首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 295 毫秒
1.
Cholera toxin stimulates adenylate cyclase in rat liver after intravenous injection. The stimulation follows a short latent period of 10min, and maximum stimulation was attained at 120min. Half-maximal stimulation was achieved at 35min. In contrast with this lengthy time course in the intact cell, adenylate cyclase in broken-cell preparations of rat liver in vitro were maximally stimulated by cholera toxin (in the presence of NAD+) in 20min with half-maximal stimulation in 8min. Binding of cholera toxin to cell membranes by the B subunits is followed by translocation of the A subunit into the cell or cell membrane, and separation of the A1 polypeptide chain from the A2 chain by disulphide-bond reduction, and finally activation of adenylate cyclase by the A1 chain and NAD+. As the binding of cholera toxin is rapid, two possible rate-limiting steps could be the determinants of the long time course of action. These are translocation of the A1 chain from the outside of the cell membrane to its site of action (this includes the time required for separation from the whole toxin) or the availability of NAD+ for activation. When NAD+ concentrations in rat liver were elevated 4-fold, by the administration of nicotinamide, no change in the rate of activation of adenylate cyclase by cholera toxin was observed. Thus the intracellular concentration of NAD+ is not rate-limiting and the major rate-limiting determinant in intact cells must be between the time of toxin binding to the cell membrane and the appearance of subunit A1 at the enzyme site.  相似文献   

2.
Expression of activation of rat liver adenylate cyclase by the A1 peptide of cholera toxin and NAD is dependent on GTP. The nucleotide is effective either when added to the assay medium or during toxin (and NAD) treatment. Toxin treatment increases the Vmax for activation by GTP and the effect of GTP persists in toxin-treated membranes, a property seen in control membranes only with non-hydrolyzable analogs of GTP such as Gpp(NH)p. These observations could be explained by a recent report that cholera toxin acts to inhibit a GTPase associated with denylate cyclase. However, we have observed that one of the major effects of the toxin is to decrease the affinity of guanine nucleotides for the processes involved in the activation of adenylate cyclase and in the regulation of the binding of glucagon to its receptor. Moreover, the absence of lag time in the activation of adenylate cyclase by GTP, in contrast to by Gpp(NH)p, and the markedly reduced fluoride action after toxin treatment suggest that GTPase inhibition may not be the only action of cholera toxin on the adenylate cyclase system. We believe that the multiple effects of toxin action is a reflection of the recently revealed complexity of the regulation of adenylate cyclase by guanine nucleotides.  相似文献   

3.
The mechanism of action of cholera toxin in pigeon erythrocyte lysates.   总被引:34,自引:0,他引:34  
The adenylate cyclase activity of intact pigeon erythrocytes begins to rise after about 20 min of exposure to cholera toxin. The maximum rate at which the cyclase activity increases appears to be limited by the number of toxin molecules which can reach an intracellular target. If the erythrocytes are made permeable to the toxin by a bacterial hemolysin, no such limit exists, and adenylate cyclase activity starts to rise immediately upon the addition of toxin, and continues to rise to a maximum at an initially constant rate which is dependent upon the concentration of toxin. On lysed erythrocytes, the addition of cholera antitoxin immediately prevents any further rise in adenylate cyclase activity, but does not reverse any activation already achieved. Erythrocyte lysates may also be activated by isolated peptide A1 of cholera toxin, although activation of adenylate cyclase of intact erythrocytes requires the complete toxin molecule. In the intact cells, toxin first attaches by its Component B to surface receptors of which there are about 30 per erythrocyte. Subsequently, peptide A1 but not Component B is inserted into the erythrocyte. It takes only about 1 min at 37 degrees for peptide A1 to be sufficiently deep within the cell membrane to be inaccessible to extracellular antitoxin, but its complete transit through the membrane appears to take longer. The surface receptors are used only once, for they remain blocked by Component B. The number of receptors available on the surface may be increased by soaking cells in ganglioside GM1. Cholera toxin also decreases the rate of apparently spontaneous loss of adenylate cyclase activity and increases the response to epinephrine. Theophylline inhibits the action of cholera toxin.  相似文献   

