首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Initiation of adenovirus DNA synthesis is preceded by the assembly of a nucleoprotein complex at the origin of DNA replication containing three viral proteins, preterminal protein, DNA polymerase and DNA binding protein, and two cellular proteins, nuclear factors I and III. While sequence specific interactions of the cellular proteins with their cognate sites in the origin of DNA replication are well characterized, the question of how the viral replication proteins recognize the origin has remained unanswered. Preterminal protein and DNA polymerase were therefore purified to homogeneity from recombinant baculovirus infected insect cells. Gel filtration demonstrated that while DNA polymerase existed in monomeric and dimeric forms, preterminal protein was predominantly monomeric and when combined the proteins formed a stable heterodimer. In a gel electrophoresis DNA binding assay each of the protein species recognized DNA within the origin of DNA replication with unique specificity. Competition analysis and DNase I protection experiments revealed that although each protein could recognize the origin, the heterodimer did so with enhanced specificity, protecting bases 8-17 from cleavage with the nuclease. Thus the highly conserved 'core' of the origin of DNA replication, present in all human adenoviruses, is recognized by the preterminal protein--DNA polymerase heterodimer.  相似文献   

2.
3.
Adenovirus DNA polymerase is one of three viral proteins and two cellular proteins required for replication of the adenovirus genome. During initiation of viral DNA synthesis the viral DNA polymerase transfers dCMP onto the adenovirus preterminal protein, to which it is tightly bound. The domain structure of the 140 kDa DNA polymerase has been probed by partial proteolysis and the sites of proteolytic cleavage determined by N-terminal sequencing. At least four domains can be recognised within the DNA polymerase. Adenovirus preterminal protein interacts with three of the four proteolytically derived domains. This was confirmed by cloning and expression of each of the individual domains. These data indicate that, like other members of the pol alpha family of DNA polymerases, the adenovirus DNA polymerase has a multidomain structure and that interaction with preterminal protein takes place with non-contiguous regions of the polypeptide chain over a large surface area of the viral DNA polymerase.  相似文献   

4.
5.
Liu H  Naismith JH  Hay RT 《Journal of virology》2000,74(24):11681-11689
Adenovirus codes for a DNA polymerase that is a member of the DNA polymerase alpha family and uses a protein primer for initiation of DNA synthesis. It contains motifs characteristic of a proofreading 3'-5'-exonuclease domain located in the N-terminal region and several polymerase motifs located in the C-terminal region. To determine the role of adenovirus DNA polymerase in DNA replication, 22 site-directed mutations were introduced into the conserved DNA polymerase motifs in the C-terminal region of adenovirus DNA polymerase and the mutant forms were expressed in insect cells using a baculovirus expression system. Each mutant enzyme was tested for DNA binding activity, the ability to interact with pTP, DNA polymerase catalytic activity, and the ability to participate in the initiation of adenovirus DNA replication. The mutant phenotypes identify functional domains within the adenovirus DNA polymerase and allow discrimination between the roles of conserved residues in the various activities carried out by the protein. Using the functional data in this study and the previously published structure of the bacteriophage RB69 DNA polymerase (J. Wang et al., Cell 89:1087-1099, 1997), it is possible to envisage how the conserved domains in the adenovirus DNA polymerase function.  相似文献   

6.
An extract from Adenovirus type 4 infected HeLa cells was fractionated by ion-exchange and DNA affinity chromatography. One fraction, which bound tightly to single stranded DNA, contained predominantly a protein of apparent molecular weight 65,000 and three less abundant proteins. Immunological cross-reactivity with adenovirus type 2 proteins confirmed the presence of preterminal protein and indicated that the abundant species was the virus coded DNA binding protein. This fraction contained an aphidicolin resistant DNA polymerase activity and in the presence of a linearised plasmid containing the adenovirus type 4 origin of DNA replication efficient transfer of dCMP onto preterminal protein, indicative of initiation, was observed. Furthermore, addition of all four deoxyribonucleotide triphosphates and an ATP regenerating system resulted in the elongation of initiated molecules to generate plasmid molecules covalently attached to preterminal protein. Adenovirus type 4 DNA binding protein was extensively purified from crude adenovirus-4 infected HeLa extract by immunoaffinity chromatography using a monoclonal antibody raised against adenovirus type 2 DNA binding protein. A low level of initiation of DNA replication was detected in the fraction depleted of DNA binding protein but activity was restored by addition of purified DNA binding protein. DNA binding protein therefore plays an important role in the initiation of Ad4 DNA replication.  相似文献   

