首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Key message

Sequence analysis and genetic mapping revealed that a 1,444 bp deletion causes a premature stop codon in SbBADH2 of sorghum IS19912. The non-function of SbBADH2 is responsible for fragrance in sorghum IS19912.

Abstract

2-acetyl-1-pyrroline (2AP) is a potent volatile compound causing fragrance in several plants and foods. Seeds of some varieties of rice, sorghum and soybean possess fragrance. The genes responsible for fragrance in rice and soybean are orthologs that correspond to betaine aldehyde dehydrogenase 2 (BADH2). Genotypes harboring fragrance in rice and soybean contain a premature stop codon in BADH2 which impairs the synthesis of full length functional BADH2 protein leading to the accumulation of 2AP. In this study, we reported an association between the BADH2 gene and fragrance in sorghum. An F2 population of 187 plants developed from a cross between KU630 (non-fragrant) and IS19912 (fragrant) was used. Leaves of F2 and F3 progenies were evaluated for fragrance by organoleptic test, while seeds of F2 plants were analyzed for 2AP. The tests consistently showed that the fragrance is controlled by a single recessive gene. Gene expression analysis of SbBADH1 and SbBADH2 in leaves of KU630 and IS19912 at various stages revealed that SbBADH1 and SbBADH2 were expressed in both accessions. Sequence comparison between KU630 and IS19912 revealed a continuous 1,444 bp deletion encompassing exon 12 to 15 of SbBADH2 in IS19912 which introduces a frameshift mutation and thus causes a premature stop codon. An indel marker was developed to detect polymorphism in SbBADH2. Bulk segregant and QTL analyses confirmed the association between SbBADH2 and fragrance.  相似文献   

2.
The effects of plant growth regulators (PGRs) and organic elicitors (OEs) on in vitro propagation of Eucomis autumnalis was established. Three-year-old ex vitro grown plants from organogenesis of E. autumnalis and somatic embryogenesis (previously reported protocol) of Drimia robusta were investigated for antibacterial activity. In vitro propagation from leaf explants of E. autumnalis was established using different PGRs and OE treatments for mass propagation, biomass production and bioactivity analysis to supplement the use of wild plant material. Prolific shoots (16.0?±?0.94 shoots per explant) were obtained with MS (Murashige and Skoog in Physiol Plant 15:473–497, 1962) medium containing 100 mg l?1 haemoglobin (HB), 10 µM benzyladenine (BA) and 2 µM naphthaleneacetic acid (NAA). The shoots were rooted effectively with a combination of 2.5 µM indole-3-acetic acid and 5.0 µM indole-3-butyric acid. The plantlets were successfully acclimatized in a vermiculite-soil mixture (1:1 v/v) in the greenhouse. Three-year-old ex vitro-grown E. autumnalis and D. robusta plants derived via organogenesis and somatic embryogenesis respectively exhibited antibacterial activity and varied with PGR and OE treatments, plant parts and bacteria. The leaves of E. autumnalis ex vitro-derived from a combination of HB, BA and NAA followed by the individual treatments of BA and HB gave the best antibacterial activities (<?1 mg ml?1: minimum inhibitory concentration from 0.098 to 0.78 mg ml?1) against all tested pathogenic bacteria (Bacillus subtilis, Enterococcus faecalis, Micrococcus luteus, Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa). The bulbs of D. robusta ex vitro-derived from solid culture with 10 µM picloram, 1 µM thidiazuron and 20 µM glutamine exhibited good antibacterial activity against E. faecalis, M. luteus and S. aureus when compared with other treatments and mother plants. The ex vitro-grown E. autumnalis and D. robusta biomass produced with PGRs along with OE treatments confirmed a good potent bioresource and can be used as antibacterial agents. The in vitro plant regeneration of E. autumnalis and D. robusta protocols and ex vitro plants could be used for conservation strategies, bioactivity and traditional medicinal use.  相似文献   

