首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Apomixis enables the clonal propagation of maternal genotypes through seed. If apomixis could be harnessed via genetic engineering or introgression, it would have a major economic impact for agricultural crops. In the grass species Pennisetum squamulatum and Cenchrus ciliaris (syn. P. ciliare), apomixis is controlled by a single dominant “locus”, the apospory-specific genomic region (ASGR). For P. squamulatum, 18 published sequenced characterized amplified region (SCAR) markers have been identified which always co-segregate with apospory. Six of these markers are conserved SCARs in the closely related species, C. ciliaris and co-segregate with the trait. A screen of progeny from a cross of sexual × apomictic C. ciliaris genotypes identified a plant, A8, retaining two of the six ASGR-linked SCAR markers. Additional and newly identified ASGR-linked markers were generated to help identify the extent of recombination within the ASGR. Based on analysis of missing markers, the A8 recombinant plant has lost a significant portion of the ASGR but continues to form aposporous embryo sacs. Seedlings produced from aposporous embryo sacs are 6× in ploidy level and hence the A8 recombinant does not express parthenogenesis. The recombinant A8 plant represents a step forward in reducing the complexity of the ASGR locus to determine the factor(s) required for aposporous embryo sac formation and documents the separation of expression of the two components of apomixis in C. ciliaris.  相似文献   

3.

Background

Apomixis is an intriguing trait in plants that results in maternal clones through seed reproduction. Apomixis is an elusive, but potentially revolutionary, trait for plant breeding and hybrid seed production. Recent studies arguing that apomicts are not evolutionary dead ends have generated further interest in the evolution of asexual flowering plants.

Results

In the present study, we investigate karyotypic variation in a single chromosome responsible for transmitting apomixis, the Apospory-Specific Genomic Region carrier chromosome, in relation to species phylogeny in the genera Pennisetum and Cenchrus. A 1 kb region from the 3' end of the ndhF gene and a 900 bp region from trnL-F were sequenced from 12 apomictic and eight sexual species in the genus Pennisetum and allied genus Cenchrus. An 800 bp region from the Apospory-Specific Genomic Region also was sequenced from the 12 apomicts. Molecular cytological analysis was conducted in sixteen Pennisetum and two Cenchrus species. Our results indicate that the Apospory-Specific Genomic Region is shared by all apomictic species while it is absent from all sexual species or cytotypes. Contrary to our previous observations in Pennisetum squamulatum and Cenchrus ciliaris, retrotransposon sequences of the Opie-2-like family were not closely associated with the Apospory-Specific Genomic Region in all apomictic species, suggesting that they may have been accumulated after the Apospory-Specific Genomic Region originated.

Conclusions

Given that phylogenetic analysis merged Cenchrus and newly investigated Pennisetum species into a single clade containing a terminal cluster of Cenchrus apomicts, the presumed monophyletic origin of Cenchrus is supported. The Apospory-Specific Genomic Region likely preceded speciation in Cenchrus and its lateral transfer through hybridization and subsequent chromosome repatterning may have contributed to further speciation in the two genera.  相似文献   

4.
5.
6.

Key message

A complete set wheat-R. ciliaris disomic addition lines (DALs) were characterized and the homoeologous groups and genome affinities of R. ciliaris chromosomes were determined.

Abstract

Wild relatives are rich gene resources for cultivated wheat. The development of alien addition chromosome lines not only greatly broadens the genetic diversity, but also provides genetic stocks for comparative genomics studies. Roegneria ciliaris (genome ScScYcYc), a tetraploid wild relative of wheat, is tolerant or resistant to many abiotic and biotic stresses. To develop a complete set of wheat-R. ciliaris disomic addition lines (DALs), we undertook a euplasmic backcrossing program to overcome allocytoplasmic effects and preferential chromosome transmission. To improve the efficiency of identifying chromosomes from Sc and Yc, we established techniques including sequential genomic in situ hybridization/fluorescence in situ hybridization (FISH) and molecular marker analysis. Fourteen DALs of wheat, each containing one pair of R. ciliaris chromosomes pairs, were characterized by FISH using four repetitive sequences [pTa794, pTa71, RcAfa and (GAA)10] as probes. One hundred and sixty-two R. ciliaris-specific markers were developed. FISH and marker analysis enabled us to assign the homoeologous groups and genome affinities of R. ciliaris chromosomes. FHB resistance evaluation in successive five growth seasons showed that the amphiploid, DA2Yc, DA5Yc and DA6Sc had improved FHB resistance, indicating their potential value in wheat improvement. The 14 DALs are likely new gene resources and will be phenotyped for more agronomic performances traits.
  相似文献   

