首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The development of skeletal muscle is controlled by a highly synchronized series of cellular events, and various signals from both inside and outside the cell play a role in the switch from multipotential mesodermal stem cells to muscle fibers. Meta-iodobenzylguanidine (MIBG), an inhibitor of mono(ADP-ribosyl)ation, has been shown to prevent terminal differentiation of skeletal myoblasts; however, its mechanism of action has not been established. We recently reported that MIBG is capable of preventing phenotypic modulation of smooth muscle cells by interfering with specific trans-acting factors [L. Yau, B. Litchie, S. Thomas, B. Storie, N. Yurkova, P. Zahradka, Endogenous mono-ADP-ribosylation mediates smooth muscle cell proliferation and migration via protein kinase N-dependent induction of c-fos expression. Eur. J. Biochem. 270 (2003) 101-110.]. We therefore examined the effect of MIBG on select myogenic regulatory factors known to control terminal differentiation. It was confirmed that MIBG, but not inhibitors of poly-ADP-ribose polymerase (3-aminobenzamide, PD128763), inhibits fusion of L6 skeletal myoblasts in a concentration-dependent manner. Moreover, inhibition by MIBG correlated with a failure to induce expression of myogenin and p21(cip1), while levels of MyoD and MEF2 were unaffected. Time-of-addition studies revealed that MIBG also affected a late event possibly linked to cell fusion. Finally, arginine-dependent mono(ADP-ribosyl)transferase activity increased over the first 24 h of the differentiation period. These data support a role for arginine-dependent mono(ADP-ribosyl)transferase as an essential positive regulator of differentiation in skeletal muscle cells that operates by modulating the expression of specific myogenic factors.  相似文献   

2.
Mono-ADP-ribosylation is a reversible post-translational modification that can modulate the functions of target proteins. We have previously demonstrated that the β subunit of heterotrimeric G proteins is endogenously mono-ADP-ribosylated, and once modified, the βγ dimer is inactive toward its effector enzymes. To better understand the physiological relevance of this post-translational modification, we have studied its hormonal regulation. Here, we report that Gβ subunit mono-ADP-ribosylation is differentially modulated by G protein-coupled receptors. In intact cells, hormone stimulation of the thrombin receptor induces Gβ subunit mono-ADP-ribosylation, which can affect G protein signaling. Conversely, hormone stimulation of the gonadotropin-releasing hormone receptor (GnRHR) inhibits Gβ subunit mono-ADP-ribosylation. We also provide the first demonstration that activation of the GnRHR can activate the ADP-ribosylation factor Arf6, which in turn inhibits Gβ subunit mono-ADP-ribosylation. Indeed, removal of Arf6 from purified plasma membranes results in loss of GnRHR-mediated inhibition of Gβ subunit mono-ADP-ribosylation, which is fully restored by re-addition of purified, myristoylated Arf6. We show that Arf6 acts as a competitive inhibitor of the endogenous ADP-ribosyltransferase and is itself modified by this enzyme. These data provide further understanding of the mechanisms that regulate endogenous ADP-ribosylation of the Gβ subunit, and they demonstrate a novel role for Arf6 in hormone regulation of Gβ subunit mono-ADP-ribosylation.  相似文献   