3.
4.
NKG2C is an activating receptor that is preferentially expressed on natural killer (NK) cells. The gene encoding NKG2C (killer cell lectin-like receptor C2, KLRC2) is present at different copy numbers in the genomes of different individuals. Deletion at the NKG2C locus was investigated in a case–control study of 1522 individuals indigenous to East- and West-Africa and the association with the ocular Chlamydia trachomatis infection and its sequelae was explored. The frequency of homozygous KLRC2 deletion was 13.7 % in Gambians and 4.7 % in Tanzanians. A significantly higher frequency of the deletion allele was found in West-Africans from the Gambia and Guinea-Bissau (36.2 % p = 2.105 × 10?8, 26.8 % p = 0.050; respectively) in comparison to East-African Tanzanians where the frequency of the deletion is comparable to other human populations (20.9 %). We found no evidence for an association between the numbers of KLRC2 gene copies and the clinical manifestations of trachoma (follicular trachoma or conjunctival scarring). A new method for imputation of KLRC2 genotypes from single nucleotide polymorphism (SNP) data in 2621 individuals from the Gambia further confirmed these results. Our data suggest that NKG2C does not play a major role in trachomatous disease. We found that the deletion allele is present at different frequencies in different populations but the reason behind these differences is currently not understood. The new method offers the potential to use SNP arrays from genome wide association studies to study the frequency of KLRC2 deletion in other populations and its association with other diseases.  相似文献   

5.
Sulfur is an essential element for all living organisms. Plants can convert inorganic sulfur into organic sulfur compounds by complex enzymatic steps. In this study, we conducted a genome-wide analysis of sulfate transporter genes (SULTRs) in the sorghum (Sorghum bicolor) genome and examined expression profiles of SbSULTR genes under 200 µM cadmium (Cd) exposure. As a result of sorghum genome analysis, 11 SULTR genes were identified, including SbSULTR1;1, SbSULTR1;2, SbSULTR1;3, SbSULTR2;1, SbSULTR2;2, SbSULTR3;1, SbSULTR3;2, SbSULTR3;3, SbSULTR3;4, SbSULTR3;5, and SbSULTR4. Given names are based on phylogeny and chromosomal locations. Except SbSULTR4, all SbSULTR proteins contained Sulfate_transp (PF00916), STAS (PF01740) domains and 12 trans-membrane domains. Phylogenetic analysis revealed that four major groups were identified such as SULTR1, 2, 3, and 4 groups and SULTR4 group was separated to other SULTR groups. In promotor sequences of SbSULTR genes, many diverse cis-acting elements were found mainly related with physiological processes such as light, stress and hormone responsiveness. The expression profiles of SbSULTR genes showed that SULTR1;2, 1;3, 3;3, and 3;5 genes up-regulated in root, while expression level of SULTR4 decreased under 200 µM Cd exposure. The predicted 3D structures of SULTR proteins showed some conformational changes, suggesting functional diversities of SbSULTRs. Finally, results of this study may contribute towards understanding SbSULTR genes and their regulations and roles in Cd stress in sorghum.  相似文献   

6.
Shoot fly is a major insect pest of sorghum damaging early crop growth, establishment and productivity. Host plant resistance is an efficient approach to minimize yield losses due to shoot fly infestation. Seedling leaf blade glossiness and trichome density are morphological traits associated with shoot fly resistance. Our objective was to identify and evaluate QTLs for glossiness and trichome density using- i) 1894 F2s, ii) a sub-set of 369 F2-recombinants, and iii) their derived 369 F2:3 progenies, from a cross involving introgression lines RSG04008-6 (susceptible)?×?J2614-11 (resistant). The QTLs were mapped to a 37–72 centimorgan (cM) or 5–15 Mb interval on the long arm of sorghum chromosome 10 (SBI-10L) with flanking markers Xgap001 and Xtxp141. One QTL each for glossiness (QGls10) and trichome density (QTd10) were mapped in marker interval Xgap001-Xnhsbm1044 and Xisep0630-Xtxp141, confirming their loose linkage, for which phenotypic variation accounted for ranged from 2.29 to 11.37 % and LOD values ranged from 2.03 to 24.13, respectively. Average physical map positions for glossiness and trichome density QTLs on SBI-10 from earlier studies were 4 and 2 Mb, which in the present study were reduced to 2 Mb and 800 kb, respectively. Candidate genes Glossy15 (Sb10g025053) and ethylene zinc finger protein (Sb10g027550) falling in support intervals for glossiness and trichome density QTLs, respectively, are discussed. Also we identified a sub-set of recombinant population that will facilitate further fine mapping of the leaf blade glossiness and trichome density QTLs on SBI-10.  相似文献   