7.
A Webster  I R Leith    R T Hay 《Journal of virology》1994,68(11):7292-7300
Adenoviruses code for a protease that is essential for infectivity and is activated by a disulfide-linked peptide, derived from the C terminus of the virus structural protein pVI (pVI-CT). The protease was synthesized at relatively high levels late in infection and was detected in both cytoplasmic and nuclear fractions of adenovirus-infected cells. DNA was not found to be a cofactor of the protease, as previously proposed (W. F. Mangel, W. J. McGrath, D. Toledo, and C. W. Anderson, Nature [London] 361:274-275, 1993), but a role for DNA in facilitating the activation of the protease by pVI-CT in vivo cannot be ruled out. Adenovirus preterminal protein is a substrate for the virus-coded protease, with digestion to the mature terminal protein proceeding via the formation of two intermediates. Each of the three cleavage sites in the preterminal protein was identified by N-terminal sequencing and shown to conform to the substrate specificity of adenovirus protease, (M,L,I)XGX-X. Functional studies revealed that preterminal protein and intermediates but not mature terminal protein associated with adenovirus polymerase, while only the intact preterminal protein and none of its digestion products bound to DNA. These results suggest that the virus-coded protease may influence viral DNA replication by cleavage of both genome-bound and freely soluble preterminal protein, with consequent alterations to their functional properties.  相似文献   

8.
Vesicular stomatitis virus (VSV) leader RNA and a synthetic oligodeoxynucleotide of the same sequence were found to inhibit the replication of adenovirus DNA in vitro. In contrast, the small RNA transcribed by the VSV defective interfering particle DI-011 did not prevent adenovirus DNA replication. The inhibition produced by leader RNA was at the level of preterminal protein (pTP)-dCMP complex formation, the initiation step of adenovirus DNA replication. Initiation requires the adenovirus pTP-adenovirus DNA polymerase complex (pTP-Adpol), the adenovirus DNA-binding protein, and nuclear factor I. Specific replication in the presence of leader RNA was restored when the concentration of adenovirus-infected or uninfected nuclear extract was increased or by the addition of purified pTP-Adpol or HeLa cell DNA polymerase alpha-primase to inhibited replication reactions. Furthermore, the activities of both purified DNA polymerases could be inhibited by the leader sequence. These results suggest that VSV leader RNA is the viral agent responsible for inhibition of adenovirus and possibly cellular DNA replication during VSV infection.  相似文献   

9.
10.
Abstract: φ29 DNA replication starts at both DNA ends by a protein priming mechanism. The formation of the terminal protein-dAMP initiation complex is directed by the second nucleotide from the 3' end of the template. The transition from protein-primed initiation to normal DNA elongation has been proposed to occur by a sliding-back mechanism that is necessary for maintaining the sequences at the φ29 DNA ends. Structure—function studies have been carried out in the φ29 DNA polymerase. By site-directed mutagenesis of amino acids conserved among distantly related DNA polymerases we have shown that the N-terminal domain of φ29 DNA polymerase contains the 3'–5' exonuclease activity and the strand-displacement capacity, whereas the C-terminal domain contains the synthetic activities (protein-primed initiation and DNA polymerization). Viral protein p6 stimulates the initiation of φ29 DNA replication. The structure of the protein p6—DNA complex has been determined, as well as the main signals at the φ29 DNA ends recognized by protein p6. The DNA binding domain of protein p6 has been studied. The results indicate that an α-helical structure located in the N-terminal region of protein p6 is involved in DNA binding through the minor groove. The φ29 protein p5 is the single-stranded DNA binding (SSB) protein involved in φ29 DNA replication, by binding to the displaced single-stranded DNA (ssDNA) in the replication intermediates. In addition, protein p5 is able to unwind duplex DNA. The properties of the φ29 SSB—ssDNA complex are described. Using the four viral proteins, terminal protein, DNA polymerase, protein p6 and the SSB protein, it was possible to amplify the 19285-bp φ29 DNA molecule by a factor of 4000 after 1 h of incubation at 30°C. The infectivity of the in vitro amplified DNA was identical to that of φ29 DNA obtained from virions.  相似文献   

