首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The New Jersey serotype of vesicular stomatitis virus (VSV) was able to synthesize a small RNA (leader RNA) approximately 70 bases in length similar to the leader RNA synthesized in vitro by the genetically distinct Indiana serotype of VSV. Also, the New Jersey leader RNA contained the same 5'-terminal sequence, ppA-C-G, as the Indiana leader RNA and had a very similar base composition, with 42% AMP, 16% CMP, 18.6% GMP, and 23.4% UMP. The 3'-terminal sequence of the VSV New Jersey genome RNA was detemined and found to contain the sequence- Py-G-UOH, again the same as that of the Indiana serotype of VSV. Evidence that the New Jersey leader RNA is transcribed from the 3' end of the genome RNA was obtained from the fact that it can protect the 3'-terminal base of [3H]borohydride-labeled New Jersey genome RNA from RNase digestion. Although the New Jersey and Indiana leader RNAs were similar in many respects, they were unable to form RNase-resistant hybrids when annealed to heterologous genome RNA.  相似文献   

3.
The in vitro RNA synthesis by the virion-associated RNA polymerase of vesicular stomatitis virus (VSV), New Jersey serotype, was compared with that of the serologically distinct Indiana serotype of VSV. The New Jersey serotype of VSV synthesized five distinct mRNA species in vitro, three of which were smaller than the corresponding species synthesized by the Indiana serotype of VSV. These included the mRNA's coding for the G, M, and NS proteins. By hybridization experiments, virtually no sequence homology was detected between the mRNA's of the two serotypes. Despite this lack of overall homology, the 12 to 18S mRNA species of both serotype contained a common 5'-terminal hexanucleotide sequence, G(5')ppp(5')A-A-C-A-G. The signicance of this finding in light of specific interactions between the two serotypes of VSV in vivo is discussed.  相似文献   

4.
Sequence for the leader RNA Synthesized by the New Jersey serotype of vesicular stomatitis virus is presented and its complementary sequence representing the 3'-terminal sequence of the genome RNA is deduced. Comparison with the leader RNA sequence of the serologically distinct Indiana strain reveals that the 3'-terminal region of the genomes of two viruses is highly conserved.  相似文献   

5.
The relationships among the genomes of various rhabdoviruses belonging to the vesicular stomatitis virus subgroup were analyzed by an oligonucleotide fingerprinting technique. Of 10 vesicular stomatitis viruses, Indiana serotype (VSV Indiana), obtained from various sources, either no, few, or many differences were observed in the oligonucleotide fingerprints of the 42S RNA species extracted from standard B virions. Analyses of the oligonucleotides obtained from RNA extracted from three separate preparations of VSV Indiana defective T particles showed that their RNAs contain fewer oligonucleotides than the corresponding B particle RNA species. The fingerprints of RNA obtained from five VSV New Jersey serotype viruses were easily distinguished from those of the VSV Indiana isolates. Three of the VSV New Jersey RNA fingerprints were similar to each other but quite different from those of the other two viruses. The RNA fingerprints of two Chandipura virus isolates (one obtained from India and one from Nigeria) were also unique, whereas the fingerprint of Cocal virus RNA was unlike that of the serologically related VSV Indiana.  相似文献   

6.
Using 3'-end-labeled genome probes, cells infected with vesicular stomatitis virus Chandipura, Cocal, and Piry serotypes were shown to contain (+) leader RNAs of approximately 50 nucleotides in length. The nucleotide sequence of the leader RNA regions of these genomes was determined and compared with the previously reported sequences of both the (+) and (-) leader RNA regions of other vesicular stomatitis virus serotypes. Regions of strong conservation of nucleotide sequence among the various vesicular stomatitis virus serotypes suggest those nucleotides thought to be involved in control functions during vesicular stomatitis virus replication.  相似文献   

7.
8.
9.
10.
11.
12.
The nucleotide sequence of the mRNA encoding the glycoprotein from the New Jersey serotype of vesicular stomatitis virus (VSV) was determined from a cDNA clone containing the entire coding region. The sequence of 12 5'-terminal noncoding nucleotides present in the mRNA but not in the cDNA clone was determined from a primer extended to the 5' terminus of the mRNA. The mRNA is 1,573 nucleotides long (excluding polyadenylic acid) and encodes a protein of 517 amino acids. Only six nucleotides occur between the translation termination codon and the polyadenylic acid. Short homologies between the untranslated termini of this mRNA and the mRNAs of the Indiana serotype were found. The predicted protein sequence was compared with that of the glycoprotein of the Indiana serotype of VSV and with the glycoprotein of rabies virus, using a computer program which determines optimal alignment. An amino acid identity of 50.9% was found for the two VSV serotypes. Approximately 20% identity was found between the rabies virus and VSV New Jersey glycoproteins. The positions and sizes of the transmembrane domains, the signal sequences, and the glycosylation sites are identical in both VSV serotypes. Two of five serine residues which were possible esterification sites for palmitate in the glycoprotein from the Indiana serotype are changed to glycine residues in the glycoprotein from the New Jersey serotype. Because the glycoprotein of the New Jersey serotype does not contain esterified palmitate, we suggest that one or both of these residues are the probable esterification sites in the glycoprotein from the Indiana serotype.  相似文献   