7.
The present study has focused on the effects of hypericin (Hyp) based photodynamic inactivation (PDI) of Escherichia coli (E. coli). To evaluate the efficiency of Hyp based PDI of E. coli, single factor experiments and response surface optimization experiment were conducted to obtain the optimum parameter values (36 µM Hyp, 5.9 J cm?2 light dose: 16.4 mW cm?2, 60 W, 260 s, 590 nm and 68 min incubation time) and finally achieved a 4.1 log CFU mL?1 decrease of E. coli. Cell-Hyp interaction and intracellular reactive oxygen species (ROS) level were detected by fluorescence spectrometric photometer. Data indicated that Hyp possessed a strong ability to bind with cells. In addition, a significant increase was observed in intracellular ROS level after Hyp-based photosensitization treatment. Therefore, Hyp-based photosensitization seems to be a promising method to efficiently inactivate E. coli. It is expected to be a safe, efficient, low cost and practical method which can be applied in the field of food safety.  相似文献   

8.
Antarctic benthos has been a main target in Antarctic research, but very few quantitative studies have been carried out in the littoral zone, which may be seasonally covered by macroalgae. In this work, we studied (1) cover and biomass of the macroalgae Iridaea cordata and Adenocystis utricularis, and (2) composition of macrobenthic assemblage associated with these macroalgal species at three locations at King George Island: Mareograph Beach (1 M), Tank’s Bay (2R) and Ardley Bay (3R). Iridaea cordata was collected by completely detaching the algae from the substrate, while A. utricularis was scraped. Adenocystis utricularis covered more than 80 % of the substrate at all locations, while coverage of Iridaea cordata was below 53 % or absent (3R). Fresh biomass of I. cordata was 0.8–61.4 g/individual and 4.7–93.0 g/100 cm2 for A. utricularis. The assemblage associated with both macroalgae differed significantly between sites. The studied fauna was composed mainly of amphipods, gastropods and bivalves. Species diversity was higher in the community associated with A. utricularis. A total of ~27 ind/g DW were found associated with I. cordata, while ~112 ind/g DW were found associated with A. utricularis. The most abundant groups associated with I. cordata were amphipods at 1 M (57 %) and gastropods at 2R (46 %). Both groups were responsible for the dissimilarity between localities (62.50 %). The most abundant groups associated with A. utricularis were the gastropods at all localities reaching up to 82 % at 1 M. This study provides a first baseline on the diversity and abundance of benthic assemblages associated with intertidal macroalgae in the southwest of King George Island.  相似文献   

9.
Hepcidins are small cysteine-rich antimicrobial peptides that play an important role in fish immunity against pathogens. Most fish species have two or more hepcidin homologs that have distinct functions. This study investigated the immune functions of mudskipper (Boleophthalmus pectinirostris) hepcidin-1 (BpHep-1) and hepcidin-2 (BpHep-2) in vitro and in vivo. Upon infection with Edwardsiella tarda, the expression of BpHep-1 and BpHep-2 mRNA in immune tissues was significantly upregulated, but the expression profiles were different. Chemically synthesized BpHep-1 and BpHep-2 mature peptides exhibited selective antibacterial activity against various bacterial species, and BpHep-2 exhibited a stronger antibacterial activity and broader spectrum than BpHep-1. BpHep-1 and BpHep-2 both inhibited the growth of E. tarda in vitro, with the latter being more effective than the former. In addition, both peptides induced hydrolysis of purified bacterial genomic DNA (gDNA) or gDNA in live bacteria. In vivo, an intraperitoneal injection of 1.0 μg/g BpHep-2 significantly improved the survival rate of mudskippers against E. tarda infection compared with 0.1 μg/g BpHep-2 or 0.1 and 1.0 μg/g BpHep-1. Similarly, only BpHep-2 treatment effectively reduced the tissue bacterial load in E. tarda-infected mudskippers. Furthermore, treatment with 1.0 or 10.0 μg/ml BpHep-2 promoted the phagocytic and bactericidal activities of mudskipper monocytes/macrophages (MO/MФ). However, only the highest dose (10.0 μg/ml) of BpHep-1 enhanced phagocytosis, and BpHep-1 exerted no obvious effects on bactericidal activity. In conclusion, BpHep-2 is a stronger bactericide than BpHep-1 in mudskippers, and acts not only by directly killing bacteria but also through an immunomodulatory function on MO/MФ.  相似文献   