11.
12.
The herpes simplex virus type 1 (HSV-1) UL8 DNA replication protein is a component of a trimeric helicase-primase complex. Sixteen UL8-specific monoclonal antibodies (MAbs) were isolated and characterized. In initial immunoprecipitation experiments, one of these, MAb 804, was shown to coprecipitate POL, the catalytic subunit of the HSV-1 DNA polymerase, from extracts of insect cells infected with recombinant baculoviruses expressing the POL and UL8 proteins. Coprecipitation of POL was dependent on the presence of UL8 protein. Rapid enzyme-linked immunosorbent assays (ELISAs), in which one protein was bound to microtiter wells and binding of the other protein was detected with a UL8- or POL-specific MAb, were developed to investigate further the interaction between the two proteins. When tested in the ELISAs, five of the UL8-specific MAbs consistently inhibited the interaction, raising the possibility that these antibodies act by binding to epitopes at or near a site(s) on UL8 involved in its interaction with POL. The epitopes recognized by four of the inhibitory MAbs were approximately located by using a series of truncated UL8 proteins expressed in mammalian cells. Three of these MAbs recognized an epitope near the C terminus of UL8, which was subjected to fine mapping with a series of overlapping peptides. The C-terminal peptides were then tested in the ELISA for their ability to inhibit the POL-UL8 interaction: the most potent exhibited a 50% inhibitory concentration of approximately 5 microM. Our findings suggest that the UL8 protein may be involved in recruiting HSV-1 DNA polymerase into the viral DNA replication complex and also identify a potential new target for antiviral therapy.  相似文献   

13.
Monoclonal antibodies were prepared against the high mobility group (HMG) proteins 1, 2a, and 2b from hen erythrocyte chromatin. One antibody that recognized multiple sites along HMG-1, -2a, and -2b reacted strongly with HMG proteins from all vertebrates tested. In contrast, five antibodies that detected unique epitopes on chicken HMG-1 and -2a recognized antigenic sites that exhibited restricted phylogenic distributions. The differential reactivity of these antibodies on vertebrate proteins was in agreement with traditional taxonomy in that the avian HMGs were most closely related to those from reptiles and less related to those from mammals, amphibians, bonyfish, and especially the jawless fish. Mononucleosomes generated by mild digestion of erythrocyte chromatin with micrococcal nuclease were highly enriched in HMG-2a. One antigenic determinant located within the N-terminal domain of HMG-2a was freely accessible to its antibody when the protein was bound to these mononucleosomes. In contrast, two antibodies that recognized determinants in the central region of HMG-2a exhibited little chromatin binding activity. The masking of the central domain by DNA binding was presumably not responsible for these results because all three determinants were available for antibody binding when HMG-2a was bound to DNA in vitro. Therefore, the central region of HMG-2a may be masked from antibody binding by protein-protein interactions in chromatin.  相似文献   