4.
Influences of alpha 2-adrenoceptor stimulation on adenylate cyclase activity were investigated in cerebral cortical membranes of rats. Pretreatment of the membranes with islet-activating protein and NAD resulted in a significant increase in basal activity as well as in GTP- or forskolin/GTP-induced elevation of adenylate cyclase activity. Strong activation of adenylate cyclase was also caused in membranes pretreated with cholera toxin together with NAD in comparison to that in control membranes, suggesting that adenylate cyclase activity is perhaps regulated by stimulatory and inhibitory GTP binding regulatory protein existing in synaptic membranes. In addition, adrenaline (with propranolol) or clonidine significantly reduced adenylate cyclase activity stimulated by pretreatment with forskolin and GTP. The inhibitory effects of adrenaline were also observed in membranes pretreated with cholera toxin and NAD. Moreover, the inhibition by adrenaline or clonidine was completely abolished by treatment with (a) yohimbine or (b) islet-activating protein and NAD. It is suggested that alpha 2-receptor stimulation causes inhibitory influences on adenylate cyclase activity mediated by the inhibitory GTP binding regulatory protein in synaptic membranes of rat cerebral cortex.  相似文献   

5.
Choleragen exerts its effect on cells through activation of adenylate cyclase. Choleragen initially interacts with cells through binding of the B subunit of the toxin to the ganglioside GM1 on the cell surface. Subsequent events are less clear. Patching or capping of toxin on the cell surface may be an obligatory step in choleragen action. Studies in cell-free systems have demonstrated that activation of adenylate cyclase by choleragen requires NAD. In addition to NAD, requirements have been observed for ATP, GTP, and calcium-dependent regulatory protein. GTP also is required for the expression of choleragen-activated adenylate cyclase. In preparations from turkey erythrocytes, choleragen appears to inhibit an isoproterenol-stimulated GTPase. It has been postulated that by decreasing the activity of a specific GTPase, choleragen would stabilize a GTP-adenylate cyclase complex and maintain the cyclase in an activated state. Although the holotoxin is most effective in intact cells, with the A subunit having 1/20th of its activity and the B subunit (choleragenoid) being inactive, in cell-free systems the A subunit, specifically the A1 fragment, is required for adenylate cyclase activation. The B protomer is inactive. Choleragen, the A subunit, or A1 fragment under suitable conditions hydrolyzes NAD to ADP-ribose and nicotinamide (NAD glycohydrolase activity) and catalyzes the transfer of the ADP-ribose moiety of NAD to the guandino group of arginine (ADP-ribosyltransferase activity). The NAD glycohydrolase activity is similar to that exhibited by other NAD-dependent bacterial toxins (diphtheria toxin, Pseudomonas exotoxin A), which act by catalyzing the ADP-ribosylation of a specific acceptor protein. If the ADP-ribosylation of arginine is a model for the reaction catalyzed by choleragen in vivo, then arginine is presumably an analog of the amino acid which is ADP-ribosylated in the acceptor protein. It is postulated that choleragen exerts its effects on cells through the NAD-dependent ADP-ribosylation of an arginine or similar amino acid in either the cyclase itself or a regulatory protein of the cyclase system.  相似文献   

6.
A cytosolic, macromolecular factor required for the cholera toxin-dependent activation of pigeon erythrocyte adenylate cyclase and cholera toxin-dependent ADP-ribosylation of a membrane-bound 43 000 dalton polypeptide has been purified 1100-fold from horse erythrocyte cytosol using organic solvent precipitation and heat treatment. This factor, 13 000 daltons, does not absorb to anionic or cationic exchange resins, is sensitive to trypsin or 10% trichloroacetic acid and is not extractable by diethyl ether. Activation of adenylate cyclase by cholera toxin requires the simultaneous presence of ATP (including possible trace GTP), NAD+, dithiothreitol, cholera toxin, membranes and the cytosolic macromolecular factor. Reversal of cholera toxin activation of adenylate cyclase, and of the toxin-dependent ADP-ribosylation, requires the presence of the cytosolic factor. The ability of the purified cytosolic factor to influence the hormonal sensitivity of liver membrane adenylate cyclase may provide clues to its physiological functions.  相似文献   