10.
11.
Iron homeostasis was studied in two tropical indica rice cultivars viz. Sharbati (high Fe) and Lalat (low Fe) having contrasting grain Fe concentration. Plants were hydroponically grown with 5 concentrations of Fe (0.05, 2, 5, 15, 50 mg L?1) till maturity. The effect of incremental Fe treatment on the plant was followed by analyzing accumulation of ferritin protein, activities of aconitase enzyme, enzymes of anti-oxidative defense and accumulation of hydrogen peroxide and ascorbic acid. Plant growth was adversely affected beyond 15 mg L?1 of Fe supplementation and effects of Fe stress (both deficiency and excess) were more apparent on the high Fe containing cultivar Sharbati than the low Fe containing Lalat. Level of ferritin protein and aconitase activity increased up to 5 mg L?1 of Fe concentration. Lalat continued to synthesize ferritin protein at much higher Fe level than Sharbati and the cultivar also had higher activities of peroxidase, superoxide dismutase and glutathione reductase. It was concluded that the tolerance of Lalat to Fe stress was because of its higher intrinsic ability to scavenge free radicals of oxidative stress for possessing higher activity of antioxidative enzymes. This, together with its capacity to sequester the excess Fe in ferritin protein over a wider range of Fe concentrations made it more tolerant to Fe stress.  相似文献   

12.
Gymnosporia buxifolia (Celastraceae) is a well-known traditional medicinal plant used to treat various diseases. The aim of the study was to quantify the total phenolic and flavonoid content of cell biomass of G. buxifolia developed in vitro using plant growth regulators (PGRs), phloroglucinol (PG) and an antagonist of cytokinin activity 6-(2-hydroxy-3-methylbenzylamino) purine (PI55). The antibacterial activity of calli was also evaluated. The accumulation of phenolic contents and its antibacterial activity in the cell biomass varied between the treatments as well as the mother plant. Generally, a higher accumulation of phenolic contents translated to improved activity against selected pathogenic bacteria. This was apparent in biomass derived from solid and liquid MS media containing combinations of 5 µM PG, 1.5 µM benzyladenine (BA) or meta-topolin (mT) with or without 1 µM picloram (Pic) and 5 µM PG or PI55, 1 µM BA with or without 0.5 µM Pic respectively. The choice of PGRs, PG and PI55 treatments used during in vitro cell culture systems influenced the therapeutic potential of G. buxifolia. Our results indicate that the cell biomass from suspension and/or solid culture of G. buxifolia could be promising as antibacterial agents with possible applications in the pharmaceutical industry.  相似文献   

13.
Plants synthesize various phenol amides. Among them, hydroxycinnamoyl (HC) tryptamines and serotonins exhibit antioxidant, anti-inflammatory, and anti-atherogenic activities. We synthesized HC–tryptamines and HC–serotonin from several HCs and either tryptamine or serotonin using Escherichia coli harboring the 4CL (4-coumaroyl CoA ligase) and CaHCTT [hydroxycinnamoyl-coenzyme A:serotonin N-(hydroxycinnamoyl)transferase] genes. E. coli was engineered to synthesize N-cinnamoyl tryptamine from glucose. TDC (tryptophan decarboxylase) and PAL (phenylalanine ammonia lyase) along with 4CL and CaHCTT were introduced into E. coli and the phenylalanine biosynthetic pathway of E. coli was engineered. Using this strategy, approximately 110.6 mg/L of N-cinnamoyl tryptamine was synthesized. By feeding 100 μM serotonin into the E. coli culture, which could induce the synthesis of cinnamic acid or p-coumaric acid, more than 99 μM of N-cinnamoyl serotonin and N-(p-coumaroyl) serotonin were synthesized.  相似文献   

14.
Two uncharacterized nicotinamide adenine dinucleotide (NADH) oxidases (named as LpNox1, LpNox2) from Lactobacillus pentosus ATCC 8041 were cloned and overexpressed in Escherichia coli BL21 (DE3). The sequence analysis revealed that the two enzymes are water-forming Noxs with 64 % and 52 % identity to LbNox from Lactobacillus brevis DSM 20054. The optimal pH and temperature of the purified LpNox1 and LpNox2 were 7.0 and 8.0 and 35 and 40 °C, respectively, with K M of 99.0 μM (LpNox1) and 27.6 μM (LpNox2), and yielding catalytic efficiency k cat/K M of 1.0 and 0.2 μM?1 s?1, respectively. Heat inactivation studies revealed that the two enzymes are relatively instable. The application of LpNox1 for the regeneration of NAD+ was demonstrated by coupling with a glycerol dehydrogenase-catalyzed oxidation of glycerol to 1,3-dihydroxyacetone. The characteristics of the LpNox1 could prove to be of interest in industrial application such as NAD+ regeneration in dehydrogenase-catalyzed oxidations.  相似文献   

