首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Synopsis Both historical patterns and recent evidence of resource partitioning and complementarity within the Lake Michigan fish community provide circumstantial evidence for interspecific competition. But competition is difficult to document in the field without controlled experimentation. In Lake Michigan, controlled experiments on competition within the fish community are nearly impossible, but we still need to understand the interactions among the dominant fishes. For this purpose, I have relied upon hypothesis-based field observation, natural experiments in the field and designed laboratory experiments to evaluate competitive interactions. Resource use patterns and trophic morphology of the bloater, Coregonus hoyi, a native cisco, from samples taken before alewife, Alosa pseudoharengus, became abundant (1960) were compared to more recent data (1979–80). After the alewife density increase, bloaters had significantly fewer and shorter gill rakers. This suggests a morphological shift toward greater benthic foraging efficiency in response to high abundances of an efficient pelagic planktivore, alewife. Resource use comparisons suggested that bloaters now shift from pelagic zooplanktivory to benthic habitats and diets at least two years earlier in their life history than they did before alewife became abundant. This evidence, albeit not experimental, provides strong support for the importance of competition in the structure of the current Lake Michigan fish community.In Lake Michigan, seasonal thermal habitat compression can pack fish into a narrow thermal zone across the lake bottom, leading to increased habitat overlap, reduced prey availability and fish diets containing fewer and smaller prey. Thermal habitat compression, which can occur intermittently through the season, may create competitive bottlenecks which help maintain the observed resource partitioning among these fishes.  相似文献   

2.
Populations of invasive species tend to have fewer parasites in their introduced ranges than in their native ranges and are also thought to have fewer parasites than native prey. This ‘release’ from parasites has unstudied implications for native predators feeding on exotic prey. In particular, shifts from native to exotic prey should reduce levels of trophically transmitted parasites. We tested this hypothesis in native populations of pumpkinseed sunfish (Lepomis gibbosus) in Lake Opinicon, where fish stomach contents were studied intensively in the 1970s, prior to the appearance of exotic zebra mussels (Dreissena polymorpha) in the mid-1990s. Zebra mussels were common in stomachs of present-day pumpkinseeds, and stable isotopes of carbon and nitrogen confirmed their importance in long-term diets. Because historical parasite data were not available in Lake Opinicon, we also surveyed stomach contents and parasites in pumpkinseed in both Lake Opinicon and an ecologically similar, neighboring lake where zebra mussels were absent. Stomach contents of pumpkinseed in the companion lake did not differ from those of pre-invasion fish from Lake Opinicon. The companion lake, therefore, served as a surrogate “pre-invasion” reference to assess effects of zebra mussel consumption on parasites in pumpkinseed. Trophically transmitted parasites were less species-rich and abundant in Lake Opinicon, where fish fed on zebra mussels, although factors other than zebra mussel consumption may contribute to these differences. Predation on zebra mussels has clearly contributed to a novel trophic coupling between littoral and pelagic food webs in Lake Opinicon.  相似文献   

3.
Collections of arboreal Psocoptera from the four major national parks of Sumatra and from a range of habitats outside the parks (including many of the predominant perennial crops) are appraised for diversity and species overlap between habitats. The most speciose family (Psocidae, 72 morphospecies) is investigated to determine possible surrogacy values in relation to the more taxonomically intractable Other Psocoptera (17 families, 190 morphospecies), in its incidence in 16 different habitats and four main altitudinal zones. Considerable psocid richness persists in disturbed areas, and the values of protected areas and kebun gardening systems in their conservation are noted.  相似文献   

4.
    
Song Biyu 《Hydrobiologia》2000,434(1-3):151-163
Species composition, seasonal changes in abundance and biomass of planktonic protozooplankton (ciliates, heliozoans and testaceans), and dynamics of the dominant species were investigated over more than two years in two shallow mesotrophic lakes. The macrophyte-dominated lake Biandantang had more protozoan species than the algal lake Houhu, and the two lakes had significantly different protozoan abundance and biomass patterns, compositions and dominants. On annual average, ciliates formed 81.13%, 91.10%, heliozoans 0.20%, 3.49%, and testaceans 18.67%, 5.42% of total protozoan biomass; the protozoans, in turn, formed 49.77%, 49.48% of total zooplankton biomass in lake Biandantang and Lake Houhu, respectively. With respect to ciliates, naked oligotrichs and Peritrichida (mainly 40–80 m in size) dominated the abundance and Peritrichida dominated the biomass in Lake Biandantang, while Scuticociliatida (mainly smaller than 30 m ) dominated the abundance and tintinnids dominated the biomass in Lake Houhu.  相似文献   

