level caused by DIC.  相似文献   

10.
Summary Addition of various concentrations (0.5–20 mM) of acetylsalicylic acid (ASA) to tumor lines ofCatharanthus roseus cultivatedin vitro and requiring corn starch as carbon source, produced remarkable effects on secondary metabolite production. An increase of 505% total alkaloids per culture (cells plus liquid medium), 1587% total phenolics (liquid medium), 612% total furanocoumarins (liquid medium) and 1476% total anthocyanins (liquid medium) was detected. 1 mM ASA in combination with other elicitors, such as homogenates ofAspergillus fumigatus or trans-cinnamic acid, did not further increase the metabolite content substantially. The results suggest that ASA could act as a new biotic elicitor of metabolite production inC. roseus cell suspension culture.  相似文献   

11.
The present study was undertaken in order to characterize the dose-dependent nature of acetylsalicylic acid (ASA) on platelet aggregation and plasma thromboxane B2 (TXB2) release in healthy volunteers. Volunteers received either 25, 50, 100 or 500 mg daily for five consecutive days. At the end of the five day period, all dosages of ASA were capable of completely suppressing TXB2 production and arachidonic acid-induced platelet aggregation. At that time, the second phase of ADP-induced aggregation was also blocked. However, while the inhibition following 500 mg ASA was complete after 24 hours, total inhibition with 100, 50 and 25 mg was attained only after two, three and four days, respectively, indicating the cumulative effect of ASA on platelets. Aggregation induced by collagen was also inhibited dose-dependently- yet slower and at no time complete. ASA had no inhibitory effect on aggregation by platelet-activating factor (PAF). It is concluded that a daily dose of 50 mg ASA would suffice in blocking platelet TXA2 production and aggregation induced by most physiological agents.  相似文献   

12.
Recent studies suggest that aggregation of platelets from patients with coronary artery and cerebrovascular disease may be resistant to low-dose aspirin (ASA) treatment, which may promote plaque-associated thrombus formation. However, the underlying mechanisms of platelet ASA resistance are poorly understood. ASA is thought to inhibit platelet aggregation primarily by inactivating the cyclooxygenase (COX), thus decreasing the synthesis of the pro-aggregatory arachidonic acid metabolite thromboxane A(2) (TxA(2)). However, recent studies also identified a non-enzymatic, oxidation-dependent pathway for the synthesis of the arachidonic acid derivative isoprostanes, which exhibit potent vasoconstrictor and pro-aggregatory effects similar to that of TxA(2). Because the pathophysiological conditions that promote arteriosclerotic vascular diseases (e.g. hypercholesterolemia, diabetes, hyperhomocysteinemia) are thought to be associated with an increased formation of reactive oxygen species and increased plasma isoprostane levels, it can be hypothesized that increased COX-independent isoprostane formation in platelets contribute to ASA resistance.  相似文献   

13.

Background

We aimed to test the antiproliferative effect of acetylsalicylic acid (ASA) on vascular smooth muscle cells (VSMC) from bypass surgery patients and the role of transforming growth factor beta 1 (TGF-β1).

Methodology/Principal Findings

VSMC were isolated from remaining internal mammary artery from patients who underwent bypass surgery. Cell proliferation and DNA fragmentation were assessed by ELISA. Protein expression was assessed by Western blot. ASA inhibited BrdU incorporation at 2 mM. Anti-TGF-β1 was able to reverse this effect. ASA (2 mM) induced TGF-β1 secretion; however it was unable to induce Smad activation. ASA increased p38MAPK phosphorylation in a TGF-β1-independent manner. Anti-CD105 (endoglin) was unable to reverse the antiproliferative effect of ASA. Pre-surgical serum levels of TGF-β1 in patients who took at antiplatelet doses ASA were assessed by ELISA and remained unchanged.