7.
Root-knot nematodes (RKNs) can severely damage crops, including peppers, worldwide. The application of resistance genes identified in the Capsicum annuum genome may represent a safe and economically relevant strategy for controlling RKNs. Among the Me genes (Me1, Me3, Me7, and N) that have been mapped to a cluster on chromosome P9, Me1 confers a heat-stable and broad-spectrum resistance that is difficult for virulent RKNs to overcome. In this study, we developed several closely linked kompetitive allele-specific PCR (KASPar) markers, simple sequence repeat (SSR) markers, sequence characterized amplified region (SCAR) markers, and high-resolution melting (HRM) markers for the mapping of RKN-resistance genes. Analyses of 948 individuals (BC1 and F2 progenies) revealed that Me1 was located between SCAR marker 16880-1-V2 and HRM marker 16830-H-V2, with 13 and 0 recombination events with Me1, respectively. These markers were localized to a 132-kb interval, which included six genes. The development of several PCR-based markers closely linked to Me1 will be useful for the marker-assisted selection of RKN resistance in pepper cultivars. Among these markers, 16830-H-V2 and 16830-CAPS are present in the CA09g16830 gene, which is predicted to be a putative late blight resistance protein homolog R1A-3 gene. This gene appears to be a suitable Me1 candidate gene.  相似文献   

8.
Pennisetum species are widely used as ornamental grasses and may be a valuable genetic resource for their breeding to broaden its genetic basis. At present, new ornamental Pennisetum cultivars are primarily bred via somaclone, which increases the number of variants. It is difficult to estimate whether the suspected variants are authentic in genetic features by morphological traits because of their many limitations. Moreover, although the phylogenetic classification of the Pennisetum genus has been approved in some morphological and cytological studies, genetic evidence is lacking. In the present study, we developed 15 specific simple sequence repeat (SSR) markers with a large amount of polymorphisms and strong distinguishing abilities for Pennisetum ornamental grasses using magnetic bead enrichment. These markers, together with the other 11 reported polymorphic SSRs, were further used for the identification of a broad collection of 55 Pennisetum samples, including nine original taxa and 46 suspected variants. After comparing the genetic characteristics between each variant and its corresponding original taxon, we verified 20 suspected variants that possess the potential to become new, commercially desirable cultivars. The nine original taxa and the 20 verified variants were identified based on the polymorphisms of six core loci, and unique molecular identities with 15 denary digits for each taxon were further established. The rationality of the traditional phylogenetic classification system of the Pennisetum genus was further verified using 147 polymorphic alleles. The present study promotes the protection, registration, breeding, and international communication of Pennisetum ornamental grasses.  相似文献   

9.

Key message

Fine mapping of Yr47 and Lr52 in chromosome arm 5BS of wheat identified close linkage of the marker sun180 to both genes and its robustness for marker-assisted selection was demonstrated.

Abstract

The widely effective and genetically linked rust resistance genes Yr47 and Lr52 have previously been mapped in the short arm of chromosome 5B in two F3 populations (Aus28183/Aus27229 and Aus28187/Aus27229). The Aus28183/Aus27229 F3 population was advanced to generate an F6 recombinant inbred line (RIL) population to identify markers closely linked with Yr47 and Lr52. Diverse genomic resources including flow-sorted chromosome survey sequence contigs representing the orthologous region in Brachypodium distachyon, the physical map of chromosome arm 5BS, expressed sequence tags (ESTs) located in the 5BS6-0.81-1.00 deletion bin and resistance gene analog contigs of chromosome arm 5BS were used to develop markers to saturate the target region. Selective genotyping was also performed using the iSelect 90 K Infinium wheat SNP assay. A set of SSR, STS, gene-based and SNP markers were developed and genotyped on the Aus28183/Aus27229 RIL population. Yr47 and Lr52 are genetically distinct genes that mapped 0.4 cM apart in the RIL population. The SSR marker sun180 co-segregated with Lr52 and mapped 0.4 cM distal to Yr47. In a high resolution mapping population of 600 F2 genotypes Yr47 and Lr52 mapped 0.2 cM apart and marker sun180 was placed 0.4 cM distal to Lr52. The amplification of a different sun180 amplicon (195 bp) than that linked with Yr47 and Lr52 (200 bp) in 204 diverse wheat genotypes demonstrated its robustness for marker-assisted selection of these genes.
  相似文献   