7.
CHOLERA TOXIN   总被引:2,自引:0,他引:2  
1. Death in several infectious diseases is caused by protein toxins secreted by invading bacteria. Cholera toxin is a simple protein secreted by Vibrio cholerae colonizing the gut; it is responsible for the massive diarrhoea that is cholera. 2. The primary action of cholera toxin is an activation of adenylate cyclase, an enzyme found on the inner membrane of eukaryotic cells that catalyses the conversion of ATP to cyclic AMP. Consequent increases in the intracellular concentration of cyclic AMP are responsible for other manifestations of cholera toxin including the diarrhoea. The toxin is active on almost all eukaryotic cells. 3. The toxin can be purified from culture filtrates of V. cholera. It has a molecular weight of 82000; and is composed of one subunit A (itself two polypeptide chains joined by a disulphide bond: AI (22000) and A2 (5000)) and five subunits B (11500). These can be separated in dissociating solvents such as detergents or 6 M guanidine hydrochloride. An amino-acid sequence of subunit B has been published. The five B subunits (sometimes found by themselves in the filtrate and known as ‘choleragenoid’) are probably arranged in a ring with the subunit A in the middle joined to them non-covalently by peptide A2. 4. The first action of cholera toxin on a cell is to bind to the membrane strongly and irreversibly. Several thousand molecules of toxin bind to each cell and the binding constants are of the order of 10-10 M. The binding is rapid, but is followed by a lag phase of about an hour before the intracellular cyclic AMP concentration begins to increase. 5. Ganglioside GM1, a complex amphiphilic lipid found in cell membranes, binds tightly to the toxin which shows an enzyme-like specificity for this particular ganglioside. Toxin that has already bound ganglioside can no longer bind to cells and is therefore inactive. This and other experiments using cells depleted of endogenous ganglioside suggest that ganglioside GM1 is the natural receptor of the toxin on the cell surface. The binding is followed by a lateral movement of the toxin-ganglioside complex in the cell surface forming a ‘cap’ at one pole of the cell. 6. The binding of ganglioside by toxin is a function exclusively of subunit B; Subunit A does not bind and can be eluted with 8 M urea from an insolubilized toxin-ganglioside complex. Subunit B is not by itself active, and so preincubation with B can protect cells or even whole gut from the action of toxin by occupying all the ganglioside binding sites. 7. Subunit A is responsible for activation of adenylate cyclase. Purified subunit A or just peptide AI is active by itself and this activity is not inhibited by ganglioside or by antisera to subunit B. In intact cells the activity is low and shows the characteristic lag phase but in lysed cells the subunit (or the whole toxin) is much more active and there is no lag phase. This suggests that the lag phase represents the time that subunit A takes to cross the cell membrane and get to its target. 8. Several cofactors are needed for toxin activity in lysed cells: NAD+, ATP, sulphydryl compounds and another unidentified cytoplasmic component. The activity of the cyclase is altered in a complex way generally rather similarly to the action of hormones such as adrenalin, but it is difficult to draw any general conclusions. 9. There are two chief theories of how cholera toxin acts. The first is that subunit A (or just peptide AI) enters the cell and there catalyses some reaction leading to activation of the cyclase. The cleavage of NAD+ into nicotinamide and adenosine diphosphoribose could be such a reaction; it is catalysed by high concentrations of cholera toxin. 10. The other theory is that part of the toxin binds directly to the adenylate cyclase or to some other molecule that can then interact with the cyclase, perhaps after the lateral movement of the toxin-ganglioside complex in the cell surface. This binding may be related to the known action of guanyl nucleotides on the cell surface. 11. The entry of peptide AI into the cell and its transport through the membrane is mediated by the binding of subunits B to the cell surface, perhaps just because the binding increases the local concentration of subunit A, or perhaps following specific conformational changes in the subunits and the formation of a tunnel of B subunits through the membrane. An experiment showing that the toxin remains active when the subunits are covalently bonded together suggests that peptide AI does not separate completely from the rest of the molecule. 12. There are several other proteins that resemble cholera toxin in structure and function. For example, glycoprotein hormones such as thyrotrophin also activate adenylate cyclase and have an apparently similar subunit structure with one type of subunit that binds to a ganglioside. There may also be analogies between the amino-acid sequences of toxin and hormones. 13. The enterotoxin made by some strains of Escherichia coli produces a similar diarrhoea to that of cholera. Several different toxic proteins have been prepared but they all seem to activate adenylate cyclase in the same sort of way as cholera toxin does and also to cross-react immunologically with it. The E. coli toxin also reacts with ganglioside G, but the reaction is weak and probably physiologically insignificant. Salmonella typhimurium secretes a similar toxin. 14. Tetanus toxin also reacts with a ganglioside receptor. This protein has two polypeptide chains of which only one reacts with the ganglioside; but the molecular activity is not yet known. 15. Diphtheria toxin has an A fragment that is directly responsible for the toxicity (by catalysing an NAD+ cleavage reaction leading to the total inhibition of protein synthesis) and a B fragment that gets the A fragment into the cells. This structure of active and binding components therefore seems to be common to many toxins. 16. The ability to produce toxin may confer some selective advantage on V. cholerae. The toxin may originate from accidental incorporation of DNA from an eukaryotic host, or alternatively from some material involved with the cyclic AMP metabolism of the bacterium.  相似文献   