5.
The ability to tolerate hypoxia in some haplochromine cichlid fishes contributes to the richness of habitats occupied by the lineage and may be important in interlacustrine dispersal through swampy channels. Lacustrine members of the genus Astatotilapia tend to be ecologically plastic but are rarely encountered in the interior of dense swamps. A notable exception is seen in the swamp corridor that joins Lake Kabaleka with Lake George, Uganda, where one species (Astatotilapia wrought-iron) is abundant, and a second species, A. aeneocolor, is rare. Both species are abundant in the open waters of the main lake. In this paper, we compare physiological (oxygen consumption) and behavioral indicators of hypoxia tolerance between A. wrought-iron from swamp and open-water habitats and between the two species of Astatotilapia. When exposed to progressive hypoxia, all fish used aquatic surface respiration (ASR); however, swamp-dwelling A. wrought-iron showed lower gill ventilation rates prior to the initiation of ASR, higher pre-ASR aggression rates, higher swimming speed during ASR, and a higher rate of bubble exchange than both the open-water group of A. wrought-iron and A. aeneocolor. These differences may reflect interpopulational variation in selection pressure for low-oxygen tolerance between swamp and open-water habitats. Several lines of evidence suggest that A. wrought-iron was in general more hypoxia tolerant than A. aeneocolor. These include a lower ASR90 threshold, a drop in gill ventilation rate with the onset of ASR, and lower rate of equilibrium loss under extreme hypoxia in A. wrought-iron. The routine metabolic rate and critical oxygen tension did not differ between swamp-dwelling and open-water A. wrought-iron, or between A. wrought-iron and A. aeneocolor. Comparative data on the ASR thresholds and critical oxygen tensions of the Astatotilapia species from Lake Kabaleka and other East African cichlids suggest intermediate hypoxia tolerance. Nevertheless, our study suggests that some generalized lacustrine haplochromines may leak through swamp corridors even under relatively extreme conditions.  相似文献   

6.
Jewson  D. H.  Lowry  S. 《Hydrobiologia》1993,(1):87-96
The diatom Cymbellonitzschia diluviana Hustedt is an important indicator species in interglacial deposits but is rarely reported from contemporary sites. The presence of large populations in Lough Neagh, N. Ireland, made possible a study of its ecology and auxosporulation. The apical length of cells in the lake was usually between 7 and 25 µm, but in culture there was a broader range between 5 and 42 µm. Amongst smaller cells (< 11 µm), some (3 %) were found with raphes on the dorsal (i.e. convex side) rather than usual ventral side. At cell division, both daughter cells had hantzschioid symmetry. C. diluviana is found in alkaline waters (pH 7.6–9.0) but not usually where there is significant calcite deposition. Its present rarity is probably because its preferred habitat is now less common. In L. Neagh, C. diluviana was found on exposed rocky and sandy shores, but was particularly abundant in shifting sand bars. This highly abrasive and erosive environment requires cells to have good adhesion and the ability to withstand extended periods of burial. C. diluviana is essentially a ruderal species, adapted to habitats with high disturbance.  相似文献   

7.
Although there have been many studies on ecological factors responsible for the organization of reef fish communities, most of the studies have focused on isolated habitats. However, findings from isolated habitats cannot necessarily be applied to fish communities in other habitats (e.g., a continuous habitat). In this study, therefore, we examined the structures of fish communities (abundance, species richness and species composition), and the dynamics of fish communities (seasonal changes in abundance, species richness and species composition) over a 2-year period in two different habitats (continuous habitat and isolated habitat) in an Okinawan coral reef. We established eight permanent quadrats (8m × 8m) on a rocky reef flat (continuous habitat) and rock reef patches surrounded by a sandy sea bottom (isolated habitat). The abundance and species richness of fishes such as pomacentrids, labrids, chaetodontids and acanthurids were greater in quadrats located in the continuous habitat, whereas those of blenniids, gobiids and mullids were greater in quadrats located in the isolated habitat. This caused marked differences between the fish community structure at the two sites. Seasonal and annual changes in fish community structure were relatively small at the continuous habitat site (>0.7 similarity based on C index) but were large at the isolated habitat site (C < 0.4), indicating that the fish community structure was relatively stable at the continuous habitat site but unstable at the isolated habitat site throughout the study period. Spatial differences between the fish community structures in the four quadrats at the continuous habitat site were small (C > 0.65 in most sites), but these differences were large at the isolated habitat site (C < 0.4). Our findings suggest that habitat structure (spatial arrangement of habitats) affects both spatial and seasonal differences in the reef fish community structure. The results also suggest that the main mechanisms underlying organization of reef fish communities in continuous and isolated habitats are different.  相似文献   