13.
14.
Kim GN  Kang CY 《Journal of virology》2005,79(15):9588-9596
Defective interfering (DI) particles of Indiana serotype of vesicular stomatitis virus (VSV(Ind)) are capable of interfering with the replication of both homotypic VSV(Ind) and heterotypic New Jersey serotype (VSV(NJ)) standard virus. In contrast, DI particles from VSV(NJ) do not interfere with the replication of VSV(Ind) standard virus but do interfere with VSV(NJ) replication. The differences in the interfering activities of VSV(Ind) DI particles and VSV(NJ) DI particles against heterotypic standard virus were investigated. We examined the utilization of homotypic and heterotypic VSV proteins by DI particle genomic RNAs for replication and maturation into infectious DI particles. Here we show that the RNA-nucleocapsid protein (N) complex of one serotype does not utilize the polymerase complex (P and L) of the other serotype for RNA synthesis, while DI particle genomic RNAs of both serotypes can utilize the N, P, and L proteins of either serotype without serotypic restriction but with differing efficiencies as long as all three proteins are derived from the same serotype. The genomic RNAs of VSV(Ind) DI particles assembled and matured into DI particles by using either homotypic or heterotypic viral proteins. In contrast, VSV(NJ) DI particles could assemble only with homotypic VSV(NJ) viral proteins, although the genomic RNAs of VSV(NJ) DI particles could be replicated by using heterotypic VSV(Ind) N, P, and L proteins. Thus, we concluded that both efficient RNA replication and assembly of DI particles are required for the heterotypic interference by VSV DI particles.  相似文献   

15.
Nucleotide sequences of around 200 residues were determined adjacent to the 3' terminus of the genome RNA of vesicular stomatitis virus, New Jersey serotype, and adjacent to the 3'-terminal polyadenylic acid tract of the N protein mRNA of the same virus. These sequences were compared with the corresponding sequences previously determined for the Indiana serotype of vesicular stomatitis virus. The sequences obtained for the two strains were readily aligned, showing 70.8% homology overall. Examination of the sequences allowed identification of the translation initiation and termination codons for the N mRNA of each serotype. The deduced N-terminal and C-terminal amino acid sequences of the two N polypeptides were each similar, and most of the differences between them consisted of substitution by a clearly homologous amino acid. It was proposed that these nucleotide sequences, within limits imposed by their functions, comprise reasonably representative measures of the extent of sequence homology between the genomes of the two serotypes, and that this is higher than previously estimated, but with little exact homology over extended regions.  相似文献   

16.
The nucleotide sequences at the 5' and 3' termini of RNA isolated from the New Jersey serotype of vesicular stomatitis virus [vsV(NJ)] and two of its defective interfering (DI) particles have been determined. The sequence differs from that previously demonstrated for the RNA from the Indiana serotype of VSV at only 1 of the first 17 positions from the 3' terminus and at only 2 of the first 17 positions from the 5' terminus. The 5'-terminal sequence of VSV(NJ) RNA is the complement of the 3'-terminal sequence, and duplexes which are 20 bases long and contain the 3' and 5' termini have been isolated from this RNA. The RNAs isolated from DI particles of VSV(NJ) have the same base sequences as do the RNAs from the parental virus. These results are in sharp contrast to those obtained with the Indiana serotype of VSV and its DI particles, in which the 3'-terminal sequences differ in 3 positions within the first 17. However, with both serotypes, the 3'-terminal sequence of the DI RNA is the complement of the 5'-terminal sequence of the RNA from the infectious virus. These findings suggest that the 3' and 5' RNA termini are highly conserved in both serotypes and that the 3' terminus of DI RNA is ultimately derived by copying the 5' end of the VSV genome, as recently proposed (D. Kolakofsky, M. Leppert, and L. Kort, in B. W. J. Mahy and R. D. Barry, ed., Negative-Strand Virus and the Host Cell, 1977; M. Leppert, L. Kort, and D. Kolakofsky, Cell 12:539-552, 1977; A. S. Huang, Bacteriol. Rev. 41:811-8218 1977).  相似文献   

17.
18.
Five highly cytolytic strains of both Indiana and New Jersey serotypes of vesicular stomatitis virus were shown to induce cell fusion in BHK-21 and R(B77) cells. Inhibition of protein synthesis after the eclipse period of viral replication is a prerequisite for vesicular stomatitis virus-induced cell fusion. Pulse-chase experiments showed that inhibition of protein synthesis would lead to a drastic reduction in the intracellular pool of M protein as compared with other proteins. A temperature-sensitive mutant defective in M protein function (G31) was the only mutant of the five complementation groups to spontaneously induce polykaryocytes at the nonpermissive temperature. Previously, G protein has been shown to play a role in vesicular stomatitis virus-induced cell fusion. These results suggest that the combination of the presence of G protein on the virus-infected cell surface and the absence of functional M protein or a reduced level of intracellular M protein promotes cell fusion. On the basis of this study, we propose that vesicular stomatitis virus infection can induce cell fusion when the functional M protein pool declines to a critical level while G protein remains on the cell surface.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号