8.
Intact cholera toxin and its purified subunit A both activate the adenylate cyclase of pigeon erythrocyte membranes, but subunit B does not. The activation by subunit A is unaffected by treatments that inhibit whole toxin by interfering with the binding of subunit B to cell membranes.  相似文献   

9.
Reaction of cholera toxin with NN'-bis(carboximidomethyl)tartaramide dimethyl ester produced several cross-linked species that had subunit B (which binds to the cell surface) and peptides A1 (which activates adenylate cyclase) and A2 all covalently joined together. This cross-linded material had activity with pigeon erythrocytes that was comparable in all respects with that of native toxin. It activated the adenylate cyclase of whole cells, showing a characteristic lag phase, and this activation was increased if the cells had been preincubated with ganglioside GM1, but abolished if the protein had been preincubated with the ganglioside. It activated the enzyme in lysed cells more strongly and without the lag phase. These results show that the toxin is active even when peptide A1 cannot be released from the rest of the molecule.  相似文献   

10.
ADP-ribosylation of membrane proteins from rabbit small intestinal epithelium was investigated following incubation of membranes with [32P]NAD and cholera toxin. Cholera toxin catalyzes incorporation of 32P into three proteins of 40 kDA, 45 kDa and 47 kDa located in the brush-border membrane. In contrast, basal lateral membranes do not contain any protein which becomes labeled in a toxin-dependent manner when incubated with cholera toxin and [32P]NAD. The modification of membrane proteins from brush border occurred in spite of the virtual absence in these membranes of adenylate cyclase activatable either by cholera toxin, vasoactive intestinal peptide (VIP) or fluoride. The three agents activated adenylate cyclase when crude plasma membrane were used. Cholera toxin activated fivefold at 10 micrograms/ml. Vasoactive intestinal peptide activated at concentrations from 10-300 nM, the maximal stimulation being sixfold. Fluoride activated 10-fold at 10 mM. When basal lateral membranes were assayed for adenylate cyclase it was found that, with respect to the crude membranes, the specific activity of fluoride-activated enzyme was 3.3-fold higher, VIP stimulated enzyme was maintained while cholera-toxin-stimulated enzyme showed half specific activity. Moreover, while fluoride stimulated ninefold and VIP stimulated fivefold, cholera toxin only stimulated twofold at the highest concentration. The results suggest that the activation by cholera toxin of adenylate cyclase located at the basal lateral membrane requires ADPribosylation of proteins in the brush border membrane.  相似文献   