8.
The population dynamics of Daphnia hyalina Leydig in a productive lake, Esthwaite Water, and an unproductive lake, Buttermere, in the English Lake District have been compared. The winter is passed as resting eggs in the bottom sediments in Buttermere and as free-swimming individuals in the planktonic zone in Esthwaite Water. In Esthwaite Water seasonal periodicity was characterised by maxima in spring and autumn and a minimum in summer; in Buttermere, there was no spring maximum and the first increase in population density was in summer. Population densities were higher and adult females were larger and laid more eggs per clutch in Esthwaite Water than in Buttermere. In each lake males became numerous in autumn. Observed rates of population increase, r and calculated birth rates, b and death rates d were nearly always higher in Esthwaite Water than in Buttermere.  相似文献   

9.
Synopsis If an individual is less susceptible to predation in a group it should be able to reduce its vigilance for predators and perhaps also its tendency to flee from predators, thereby gaining time and energy for feeding and other activities. These predictions were examined in the field (Veronica Lake, northwestern Ontario) using a facultative schooling species, the spottail shiner (Notropis hudsonius). Schools of various sizes attacked with a fish predator model had a significantly lower reaction distance to the predator than solitary shiners. Solitary shiners must therefore invest more time and energy in defense but may gain a feeding advantage because their visual field does not overlap with conspecific competitors.  相似文献   

10.
The spatial pattern of the small fish community was studied seasonally in 1996 in the Biandantang Lake. Based on plant cover, the lake was divided into five habitats, arranged in the order by plant structure complexity from complex to simple: Vallisneria spiralis habitat (V habitat), Vallisneria spiralis–Myriophyllum spicatum habitat (V–M habitat), Myriophyllum spicatum habitat (M habitat), Nelunbo nucefera habitat (N habitat), and no vegetation habitat (NV habitat). A modified popnet was used for quantitative sampling of small fishes. A total of 16 fish species were collected; Hypseleotris swinhonis, Ctenogobius giurinus, Pseudorasbora parva, Carassius auratus and Paracheilognathus imberis were the five numerically dominant species. In both summer and autumn, the total density of small fishes was about 10indm–2. Generally, Ctenogobius giurinus, a sedatory, benthic fish, was distributed more or less evenly among the five habitats, while the other four species had lower densities in the N habitat and NV habitat, which had the simplest structures. The distribution of the small fish species showed seasonal variations. In winter, most species concentrated in the V habitat, which had the most complex structure. In spring, the fish had low densities in the N and NV habitat, and were more or less evenly distributed in the other habitats. In summer, the fish had a low density in the NV habitat, and were evenly distributed in the other habitats. In autumn, the fish had higher densities in the V–M and M habitats than in the others. Generally, spatial overlaps between the dominant species were higher in winter than in the other seasons. It was suggested that the variations in the importance of predation risk and resource competition in habitat choice determined the seasonal changes of spatial patterns in the small fishes in the Biandantang Lake.  相似文献   

11.
Fish brains and sensory organs may vary greatly between species. With an estimated total of 25 000 species, fish represent the largest radiation of vertebrates. From the agnathans to the teleosts, they span an enormous taxonomic range and occupy virtually all aquatic habitats. This diversity offers ample opportunity to relate ecology with brains and sensory systems. In a broadly comparative approach emphasizing teleosts, we surveyed classical and more recent contributions on fish brains in search of evolutionary and ecological conditions of central nervous system diversification. By qualitatively and quantitatively comparing closely related species from different habitats, particularly cyprinids and African cichlids, we scanned for patterns of divergence. We examined convergence by comparing distantly related species from similar habitats, intertidal and deep-sea. In particular, we asked how habitats relate to the relative importance of different sensory faculties. Most fishes are predominantly visually orientated. In addition, lateral line and hearing are highly developed in epi- and mesopelagic species as well as in the Antarctic notothenoids. In bathypelagics, brain size and the lobes for vision and taste are greatly reduced. Towards shallow water and deep-sea benthic habitats, chemosenses increase in importance and vision may be reduced, particularly in turbid environments. Shallow tropical marine and freshwater reefs (African lakes) enhance visual predominance and appear to exert a considerable selection pressure towards increased size of the (non-olfactory)telencephalon. The development of cognitive skills (spatial learning, problem solving) in fish seems to be associated with visual orientation and well-structured habitats.  相似文献   