Conclusions/Significance

In vitro antiproliferative effects of aspirin (at antiinflammatory concentration) on human VSMC obtained from bypass patients are mediated by TGF-β1 and p38MAPK. Pre-surgical serum levels of TGF- β1 from bypass patients who took aspirin at antiplatelet doses did not change.  相似文献   

14.
Aspirin (acetylsalicylic acid) is a widely used anti-inflammatory drug. Recently, aspirin was shown to reduce the risk of development of cancer and mortality from it. Tumor metastasis is the most important cause of cancer death. The aim of the present study was to investigate if aspirin affects the invasion of cancer cells. Matrix metalloproteinases (MMPs) and cell adhesion molecules play important roles in the modulation of tumor invasion. Gelatin-based zymography assay showed that aspirin inhibited MMP-2 activity of SK-Hep-1 cancer cells. Matrigel-based chemoinvasion assay showed that aspirin inhibited in vitro invasion of SK-Hep-1 cancer cells. Aspirin treatment also increased the production of the cell adhesion molecule, E-cadherin, in Hep G2 cancer cells. Aspirin is a cyclooxygenase (COX) inhibitor. Treatment of cells with another COX inhibitor, sulindac, also inhibited MMP-2 activity and increased E-cadherin production of cells. These results indicate that aspirin can modulate both MMP-2 and E-cadherin production and therein may possess antimetastatic effect.  相似文献   

15.
The fatty acid composition of platelet membranes has been analysed in patients with thrombocytosis due to myeloproliferative disorders, who had not taken any drugs. A significant increase in palmitic and oleic acid, together with a decrease in stearic, linoleic and arachidonic acids was observed. The fatty acid pattern of platelet membranes was also analysed in patients during treatment with ASA (acetylsalicylic acid). ASA ingestion completely normalizes the platelet content of palmitic acid and partially that of stearic and arachidonic acid, whereas it has no effect on the level of linoleic acid and raises that of oleic acid. The altered pattern of fatty acids observed in patients may interfere with platelet function by decreasing membrane fluidity. Treatment of patients with ASA seems to act on platelet membranes by partially normalizing the fatty acid composition.  相似文献   

16.
The present study was undertaken in order to characterize the dose-dependent nature of acetylsalicylic acid (ASA) on platelet aggregation and plasma thromboxane B2 (TXB2) release in healthy volunteers. Volunteers received either 25, 50, 100 or 500 mg daily for five consecutive days. At the end of the five day period, all dosages of ASA were capable of completely suppressing TXB2 production and arachidonic acid-induced platelet aggregation. At that time, the second phase of ADP-induced aggregation was also blocked. However, while the inhibition following 500 mg ASA was complete after 24 hours, total inhibition with 100, 50 and 25 mg was attained only after two, three and four days, respectively, indicating the cumulative effect of ASA on platelets. Aggregation induced by collagen was also inhibited dose-dependently- yet slower and at no time complete. ASA had no inhibitory effect on aggregation by platelet-activating factor (PAF). It is concluded that a daily dose of 50 mg ASA would suffice in blocking platelet TXA2 production and aggregation induced by most physiological agents.  相似文献   

17.
Anandamide (arachidonoylethanolamide, AnNH) is shown to activate human platelets, a process which was not inhibited by acetylsalicylic acid (aspirin). Unlike AnNH, hydroperoxides generated thereof by lipoxygenase activity, and the congener (13-hydroxy)linoleoylethanolamide, were unable to activate platelets, though they counteracted AnNH-mediated stimulation. On the other hand, palmitoylethanolamide neither activated human platelets nor blocked the AnNH effects. AnNH inactivation by human platelets was afforded by a high-affinity transporter, which was activated by nitric oxide-donors up to 225% of the control. The internalized AnNH could thus be hydrolyzed by a fatty acid amide hydrolase (FAAH), characterized here for the first time.  相似文献   