11.
Incubation of fat cell ghosts with activated cholera toxin, nucleoside triphosphate, cytosol, and NAD results in increased adenylate cyclase activity and the transfer of ADP-ribose to membrane proteins. The major ADP-ribose protein comigrates on sodium dodecyl sulfate-polyacrylamide gels with the putative GTP-binding protein of pigeon erythrocyte membranes (Mr 42 000), which is also ADP-ribosylated by cholera toxin. The treatment with cholera toxin enhances the stimulation of the fat cell membrane adenylate cyclase by GTP, but the stimulation by guanyl-5'-yl imidodiphosphate is unaltered. Subsequent stimulation of fat cell adenylate cyclase by 10 micrometers epinephrine is not particularly affected. These changes were qualititatively the same for membranes isolated from fat cells of hypothyroid rats. Although the cyclase of these membranes has a reduced response to epinephrine, guanyl-5'-yl imidodiphosphate or GTP, as compared to euthyroid rat fat cell membranes, the defect is not rectified by toxin treatment and cannot be explained by a deficiency in the cholera toxin target.  相似文献   

12.
Incubation of a crude rat liver plasma membrane preparation with [gamma-32P]ATP resulted in a rapid Mg2+-dependent incorporation of 32P into phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Preincubation of the membranes with cholera toxin under ADP-ribosylating conditions reduced the labeling of the polyphosphoinositides. This action of cholera toxin required NAD+ and guanine nucleotides, was dose-dependent with respect to cholera toxin, and could not be mimicked by cAMP. It therefore appears that ADP-ribosylation of the stimulatory guanine nucleotide-binding regulatory protein of adenylate cyclase, or another G-protein, in rat liver plasma membranes affects the activity of enzymes in the polyphosphoinositide pathway.  相似文献   

13.
1. An ADP-ribosyltransferase activity which appears to be capable of activating adenylyl cyclase was identified in a plasma membrane fraction from rabbit corpora lutea and partially characterized by comparing the properties of the luteal transferase with those of cholera toxin. 2. Incubation of luteal membranes in the presence of GTP and varying concentrations of NAD resulted in concentration-dependent increases in adenylyl cyclase activity. 3. Stimulation of adenylyl cyclase by NAD and cholera toxin plus NAD was observed in the presence of GTP but not in the presence of guanosine-5'-O-(2-thiodiphosphate) or guanyl-5'-yl imidodiphosphate. 4. NAD or cholera toxin plus NAD reduced the Kact values for luteinizing hormone to activate adenylyl cyclase 3- to 3.5-fold. 5. NAD or cholera toxin plus NAD increased the extent to which cholate extracts from luteal membranes were able to reconstitute adenylyl cyclase activity in S49 cyc- mouse lymphoma membranes. 6. It was necessary to add ADP-ribose and arginine to the incubation mixture in order to demonstrate cholera toxin-specific ADP-ribosylation of a protein corresponding to the alpha subunit of the stimulatory guanine nucleotide-binding regulatory component (alpha Gs). 7. Treatment of luteal membranes with NAD prior to incubation in the presence of [32P]NAD plus cholera toxin resulted in reduced labeling of alpha Gs. 8. Endogenous ADP-ribosylation of alpha Gs was enhanced by Mg but was not altered by guanine nucleotide, NaF or luteinizing hormone and was inhibited by cAMP. 9. Incubation of luteal membranes in the presence of [32P]ADP-ribose in the absence and presence of cholera toxin did not result in the labeling of any membrane proteins.  相似文献   

14.
Cholera toxin, or peptide A1 from the toxin, activates adenylate cyclase solubilized from rat liver with Lubrol PX, provided that cell sap, NAD+, ATP and thiol-group-containing compounds are present. The activation is abolished by antisera to whole toxin, but not to subunit B.  相似文献   

15.
An arginine-specific ADP-ribosyltransferase, named ADP-ribosyltransferase A, was partially purified from human platelets using polyarginine as an ADP-ribose acceptor. When human platelet membranes were incubated with the transferase A in the presence of NAD+, Gs, a stimulatory guanine nucleotide-binding protein of the adenylate cyclase was specifically mono-ADP-ribosylated. ADP-ribose transfer to Gs by this enzyme was suppressed when membranes were pre-ADP-ribosylated by cholera toxin. Incubation of membranes with the transferase A resulted in activation of the adenylate cyclase system. This stimulatory effect of the transferase A on the adenylate cyclase system was inhibited by the presence of polyarginine. These results indicate a role of ADP-ribosyltransferase A in regulation of the adenylate cyclase system via endogenous mono-ADP-ribosylation of Gs.  相似文献   