12.
Synopsis Lake Malawi/Niassa is the second largest rift valley lake in Africa, with an area of 28 800 km2, and an average and maximum depth of 292 m and>700 m, respectively. The lake is well known for the great diversity of fish occurring in the inshore zone. However, the offshore fish community is poorly documented. To rectify this, regular sampling was undertaken over two years, using trawl and gillnets at six offshore locations. This paper reports on the species composition, spatial distribution and breeding biology of the dominant cichlids species from the offshore pelagic zone. Cichlids formed approximately 88% of the offshore fish biomass. Most abundant were two species of zooplanktivores in the genus Diplotaxodon that made up 71% of the offshore fish biomass. An undescribed species, given the cheironym D. bigeye, was mainly found at a depth of 220 m during the day, but moved into near surface waters at night when the moon was full. This species was absent from the shallow regions of the lake. The most abundant offshore species was D. limnothrissa, which was distributed evenly throughout the lake to depths of 220 m. A less common offshore zooplanktivore was Copadichromis quadrimaculatus that formed 5% of the biomass and was confined to the upper 100 m of the water column. The main piscivores were in the genus Rhamphochromis and formed approximately 10% of the offshore fish biomass. The two dominant taxa were R. longiceps and the large Rhamphochromis group, and both were more common in the southern half of the lake. The former occurred mainly in the upper 100 m of the water column and the latter mainly at depths of 100–150 m. The length at maturity and fecundity for the dominant offshore species were estimated and seasonal breeding cycles determined from gonad activity and gonado-somatic indices.  相似文献   

13.
Attempts to classify certain habitats as vulnerable to invasion or plant traits as invasive have met with limited success and applicability. Clearly, not all plant invaders are able to exploit all habitats and not all habitats are equally susceptible to invasion. Here we argue that it is critical for a successful model for invasions to incorporate both environmental and species traits and present just such a framework. Although disturbance has been targeted as a crucial event which renders habitats vulnerable to invasion, disturbances are often integral parts of ecosystems (e.g. floods, tree-falls, fire, etc.) and are not always associated with invasion events. We argue that disturbances that are associated with invasions alter historical patterns of turnover, or flux, of resources in an ecosystem. Given this perspective on the relationship between invasions and disturbances, and the need to integrate species traits with those of invaded ecosystems, we have developed an approach to characterize plant invasion patterns that we call the Disturbed Resource-Flux Invasion Matrix or DRIM. This is a 16-cell matrix that classifies habitats by the quality of changes in physical and chemical resource flux either increasing or decreasing flux relative to historical patterns. Within each matrix cell, it is then possible to apply basic ecological principles to target species traits that can facilitate successful invasion of habitats experiencing that particular kind of disturbance. We present examples from the literature of how habitats and species can be classified according to the DRIM, and demonstrate the application of this theoretical model.  相似文献   

14.
We collected lake whitefish Coregonus clupeaformis and round whitefish Prosopium cylindraceum from the main basin of Lake Huron and Georgian Bay in the Laurentian Great Lakes of North America to investigate details of diet and feeding tactics of these species in different seasons. Lake whitefish supports important commercial fisheries in Lake Huron and both species make use of habitats near the Bruce Nuclear Power Development, on the eastern shore of Lake Huron. Most fish of both species showed generalist feeding behavior, but some lake whitefish appeared to show specialist prey selection. The invasive spiny water flea Bythotrephes longimanus was an important component of the diet of both species. There was considerable dietary overlap between the whitefish species, but the ecological implications of these dietary overlaps are mitigated by the fact that dominant prey species differed in most seasons. We conclude that the potential for ecologically significant interactions between lake whitefish and round whitefish resulting from competition for similar benthic food resources in the main basin of Lake Huron is probably low [Current Zoology 56 (1): 109-117 2010].  相似文献   