3.
Hyperproliferation of vascular smooth muscle cells is a hallmark of atherosclerosis and related vascular complications. Microtubules are important for many aspects of mammalian cell responses including growth, migration and signaling. alpha-Tubulin, a component of the microtubule cytoskeleton, is unique amongst cellular proteins in that it undergoes a reversible posttranslational modification whereby the C-terminal tyrosine residue is removed (Glu-tubulin) and re-added (Tyr-tubulin). Whereas the reversible detyrosination/tyrosination cycle of alpha-tubulin has been implicated in regulating various aspects of cell biology, the precise function of this posttranslational modification has remained poorly characterized. Herein, we provide evidence suggesting that alpha-tubulin detyrosination is a required event in the proliferation of vascular smooth muscle cells. Proliferation of rat aortic smooth muscle cells in response to serum was temporally associated with the detyrosination of alpha-tubulin, but not acetylation of alpha-tubulin; Glu-tubulin reached maximal levels between 12 and 18h following cell cycle initiation. Inclusion of 3-nitro-l-tyrosine (NO(2)Tyr) in the culture medium resulted in the selective nitrotyrosination of alpha-tubulin, that was paralleled by decreased elaboration of Glu-tubulin, decreased expression of cyclins A and E, decreased association of the microtubule plus-end binding protein EB1, and inhibited cell proliferation. Nitrotyrosination of alpha-tubulin did not induce necrotic or apoptotic death of rat aortic smooth muscle cells, but instead led to cell cycle arrest at the G(1)/S boundary coincident with decreased DNA synthesis. Collectively, these results suggest that the C-terminus of alpha-tubulin and its detyrosination are functionally important as a molecular switch that regulates cell cycle progression in vascular smooth muscle cells.  相似文献   

4.
alpha8 integrin gene silencing has been shown to result in the stress fibre disassembly. Stress fibres are required for cell adhesion to promote passage through cell cycle. Thus, we hypothesized that alpha8 integrin gene silencing might affect vascular smooth muscle cell (VSMC) growth. Short interference RNA (siRNA) targeting alpha8 integrin in rat VSMCs resulted in reduced DNA synthesis. Moreover, siRNA-alpha8 integrin prevented thrombin-induced proliferation. RhoA plays a critical role in regulating VSMC growth. alpha8 integrin co-immunoprecipitated with RhoA and siRNA-alpha8 reduced membrane associated RhoA. Our data suggest that alpha8 integrin expression is critical for VSMC growth, which has potential implications in postangioplasty neointimal hyperplasia.  相似文献   

5.
6.
7.
The addition of retinoic acid to fetal rat bones in culture induces the release of proteoglycans followed by cartilage resorption. In this system retinoic acid markedly suppressed 3H-leucine and 3H-mannose incorporation into acid-precipitable macromolecules, and specifically changed the 3H-leucine incorporation pattern as revealed by gel electrophoresis. Tunicamycin, which selectively inhibits glycosylation of the asparagine residues in proteins, prevented the cartilage cell degradation in response to retinoic acid. Inhibitors of DNA synthesis did not affect the retinoic acid-induced changes indicating that cell division was not required for the cartilage degradation processes induced by retinoic acid. In consideration of our previous and present demonstrations that retinoic acid-induced cartilage resorption required RNA, protein, and glycoprotein synthesis and specifically changed the protein synthesis pattern, we suggest that retinoic acid may exert its action by altering gene expression.  相似文献   

8.
9.
10.
In cultured rat vascular smooth muscle cells, sustained activation of ERK is required for interleukin-1beta to persistently activate NF-kappaB. Without ERK activation, interleukin-1beta induces only acute and transient NF-kappaB activation. The present study examined whether the temporal control of NF-kappaB activation by ERK could differentially regulate the expression of NF-kappaB-dependent genes, including inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), vascular cell adhesion molecule-1 (VCAM-1), and manganese-containing superoxide dismutase (Mn-SOD). Treatment of vascular smooth muscle cells with interleukin-1beta induced the expression of iNOS, COX-2, VCAM-1, and Mn-SOD in a time-dependent manner, but with different patterns. Either PD98059 or U0126, selective inhibitors of MEK, or overexpression of a dominant negative MEK-1 inhibited interleukin-1beta- induced ERK activation and the expression of iNOS and COX-2 but had essentially no effect on the expression of VCAM-1 and Mn-SOD. The expression of these genes was inhibited when NF-kappaB activation was down-regulated by MG132, a proteasome inhibitor, or by overexpression of an I-kappaBalpha mutant that prevented both the transient and the persistent activation of NF-kappaB. Inhibition of ERK did not affect interleukin-1beta-induced I-kappaBalpha phosphorylation and degradation but attenuated I-kappaBbeta degradation. Thus, although NF-kappaB activation was essential for interleukin-1beta induction of each of the proteins studied, gene expression was differentially regulated by ERK and by the duration of NF-kappaB activation. These results reveal a novel functional role for ERK as an important temporal regulator of NF-kappaB activation and NF-kappaB-dependent gene expression.  相似文献   