16.
The major steps in cholera-toxin action, i.e. binding, internalization, generation of A1 peptide and activation of adenylate cyclase, were examined in isolated hepatocytes. The binding of toxin involves a single class of high-affinity sites (KD congruent to 0.1 nM; Bmax. congruent to 10(7) sites/cell). At 37 degrees C, cell-associated toxin is progressively internalized, as judged by the loss of its accessibility to antibodies against whole toxin, A and B subunits (about 50, 75 and 30% of initially bound toxin after 40 min respectively). Two distinct pathways are involved in this process: endocytosis of the whole toxin, and selective penetration of the A subunit into the plasma membrane. Exposure of hepatocytes to an acidic medium (pH 5) results in a rapid and marked disappearance of the A subunit from the cell surface. Generation of A1 peptide and activation of adenylate cyclase by the toxin occur after a lag phase (10 min at 37 degrees C), and increase with time in a parallel manner up to 2-3% A1 peptide generated; they are unaffected by exposure of cells to an acidic medium. Chloroquine and monensin, which elevate the pH in acidic organelles, inhibit by 2-4-fold both the generation of A1 peptide and the activation of adenylate cyclase. Unexpectedly, these drugs also inhibit the internalization of the toxin. These results suggest that an acidic pH facilitates the penetration of A subunit into the plasma membrane and presumably the endosomal membrane as well, and that endocytosis of cholera toxin is required for generation of A1 peptide and activation of adenylate cyclase.  相似文献   

17.
Summary Choleragen exerts its effects on cells through the activation of adenylate cyclase. The initial event appears to be the binding of the B subunit of the toxin to ganglioside GM1 on the cell surface, following which there is a delay prior to activation of adenylate cyclase. Patching and capping of the toxin on the cell surface, perhaps involved in the internalization of the enzymatically active subunit, may be occuring during this time. The activation of adenylate cyclase, which is catalyzed by the A1 peptide of choleragen, does not require the B subunit or ganglioside GM1. The A1 peptide catalyzes the transfer of ADP-ribose from NAD to an amino acid, probably arginine, in a 42 000 dalton membrane protein. This protein appears to be the GTP-binding component (or G/F factor) of the adenylate cyclase system and is cruical to the regulation of cyclase activity by hormones such as epinephrine. ADP-ribosylation of the G/F factor is enhanced by GTP and, in some systems, by a cytosolic factor. GTP is also required for stabilization and optimal catalytic function of the choleragen-activated cyclase. Calmodulin, a calcium-binding protein, is necessary for expression of catalytic activity of the toxin-activated adenylate cyclase in brain and other tissues. The ADP-ribosyltransferase activity required for activation of the cyclase is an intrinsic property of the A1 peptide of choleragen which is expressed only after the peptide is released from the holotoxin by reduction of a single disulfide bond. In the absence of cellular components, choleragen catalyzes the ADP-ribosylation of small guanidino compounds such as arginine as well as peptides and proteins that contain arginine. It is assumed, therefore, that the site of ADP-ribosylation in the natural acceptor protein is an arginine or similar amino acid. When guanidino compounds are not present as ADP-ribose acceptors, choleragen hydrolyzes NAD to ADP-ribose and nicotinamide at a considerably slower rate. E. coli heat-labile enterotoxin (LT) is very similar to choleragen in structure and function. It consists of two types of subunits, A and B, with sizes comparable to those of the A and B subunits of choleragen. Binding of LT to the cell surface is enhanced by prior incorporation of GM1 but not other gangliosides; the oligosaccharide of GM1 specifically interacts with LT and its B subunit. The A subunit of LT exhibits ADP-ribosyltransferase activity following activation by thiol to release the A1 peptide. The A subunit of LT can be isolated in an ‘unnicked’ form and thus requires, in addition to reduction by a thiol, proteolytic cleavage to generate the active A1 peptide. Like choleragen, LT uses guanidino compounds as model ADP-ribose acceptors and catalyzes the ADP-ribosylation of a 42 000 dalton protein in cell membrane prepatations. ADP-ribosyltransferases that use arginine as ADP-ribose acceptors are not restricted to bacterial systems; such an enzyme has been purified to apparent homogeneity (>500 000-fold) from turkey erythrocytes. Based on a subunit molecular weight of 28 000, its turnover number with arginine as the ADP-ribose acceptor is considerably higher than that of either toxin. Although with low molecular weight guanidino derivatives the substrate specificity of the enzyme is similar to that of choleragen, with protein substrates it clearly differs. The physiological role of the turkey erythrocyte transferase remains to be established.  相似文献   