14.
An in vitro system which replicates plasmid DNA containing the replication origin of adenovirus DNA has been established. Replication of plasmid pLA1 DNA, which contains the left-hand terminus (0-9.4 map units) of adenovirus serotype 5 DNA but which lacks the 55,000-dalton terminal protein, is initiated by a protein-primed mechanism in a manner similar to that found with adenovirus DNA. Initiation of DNA replication using plasmid pLA1 as a template requires (i) that the cloned adenovirus sequence be present at the terminus of a linearized (form III) DNA molecule ( Tamanoi , F., and Stillman , B. W. (1982) Proc. Natl. Acad. Sci. U. S. A., 79, 2221-2225; van Bergen, B. G. M., van der Ley , P. A., van Driel , W., van Mansfield , A. D. M., and van der Vliet , P. A. (1983) Nucleic Acid Res. 11, 1975-1979), and (ii) the presence of the 80,000-dalton precursor to the 55,000-dalton terminal protein and the adenovirus coded DNA-dependent DNA polymerase. In the presence of the four deoxy-nucleoside triphosphates, the preterminal protein, the adenovirus coded DNA binding protein, and an extract prepared from uninfected HeLa nuclei, the adenovirus DNA polymerase can elongate the preterminal-protein dCMP initiation complex formed on pLA1 DNA to full length (6.6 kilobase) DNA molecules. These results suggest that the 55,000-dalton terminal protein covalently linked to the 5' termini of adenovirus DNA is not essential for the replication of this DNA.  相似文献   

15.
Phage ϕ29 DNA replication takes place by a protein-priming mechanism in which the viral DNA polymerase catalyses the covalent linkage of the initiating nucleotide to a specific serine residue of the terminal protein (TP). The N-terminal domain of the ϕ29 TP has been shown to bind to the host DNA in a sequence-independent manner and this binding is essential for the TP nucleoid localisation and for an efficient viral DNA replication in vivo. In the present work we have studied the involvement of the TP N-terminal domain residues responsible for DNA binding in the different stages of viral DNA replication by assaying the in vitro activity of purified TP N-terminal mutant proteins. The results show that mutation of TP residues involved in DNA binding affects the catalytic activity of the DNA polymerase in initiation, as the Km for the initiating nucleotide is increased when these mutant proteins are used as primers. Importantly, this initiation defect was relieved by using the ϕ29 double-stranded DNA binding protein p6 in the reaction, which decreased the Km of the DNA polymerase for dATP about 130–190 fold. Furthermore, the TP N-terminal domain was shown to be required both for a proper interaction with the DNA polymerase and for an efficient viral DNA amplification.  相似文献   

16.
Physical interactions of simian virus 40 (SV40) large tumor (T) antigen with cellular DNA polymerase α-primase (Pol/Prim) and replication protein A (RPA) appear to be responsible for multiple functional interactions among these proteins that are required for initiation of viral DNA replication at the origin, as well as during lagging-strand synthesis. In this study, we mapped an RPA binding site in T antigen (residues 164 to 249) that is embedded within the DNA binding domain of T antigen. Two monoclonal antibodies whose epitopes map within this region specifically interfered with RPA binding to T antigen but did not affect T-antigen binding to origin DNA or Pol/Prim, ATPase, or DNA helicase activity and had only a modest effect on origin DNA unwinding, suggesting that they could be used to test the functional importance of this RPA binding site in the initiation of viral DNA replication. To rule out a possible effect of these antibodies on origin DNA unwinding, we used a two-step initiation reaction in which an underwound template was first generated in the absence of primer synthesis. In the second step, primer synthesis was monitored with or without the antibodies. Alternatively, an underwound primed template was formed in the first step, and primer elongation was tested with or without antibodies in the second step. The results show that the antibodies specifically inhibited both primer synthesis and primer elongation, demonstrating that this RPA binding site in T antigen plays an essential role in both events.  相似文献   