15.
Childress  R. Brooks  Bennun  Leon A.  Harper  David M. 《Hydrobiologia》2002,488(1-3):163-170
Between January 1993 and January 1995, the number of Great Cormorants (Phalacrocorax carbo) using Lake Naivasha, Kenya (00° 45 S, 36° 20 E) for foraging and resting increased 56%, while the number of sympatric Long-tailed Cormorants (Phalacrocorax africanus) decreased 64%. In 1995 and 1996, we documented habitat changes and conducted monthly population and resource-use surveys of the two species in an attempt to discover the most likely reasons for these changes. The increase in Great Cormorants was probably the result of immigration from nearby Lake Nakuru due to extreme water level reductions there. Lake Naivasha also experienced falling water levels and transparency during this period, but these changes were not as severe and are not considered likely reasons for the decline in Long-tailed Cormorant numbers. Despite some probable dietary overlap, the two species were well separated in terms of foraging locations, foraging methods, resting habitats and breeding timing. The decline in Long-tailed Cormorant numbers may be connected with increased disturbance by fishermen along the lake littoral, this species' primary feeding location.  相似文献   

16.
We used simple statistics (e.g. mean temperature, degree days, cumulative volume days) to describe present thermal habitats for cool water (yellow perch, Perca flavescens) and cold water (lake trout, Salvelinus namaycush) fish of a small boreal lake. We then modelled changes in the vertical and temporal extent of these habitats under various scenarios of climatic change that included increases in air temperature of 2°C, 4°C, and 9°C, and positive and negative deviations from present levels of 10% in solar radiation and relative humidity, and 20% in wind speed and the lake water extinction coefficient. Model simulations indicated pronounced changes in the temporal and vertical availability of fish thermal niche space. These changes were mainly driven by the large increases in mean mixed layer temperatures that corresponded to 85% of the increases in air temperature, but, in particular, changes in light attenuation also resulted in some non-linear, unexpected effects in the distribution and seasonal availability of thermal niche space. As expected, classical lake trout thermal habitat (5–15°C) was progressively reduced and almost disappeared in littoral areas in spring and early summer. Perch thermal niche space expanded for air temperature increases of up to 4°C, but largely disappeared for the 9°C increase. We discuss changes in thermal habitat with regard to the life history of lake trout and yellow perch, and include other determinants of fish habitat to evaluate the potential of these species for long-term ecological success under climatic warming.  相似文献   

17.
In shallow temperate lakes many ecological processes depend on submerged macrophytes. In subtropical and tropical lakes, free-floating macrophytes may be equally or more important. We tested the hypothesis that different macrophyte growth forms would be linked with different bottom-up and top-down mechanisms in out-competing phytoplankton. We compared experimentally the effects of submerged and free-floating plants on water chemistry, phytoplankton biomass, zooplankton and fish community structure in a shallow hypertrophic lake (Lake Rodó, 34°55S 56°10W, Uruguay). Except for the retention of suspended solids, we found no other significant bottom-up process connected with either Eichhornia crassipes or Potamogeton pectinatus. Free-floating plants had a lower abundance of medium-sized zooplankton than any other microhabitat and submerged plants were apparently preferred by microcrustaceans. Fish showed a differential habitat use according to species, size-class and feeding habits. Dominant omnivore-planktivores, particularly the smallest size classes, preferred submerged plants. In contrast, omnivore-piscivores were significantly associated with free-floating plants. The density of omnivorous-planktivorous fish, by size class, significantly explained the distribution of medium-sized zooplankton, the high number of size 0 fish being the main factor. The abiotic environment and the structure of the zooplankton community explained little of the fish distribution pattern. Our results suggest that bottom-up effects of free-floating plants are weak when cover is low or intermediate. Top-down effects are complex, as effects on zooplankton and fish communities seem contradictory. The low piscivores:planktivores ratio in all microhabitats suggests, however, that cascading effects on phytoplankton through free-floating plant impacts on piscivorous fish are unlikely to be strong.  相似文献   