18.
Incubation of FRTL-5 rat thyroid cell membranes with [32P]NAD and pertussis toxin results in the specific ADP-ribosylation of a protein of about 40 kDa. This protein has the same molecular mass of the alpha i subunit of the adenylate cyclase regulatory protein Ni and is distinct from proteins ADP-ribosylated by cholera toxin in the same membranes. Prior treatment of FRTL-5 cells with pertussis toxin results in the ADP-ribosylation of Ni, as indicated by the loss of the toxin substrate in the ADP-ribosylation assay performed with membranes prepared from such cells. Preincubation of FRTL-5 cells with thyrotropin causes the same loss; cholera toxin has no such effect. Pertussis toxin, as do thyrotropin and cholera toxin, increases cAMP levels in FRTL-5 cells. Forskolin together with thyrotropin, cholera toxin or pertussis toxin causes a further increase in cAMP levels. Pertussis toxin and thyrotropin are not additive in their ability to increase adenylate cyclase activity, whereas both substances are additive with cholera toxin. A role of Ni in the thyrotropin regulation of the adenylate cyclase activity in thyroid cells is proposed.  相似文献   

19.
When rat adipocyte membranes had been labeled with [3H]GTP in the presence of a beta-adrenergic agonist, the subsequent [3H]GDP release was stimulated by beta-agonists or agonists (e.g. glucagon and secretin) of other "activatory" receptors involved in activation of adenylate cyclase, but was not stimulated by agonists (e.g. prostaglandin E1 and adenosine) of "inhibitory" receptors involved in cyclase inhibition. On the contrary, agonists of inhibitory receptors were effective in stimulating GDP release from hamster adipocyte membranes that had been labeled via inhibitory alpha 2-adrenergic receptors, but an activatory receptor agonist such as isoproterenol was not. Thus, the guanine nucleotide regulatory protein (Ni) involved in adenylate cyclase inhibition is an entity distinct from the regulatory protein (Ns) involved in cyclase activation, and multiple activatory or inhibitory receptors are coupled to a respective common pool of Ns or Ni. Preactivated cholera toxin added together with NAD enhanced GDP release from rat adipocyte membranes prelabeled with isoproterenol but was without effect on the release from hamster adipocyte membranes that had been labeled with an alpha-agonist. In sharp contrast, the active subunit of islet-activating protein, pertussis toxin, failed to alter GDP release from the former membrane but completely abolished inhibitory agonist-induced stimulation of GDP release from the latter membrane preparation in the presence of NAD. Thus, the site of action of cholera toxin is Ns, while that of islet-activating protein is Ni. The function of Ni to communicate between inhibitory receptors and adenylate cyclase was lost when it was ADP-ribosylated by islet-activating protein.  相似文献   

20.
Membranes from ventral photoreceptors of Limulus were incubated with cholera toxin and [32P]NAD+. Cholera toxin catalyzes a specific ADP-ribosylation of a 43-kDa peptide from Limulus ventral photoreceptors. Possible homologies between the 43-kDa peptide of Limulus and the alpha-subunits of mammalian stimulatory, guanine nucleotide-binding regulatory component of adenylate cyclase (Ns) were investigated by comparing the electrophoretic patterns of proteolytic fragments derived from each of these peptides that are radiolabeled by [32P]NAD+ and cholera toxin. Evidence is provided for structural homology between this invertebrate peptide and mammalian Ns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号