17.
Monoclonal antibodies produced to both chicken ovotransferrin and to the isolated N- and C-terminal half-molecule domains of ovotransferrin have been used to probe the interaction of ovotransferrin with its specific receptor on chick embryo red blood cells. Two antibodies to epitopes on the N-terminal domain and one antibody to an epitope on the C-terminal domain were able to block the binding of 125I-labeled diferric ovotransferrin to the receptor. When the cellular surface receptors were first saturated with ovotransferrin at 0 degrees C, none of these antibodies bound to the cell-associated ovotransferrin. This suggests that the antibodies are to epitopes which lie very near to, or in the regions of, the two domains which interact with receptor. The same three antibodies also blocked the binding to the receptor of ovotransferrin associated in situ from the isolated N- and C-terminal half-molecule domains. A fourth antibody did not block binding to receptor of 125I-labeled diferric ovotransferrin or the associated domains; furthermore, it was able to bind to ovotransferrin bound to the cell surface at 0 degrees C. This antibody thus appears to recognize an epitope remote from the receptor binding region of ovotransferrin. Additional evidence for the requirement of the presence of both domains of ovotransferrin to effect binding to the transferrin receptor on chick reticulocytes was obtained with a fifth antibody which recognized only the N-terminal half-molecule domain but not holo-ovotransferrin. Although this antibody had no effect on the binding of 125I-labeled ovotransferrin to cells, it blocked binding to receptor of the associated domains of ovotransferrin, presumably by inhibiting the association of the two domains.  相似文献   

18.
The Escherichia coli SeqA protein, a negative regulator of chromosomal DNA replication, prevents the overinitiation of replication within one cell cycle by binding to hemimethylated G-mA-T-C sequences in the replication origin, oriC. In addition to the hemimethylated DNA-binding activity, the SeqA protein has a self-association activity, which is also considered to be essential for its regulatory function in replication initiation. To study the functional domains responsible for the DNA-binding and self-association activities, we performed a deletion analysis of the SeqA protein and found that the N-terminal (amino acid residues 1-59) and the C-terminal (amino acid residues 71-181) regions form structurally distinct domains. The N-terminal domain, which is not involved in DNA binding, has the self-association activity. In contrast, the C-terminal domain, which lacks the self-association activity, specifically binds to the hemimethylated G-mA-T-C sequence. Therefore, two essential SeqA activities, self-association and DNA-binding, are independently performed by the structurally distinct N-terminal and C-terminal domains, respectively.  相似文献   

19.
The absolute requirement for primers in the initiation of DNA synthesis poses a problem for replicating the ends of linear chromosomes. The DNA polymerase of bacteriophage phi29 solves this problem by using a serine hydroxyl of terminal protein to prime replication. The 3.0 A resolution structure shows one domain of terminal protein making no interactions, a second binding the polymerase and a third domain containing the priming serine occupying the same binding cleft in the polymerase as duplex DNA does during elongation. Thus, the progressively elongating DNA duplex product must displace this priming domain. Further, this heterodimer of polymerase and terminal protein cannot accommodate upstream template DNA, thereby explaining its specificity for initiating DNA synthesis only at the ends of the bacteriophage genome. We propose a model for the transition from the initiation to the elongation phases in which the priming domain of terminal protein moves out of the active site as polymerase elongates the primer strand. The model indicates that terminal protein should dissociate from polymerase after the incorporation of approximately six nucleotides.  相似文献   

20.
The precursor terminal protein pTP is the primer for the initiation of adenovirus (Ad) DNA replication and forms a heterodimer with Ad DNA polymerase (pol). Pol can couple dCTP to pTP directed by the fourth nucleotide of the viral genome template strand in the absence of other replication proteins, which suggests that pTP/pol binding destabilizes the origin or stabilizes an unwound state. We analyzed the contribution of pTP to pTP/pol origin binding using various DNA oligonucleotides. We show that two pTP molecules bind cooperatively to short DNA duplexes, while longer DNA fragments are bound by single pTP molecules as well. Cooperative binding to short duplexes is DNA sequence independent and most likely mediated by protein/protein contacts. Furthermore, we observed that pTP binds single-stranded (ss)DNA with a minimal length of approximately 35 nt and that random ssDNA competed 25-fold more efficiently than random duplex DNA for origin binding by pTP. Remarkably, short DNA fragments with two opposing single strands supported monomeric pTP binding. pTP did not stimulate, but inhibited strand displacement by the Ad DNA binding and unwinding protein DBP. These observations suggest a mechanism in which the ssDNA affinity of pTP stabilizes Ad pol on partially unwound origin DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号