11.
Reprogramming cell differentiation in the absence of DNA synthesis   总被引:18,自引:0,他引:18  
C P Chiu  H M Blau 《Cell》1984,37(3):879-887
We examined whether the activation of muscle gene expression in nonmuscle cells required DNA synthesis. Human fibroblasts from amniotic fluid and fetal lung were fused with differentiated mouse muscle cells in the presence or absence of the DNA synthesis inhibitor, cytosine arabinoside. In the stable heterokaryons formed, the human contractile enzyme, MM-creatine kinase (CK), and the cell surface antigen, 5.1H11, were detected in comparable amounts regardless of whether DNA synthesis had occurred. A single cell analysis revealed that the efficiency of gene activation was high and that DNA synthetic activity was not affected by the ratio of muscle to nonmuscle nuclei in the heterokaryons. In addition, muscle gene expression was not restricted to the G1 phase of the cell cycle. We conclude that cell differentiation can be reprogrammed in heterokaryons regardless of cell cycle phase and in the absence of detectable DNA synthesis.  相似文献   

12.
Platelet-derived growth factor (PDGF) AB and BB isoforms were potent mitogens for cultured vascular smooth muscle cells from spontaneously hypertensive rats (SHR) and normotensive Wistar-Kyoto rats (WKY). PDGF-AA promotes protein synthesis in a dose-dependent manner in SHR cells, whereas DNA synthesis was stimulated only slightly. However, this isoform did not activate either DNA or protein synthesis in WKY cells. PDGF-AA stimulated tyrosine phosphorylation of its receptor protein and phospholipase C-gamma 1 in SHR cell but not in WKY cells. These results indicate that vascular smooth muscle cell of SHR is uniquely responsive to PDGF-AA, presumably due to abnormality in receptor expression, in its hypertrophic response.  相似文献   

13.
14.
Basic fibroblast growth factor (FGF2) is a potent mitogen for medial smooth muscle cells and is necessary for their proliferation after balloon catheter injury; however, intimal smooth muscle cells do not require FGF2 for their proliferation, and they respond only weakly to exogenous FGF2. The present study examined the activation of extracellular signal-regulated kinase (ERK) signaling as well as the expression and activity of cell cycle proteins in FGF2-stimulated intimal smooth muscle cells. FGF2 activates ERKs 1 and 2, and Western blot analysis showed that cyclin D, cyclin E, and cyclin-dependent kinase (CDKs) 2 and 4 were expressed in intimal smooth muscle cells after FGF2 infusion. FGF2 stimulation, however, did not lead to phosphorylation of the retinoblastoma protein (Rb), CDK 2 activation, or expression of cyclin A. Western blot analysis showed that intimal smooth muscle cells express elevated levels of the cell cycle inhibitors p15(INK4b) and p27(Kip1), compared with medial smooth muscle cells, and that FGF2 stimulation does not reduce the level of these inhibitors. These studies suggest that despite activation of ERKs 1 and 2 and expression of the cell cycle activators, cyclin D and cyclin E, high levels of cell cycle inhibitors may inhibit cell cycle transit in FGF2-stimulated intimal smooth muscle cells.  相似文献   