15.
Prairie cordgrass (Spartina pectinata Link) is a polyploid Chloridoid grass with tetraploid (2n = 40), hexaploid (2n = 60), and octoploid (2n = 80) cytotypes and is a potential dedicated energy crop with promising yields in marginal environments. Efforts to breed prairie cordgrass are currently hampered by the lack of a linkage map, the lack of a Chloridoid reference genome, and the lack of information on inheritance patterns (disomic versus polysomic). Genotyping-by-sequencing (GBS) was applied to a population of 85 progenies from a reciprocal cross of heterozygous tetraploid parents. A total of 26,418 SNPs were discovered, with a distribution of allele frequencies suggesting disomic inheritance. A filtered set of 3034 single-dose, high-coverage SNPs was used for pseudo-testcross mapping with 63 progenies, resulting in two parental maps of 20 linkage groups containing 1522 and 1016 SNPs and a nearly 1:1 ratio of coupling to repulsion phase linkages, again suggesting disomic inheritance. Genomic contigs from tef, another Chloridoid grass, were used as a bridge to associate genetic markers in prairie cordgrass with unique positions in the sorghum genome, providing a glimpse into synteny between Chloridoids and other grasses. GBS enabled rapid generation of a linkage map that will aid in future breeding and genomics efforts in prairie cordgrass.  相似文献   

16.
The demography and reproductive biology of three Epinephelus groupers (Serranidae), namely E. polyphekadion, E. tauvina, and E. howlandi in the Yaeyama Islands, Okinawa, were examined based on age assessment using otoliths and gonadal histology. The maximum ages for these three species were 26 year, 23 year, and 17 year. The von Bertalanffy growth functions were also determined for each species. The size and age at 50% female maturity were estimated to be 358 mm in total length (TL) and 6.0 year for E. polyphekadion, 371 mm TL and 6.7 year for E. tauvina, and 327 mm TL and 4.1 year for E. howlandi, respectively. Significant differences between the sexes in size and age frequencies were found in all three species, with males being larger and older than females, or transitional individuals. These results strongly indicated that the population of these three grouper species showed monandric protogynous hermaphroditism. The sex ratios of E. polyphekadion and E. tauvina were biased in favor of females, but that of E. howlandi was equivalent between sexes. The relative sizes of ripe testes indicated that the intensity of sperm competition varied among species suggesting different mating system of each species. Reproductive seasonality was similar among species, with active vitellogenesis coinciding with the annual rise in water temperature. The active spawning period was determined to be between April and May for E polyphekadion, in May for E. howlandi, and from March to June for E. tauvina.  相似文献   

17.
Dioscorea spp. is an important food crop in many countries and the source of the phytochemical diosgenin. Efficient microtuber production could provide source materials for farm-planting stock, for food markets, and for the production of high-diosgenin-producing cultivars. The first step in this study was optimizing the plant growth regulators for plantlet production, followed by a study of the effects of sucrose concentration on microtuber induction and diosgenin production. Significantly, more shoots (3.5) were produced at 4.65 μM (1 mg L?1) kinetin (KIN), longer shoots (4.1 cm) were obtained at 2.46 μM (0.5 mg L?1) indole-3-butyric acid (IBA), and root number (3.9) was significantly higher at 5.38 μM (1 mg L?1) naphthalene acetic acid (NAA) than in other treatments. Increased sucrose concentrations in the optimized growth medium with 4.65 μM KIN and 5.38 μM NAA had significant effects on microtuber production (p < 0.01) and diosgenin content (p < 0.05). The most microtubers (6.2) were obtained with 100 g L?1 sucrose, while those on 80 g L?1 sucrose were the heaviest (0.7 g) and longest (7.4 mm). Microtubers formed in medium with 80 g L?1 sucrose had significantly higher diosgenin content (3.64% [w/w]) than those in other sucrose treatments (< 2%) and was similar to that of field-grown parent tubers (3.79%). This result indicates an important role for sucrose in both microtuber growth and diosgenin production. Medium containing 4.65 μM KIN and 5.38 μM NAA is recommended for plantlet production, and medium containing 80 g L?1 sucrose is recommended for microtuber and diosgenin production.  相似文献   