18.
Species composition and diversity of phytoplankton were studied for several years in two lakes which differ with respect to mixing conditions and nutrient limitation: Schlachtensee regularly stratifies very stably. In contrast, size and wind-exposure predispose Lake Tegel to deeper mixing; additionally, stratification is artificially destabilized by aeration. As the duration of aeration was varied, the study period includes interannual changes in mixing conditions. For both lakes, it also covers trophic change due to restoration; this was especially pronounced in Schlachtensee.Results show that mixing conditions affect species composition on two levels: on a superordinate level, lake morphology or hydrology govern stability of stratification and susceptibility to perturbation, and hence the extent to which motile species can develop. In Schlachtensee, species with some means of actively seeking preferred depths usually dominated during summer stratification: Planktothrix agardhii during the hypertrophic phase, and flagellates since restoration. In contrast, in Lake Tegel deeper mixing as a generally prevailing condition favored non-motile species. Their seasonal pattern was remarkably constant from year to year. Although changes in the extent of mixing were pronounced during the four years studied (1987–1990), these were within a range that affected species composition only slightly: in summer, cyanobacteria and diatoms represented climax species whose dominance was not offset by additional, weather-induced increases of turbulence.On a subordinate level, and within the constraints set by nutrient limitation as well as by grazing pressure, small-scale changes in mixing conditions caused by meteorological cycles were shown to strongly affect species composition and in consequence diversity: Results for the fouryear post-restoration study period at Schlachtensee show that considerable interannual variations of species composition and diversity can be attributed to variations in the frequency of meteorological changes. In accordance with the intermediate disturbance hypothesis (IDH), diversity was lowest during 1989, the year with the longest and most pronounced cycles of fair weather (14 to 27 fair days on end). However, the mechanism for this was rarely a decline of diversity caused by competitive exclusion within single long phases of stable conditions, as conceived by the intermediate disturbance hypothesis. Instead, diversity responded to changes in mixing conditions with a variety of patterns — often with low values during phases of increased mixing and with high values under quiescent conditions, especially during the first calm days just after increased mixing. Thus, not disturbance as such, but rather the rate of change between phases of disturbance and quiescence appears to determine the frequency of high diversity indices.In Lake Tegel, high diversity indices were somewhat more frequent in 1989, the year during which thermal stratification was most stable. For species adapted to frequent or continuous mixing, interjected calm phases with unusually high stability of thermal stratification may represent a disturbance of accustomed conditions. Thus, in turbulent Lake Tegel, meteorological cycles appear to act in reversal to the IDH, in a sense which may be termed intermediate quiescence hypothesis.Phosphorus limitation due to successful restoration was found to decrease winter and vernal diversity in Schlachtensee. Presumably, without nutrient constraints, new populations could grow more rapidly in response to the rapid changes of physical parameters during this season. In contrast, restoration has increased summer diversity, as phosphorus concentrations no longer allow the virtual monocultures of Planktothrix agardhii which prevailed previously. In Lake Tegel, the reduction of phosphorus concentration down to 60 µg/l P in 1989 limited biomass, but this level was still too high to significantly alter species composition or diversity.  相似文献   

19.
Synopsis The bulk of Lake Opinicon fish biomass is concentrated in the physically diverse inshore areas. Quantitative analysis of the community compositions of the various inshore habitat types (weedy inlets, sandy shallows, rock shelf, gravel, etc.) showed that each supported a characteristic assemblage of fishes with a relatively constant species and year class composition. This was maintained throughout the season despite a drop in fish biomass in late summer when there was a progressive movement into the offshore waters.Weedbed areas supported the highest biomass, and greatest species and year class diversity. Thereafter, in declining order of richness, were rocky and sandy areas. A few fish species were restricted to single habitat types, e.g.Notropis heterodon to inshore weedbeds.Lepomis macrochirus, the commonest species in the lake was, by contrast, versatile and occurred in all inshore habitats. Commonly the numbers of a species in a habitat differed between day and night. Significant diel movements between habitats characterized two nocturnal feedersPomoxis nigromaculatus andIctalurus nebulosus.  相似文献   

20.
Although tropical coral reefs are one of the most spectrally complex habitats, there is relatively little known about colour vision of reef fish. In this study, we measured the spectral sensitivity of an endemic Hawaiian coral reef fish, Thalassoma duperrey (family Labridae), and assessed the possible role of visual sensitivity in mediating intraspecific communication. Electrophysiological recordings of compound action potentials from retinal ganglion cells were used to generate spectral sensitivity curves for specific wavelengths (380–620nm). We found at least 2 sensitivity peaks for the on response (max=460, 550nm). The off response lacked a short wavelength mechanism but a medium wavelength mechanism (max=545nm) and a longwave mechanism (max=570nm) were found. To quantify the visual stimulus provided by a conspecific individual, spectral reflectance from the colour pattern of T. duperrey was measured with a spectroradiometer. Luminance and spectral contrast were computed between colour patches of the pattern and between the patches and natural backgrounds (i.e., water and coral). Reflectance from the blue head and contrast from the blue, green and red patches matched the sensitivity maxima of T. duperrey, although this depended on the type of background. Our results indicate that T. duperrey should be able to visually detect the colour pattern of a conspecific fish and that T. duperrey's visual system is designed to enhance target detection in the coral reef habitat with matched and offset cone mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号