15.
16.
17.
Some of the important controlling events regulating eukaryotic S-phase progression are considered to occur late in the G1 stage of the cell cycle. We show here that stimulation of DNA synthesis in bone marrow-derived macrophages (BMM) by macrophage CSF-1 is preceded by G1 expression of three genes which encode proteins associated with the DNA synthesis machinery--the M1 and M2 subunits of ribonucleotide reductase and proliferating cell nuclear Ag (PCNA). Increased expression for these genes correlated well with the mitogenic response and sustained expression required de novo RNA and protein synthesis and also the presence of CSF-1 for at least most of G1. Inhibitors of BMM proliferation (LPS, TNF-alpha, IFN-gamma, and cAMP elevating agents) suppressed CSF-1-induced expression of M1, M2, and PCNA mRNA measured at 22 h. This suppression occurred even when added up to 12 h after the CSF-1, a period coinciding with the G1/S-phase boundary. The delayed kinetics of this effect parallels the ability of these agents to maximally inhibit CSF-1-induced BMM DNA synthesis when added at similar times. Decreased expression of M1, M2, and PCNA was not merely a consequence of DNA synthesis inhibition because the S-phase inhibitor, hydroxyurea, did not suppress CSF-1-induced gene expression. These results suggest that inhibition of DNA synthesis by antiproliferative agents involves inhibition of expression of several genes associated with the DNA synthesis machinery.  相似文献   

18.
19.
The actin-regulatory protein profilin has been shown to regulate the actin cytoskeleton and the motility of nonmuscle cells. To test the hypothesis that profilin plays a role in regulating smooth muscle contraction, profilin antisense or sense oligodeoxynucleotides were introduced into the canine carotid smooth muscle by a method of reversible permeabilization, and these strips were incubated for 2 days for protein downregulation. The treatment of smooth muscle strips with profilin antisense oligodeoxynucleotides inhibited the expression of profilin; it did not influence the expression of actin, myosin heavy chain, and metavinculin/vinculin. Profilin sense did not affect the expression of these proteins in smooth muscle tissues. Force generation in response to stimulation with norepinephrine or KCl was significantly lower in profilin antisense-treated muscle strips than in profilin sense-treated strips or in muscle strips not treated with oligodeoxynucleotides. The depletion of profilin did not attenuate increases in phosphorylation of the 20-kDa regulatory light chain of myosin (MLC20) in response to stimulation with norepinephrine or KCl. The increase in F-actin/G-actin ratio during contractile stimulation was significantly inhibited in profilin-deficient smooth muscle strips. These results suggest that profilin is a necessary molecule of signaling cascades that regulate carotid smooth muscle contraction, but that it does not modulate MLC20 phosphorylation during contractile stimulation. Profilin may play a role in the regulation of actin polymerization or organization in response to contractile stimulation of smooth muscle.  相似文献   

20.
The contractile stimulation of smooth muscle tissues stimulates the recruitment of proteins to membrane adhesion complexes and the initiation of actin polymerization. We hypothesized that integrin-linked kinase (ILK), a beta-integrin-binding scaffolding protein and serine/threonine kinase, and its binding proteins, PINCH, and alpha-parvin may be recruited to membrane adhesion sites during contractile stimulation of tracheal smooth muscle to mediate cytoskeletal processes required for tension development. Immunoprecipitation analysis indicted that ILK, PINCH, and alpha-parvin form a stable cytosolic complex and that the ILK.PINCH.alpha-parvin complex is recruited to integrin adhesion complexes in response to acetylcholine (ACh) stimulation where it associates with paxillin and vinculin. Green fluorescent protein (GFP)-ILK and GFP-PINCH were expressed in tracheal muscle tissues and both endogenous and recombinant ILK and PINCH were recruited to the membrane in response to ACh stimulation. The N-terminal LIM1 domain of PINCH binds to ILK and is required for the targeting of the ILK-PINCH complex to focal adhesion sites in fibroblasts during cell adhesion. We expressed the GFP-PINCH LIM1-2 fragment, consisting only of LIM1-2 domains, in tracheal smooth muscle tissues to competitively inhibit the interaction of ILK with PINCH. The PINCH LIM1-2 fragment inhibited the recruitment of endogenous ILK and PINCH to integrin adhesion sites and prevented their association of ILK with beta-integrins, paxillin, and vinculin. The PINCH LIM1-2 fragment also inhibited tension development, actin polymerization, and activation of the actin nucleation initiator, N-WASp. We conclude that the recruitment of the ILK.PINCH.alpha-parvin complex to membrane adhesion complexes is required to initiate cytoskeletal processes required for tension development in smooth muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号