18.
Myzus persicae (Sulzer) is a polyphagous aphid that causes chlorosis, necrosis, stunting, and reduce growth rate of the host plants. In this research, the effects of Zinc sulfate and vermicompost (30%), Bacillus subtilis, Pseudomonas fluorescens, Glomus intraradices, G. intraradices × B. subtilis, and G. intraradices × P. fluorescens compared to control was investigated on the growth characters of Capsicum annuum L. and biological parameters of M. persicae. Different fertilizers caused a significant effect on growth characters of C. annuum and biological parameters of M. persicae. The highest plant growth was observed on Zinc sulfate and B. subtilis treated plants, and the lowest was on control. Increase in the amount of specific leaf area (SLA) (0.502 mm2 mg?1) was significantly higher in the B. subtilis than other fertilizer treatments. The longest (10.3 days) and the shortest (5.3 days) developmental times of M. persicae nymphs were observed on 30% vermicompost and Zinc sulfate treatments, respectively. The lowest adult longevity periods of M. persicae (11.2 and 11.3 days) were observed on G. intraradices × B. subtilis and 30% vermicompost treatments, respectively, and the longest ones (16.4 days) on Zinc sulfate. The highest rate of nymphal mortality and the lowest amount of nymphal growth index (NGI) were recorded on 30% vermicompost. The nymphs reared on Zinc sulfate treatment had the lowest rate of nymphal mortality and the highest amount of NGI. Thus, amending the soil with 30% vermicompost had a significantly negative effect on the biological parameters of M. persicae that can be used as an ecological control tactic for this pest.  相似文献   

19.
The behavior of Myrothecium verrucaria, artificially inoculated on spinach, was studied under seven different temperature conditions (from 5 to 35 °C) and under eight different combinations of temperature and CO2 concentration (14–30 °C and 775–870 or 1550–1650 mg/m3). The isolate used for this study was growing well on spinach, and the mycotoxins verrucarin A and roridin E were produced under all tested temperature and CO2 conditions. The maximum levels of verrucarin A (18.59 ng/g) and roridin E (49.62 ng/g) were found at a temperature of 26–30 °C and a CO2 level of 1550–1650 mg/m3. Rises in temperature as well as in temperature and CO2 concentrations had a significant effect by increasing Myrothecium leaf spots on spinach. The biosynthesis of verrucarin A was significantly increased at the highest temperature (35 °C), while roridin E was influenced by the CO2 concentration. These results show that a positive correlation between climate condition and macrocyclic trichothecene production is possible. However, because of the ability of M. verrucaria to produce mycotoxins, an increase in temperature could induce the spread of M. verrucaria in temperate regions; this pathogen may gain importance in the future.  相似文献   

20.
Plantago ovata Forsk is an annual herb with immense medicinal importance, the seed and husk of which is used in the treatment of chronic constipation, irritable bowel syndrome, diarrhea since ancient times. Zinc, an essential metal, is required by plants as they form important components of zinc finger proteins and also aid in synthesis of photosynthetic pigments such as chlorophyll. However, in excess amount Zn causes chlorosis of leaf and shoot tissues and generate reactive oxygen species. The present study is aimed at investigating the changes in expression levels of MT2 gene in Plantago ovata under zinc stress. Data show up to 1.66 fold increase in expression of PoMT2 in 1000 µM ZnSO4·7H2O treated sample. Our study also describes alteration of MT2 gene expressions in Plantago ovata as observed through Real time PCR (qPCR) done by \(2^{{ - \Delta \Delta}} C_T\) method. In this study we have observed an upregulation (or induction) in the PoMT2 gene expression level in 500 and 800 µM ZnSO4·7H2O treated samples but found saturation on further increasing the dose to 1000 µM of ZnSO4·7H2O. Determination of the phenotypic and biochemical changes in Plantago ovata due to exposure to zinc stress of concentrations 500, 800 and 1000 µM revealed oxidative stress. The enhanced expression of MT2 gene in Plantago ovata has a correlation with the increased total antioxidant activity and increased DPPH radical scavenging activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号