18.
5-Hydroxyeicosatetraenoic acid (5-HETE) is an arachidonic acid (AA) metabolite derived from the lipoxygenase pathway which is capable of inducing uterine contractions. The purpose of this study was to determine a). whether 5-HETE concentrations in amniotic fluid increase before or after the onset of labor and b). whether acetylsalicylic acid (ASA) could modulate the production of 5-HETE by human amnion cells. 5-HETE concentrations are increased in amniotic fluid before the onset of labor. Furthermore, ASA treatment as expected inhibited PGE2, but also significantly increased 5-HETE production by amnion cells. 5-HETE concentrations on average increased by greater than 2.5 fold (p < 0.001) in amniotic fluid prior to spontaneous labor when compared with samples obtained from the same patients earlier in gestation and therefore may be important in mechanisms regulating the onset of labor. ASA provokes an increase in 5-HETE biosynthesis by amnion cells: control media 2.60 ± 1.5, ASA treatment alone 5.17 ± 0.20, IL-1β alone 6.39 ± 2.1, and ASA + IL-1β 8.95 ± 1.2 (mean ± SEM) picograms per microgram protein per 16 hours. These findings may explain in part why cyclooxygenase inhibitors are not always successful in treating women with preterm labor.  相似文献   

19.
Platelets contribute to the development of metastasis, the most common cause of mortality in cancer patients, but the precise role that anti-platelet drugs play in cancer treatment is not defined. Metastatic tumor cells can produce platelet alphaIIb beta3 activators, such as ADP and thromboxane A(2) (TXA(2)). Inhibitors of platelet beta3 integrins decrease bone metastases in mice but are associated with significant bleeding. We examined the role of a novel soluble apyrase/ADPase, APT102, and an inhibitor of TXA(2) synthesis, acetylsalicylic acid (aspirin or ASA), in mouse models of experimental bone metastases. We found that treatment with ASA and APT102 in combination (ASA + APT102), but not either drug alone, significantly decreased breast cancer and melanoma bone metastases in mice with fewer bleeding complications than observed with alphaIIb beta3 inhibition. ASA + APT102 diminished tumor cell induced platelet aggregation but did not directly alter tumor cell viability. Notably, APT102 + ASA treatment did not affect initial tumor cell distribution and similar results were observed in beta3-/- mice. These results show that treatment with ASA + APT102 decreases bone metastases without significant bleeding complications. Anti-platelet drugs such as ASA + APT102 could be valuable experimental tools for studying the role of platelet activation in metastasis as well as a therapeutic option for the prevention of bone metastases.  相似文献   

20.
Nitric oxide-releasing acetylsalicylic acid (NO-ASA; NO-aspirin) developed as an anti-inflammatory agent that was expected to avoid some of the adverse effects of aspirin (ASA), was recently shown to be cytotoxic to cells of different tumor lines. The cytotoxic properties and potency of NO-ASA are different than those of ASA which implies that the intracellular targets for NO-ASA and ASA, and their mechanism of action, are different. The aim of the present study was to reveal whether the cytotoxicity induced by NO-ASA is mediated by damage to DNA. We observed that even brief (1 h) treatment of human B-lymphoblastoid TK6 cells with ? 5 &mu;M NO-ASA led to DNA damage revealed by the alkaline and neutral comet assays, histone H2AX phosphorylation on Ser 139, and ATM phosphorylation on Ser 1981, a marker of activation of this kinase. The induction of H2AX phosphorylation was preferential to S-phase cells. Exposure to ? 5 &mu;M NO-ASA for over 3 h led to apoptosis, also preferentially of S-phase cells. Apoptosis was atypical; while chromatin was highly condensed there was no evidence of nuclear fragmentation nor were the cells positive in the TUNEL assay though they did express activated caspase-3. The induction of phosphorylation of H2AX on Ser 139 by NO-ASA was markedly attenuated in the presence of N-acetyl-L-cysteine, a scavenger of reactive oxygen species (ROS). The data imply that the NO-ASA induces DNA damage through oxidative stress; the oxidation-generated lesions provide a signal for induction of H2AX phosphorylation during DNA replication, perhaps when the progressing replication forks collide with the primary lesions converting them to DNA double-strand breaks. Because neither induction of H2AX phosphorylation nor apoptosis were observed at equimolar concentrations of ASA, the NO moiety attached to ASA appeared to mediate these effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号