10.
The genus Cenchrus comprises around 25 species of ‘bristle clade’ grasses. Cenchrus ciliaris (buffel grass) is a hardy, perennial range grass that survives in poor sandy soils and limiting soil moisture conditions and, due to the very same reasons, this grass is one of the most prevalent fodder grasses of the arid and semi-arid regions. Most of the germplasms of Cenchrus produce seeds asexually through the process of apomeiosis. Therefore, the lack of sufficient sexual lines has hindered the crop improvement efforts in Cenchrus being confined to simple selection methods. Many attempts have been initiated in buffel grass to investigate the various molecular aspects such as genomic signatures of different species and genotypes, molecular basis of abiotic stress tolerance and reproductive performance. Even though it is an important fodder crop, molecular investigations in Cenchrus lack focus and the molecular information available on this grass is scanty. Cenchrus is a very good gene source for abiotic stress tolerance and apomixis studies. Biotechnological interventions in Cenchrus can help in crop improvement in Cenchrus as well as other crops through transgenic technology or marker assisted selection. To date no consolidated review on biotechnological interventions in Cenchrus grass has been published. Therefore we provide a thorough and in depth review on molecular research in Cenchrus focusing on molecular signatures of evolution, tolerance to abiotic stress and apomictic reproductive mechanism.  相似文献   

11.
12.
13.
14.
We recently showed that aposporous apomixis, a form of gametophytic apomixis, is controlled by a single apospory-specific genomic region (ASGR) in both Pennisetum squamulatum and Cenchrus ciliaris. We present evidence that in a reciprocal cross between sexual pearl millet (P. glaucum) and an apomictic F1 (P. glaucum× P. squamulatum) the ASGR is not transmitted at the same rate. When pearl millet was used as the female parent and the apomictic genotype as the pollen donor, the ASGR was transmitted at a rate of 0.41 in a progeny of 57 plants, indicating a slight transmission ratio distortion. However, in a population of 52 rare sexual progenies characterized among a large progeny of a quasi-obligate apomict (an F1 hybrid of P. glaucum×P. squamulatum), the transmission rate of ASGR was only 0.12. This strong segregation distortion may have occurred at four different levels: (1) female meiosis, (2) during female gametophyte maturation, (3) upon fertilization with differential survival of embryos being a consequence of differential gene expression controlled by parent-of-origin specific effects (imprinting) and (4) at a later developmental stage of the embryo through an embryo/endosperm genetic incompatibility system. Recevied: 13 June 2000 / Revision accepted: 23 October, 2000  相似文献   

15.
Genlisea margaretae, subgenus Genlisea, section Recurvatae (184 Mbp/1C), belongs to a plant genus with a 25-fold genome size difference and an extreme genome plasticity. Its 19 chromosome pairs could be distinguished individually by an approach combining optimized probe pooling and consecutive rounds of multicolor fluorescence in situ hybridization (mcFISH) with bacterial artificial chromosomes (BACs) selected for repeat-free inserts. Fifty-one BACs were assigned to 18 chromosome pairs. They provide a tool for future assignment of genomic sequence contigs to distinct chromosomes as well as for identification of homeologous chromosome regions in other species of the carnivorous Lentibulariaceae family, and potentially of chromosome rearrangements, in cases where more than one BAC per chromosome pair was identified.  相似文献   

16.
17.
We have constructed bacterial artificial chromosome (BAC) libraries from two grass species that reproduce by apospory, a form of gametophytic apomixis. The library of an apomictic polyhaploid genotype (line MS228-20, with a 2C genome size of approximately 4,500 Mbp) derived from a cross between the obligate apomict, Pennisetum squamulatum, and pearl millet (P. glaucum) comprises 118,272 clones with an average insert size of 82 kb. The library of buffelgrass (Cenchrus ciliaris, apomictic line B-12-9, with a 2C genome size of approximately 3,000 Mbp) contains 68,736 clones with an average insert size of 109 kb. Based on the genome sizes of these two lines and correcting for the number for false-positive and organellar clones, library coverages were found to be 3.7 and 4.8 haploid genome equivalents for MS 228-20 and B12-9, respectively. Both libraries were screened by hybridization with six SCARs (sequence-characterized amplified regions), whose tight linkage in a single apospory-specific genomic region had been previously demonstrated in both species. Analysis of these BAC clones indicated that some of the SCAR markers are actually amplifying duplicated regions linked in coupling in both genomes and that restriction enzyme mapping will be necessary to sort out the duplications.  相似文献   

18.

Key message

Using QTL analysis and fine mapping, the novel recessive gene xa44(t) conferring resistance to BB was identified and the expression level of the gene was confirmed through qRT-PCR analysis.

Abstract

Bacterial blight (BB) disease caused by Xanthomonas oryzae pv. oryzae (Xoo) is a major factor causing rice yield loss in most rice-cultivating countries, especially in Asia. The deployment of cultivars with resistance to BB is the most effective method to control the disease. However, the evolution of new Xoo or pathotypes altered by single-gene-dependent mutations often results in breakdown of resistance. Thus, efforts to identify novel R-genes with sustainable BB resistance are urgently needed. In this study, we identified three quantitative trait loci (QTLs) on chromosomes 1, 4, and 11, from an F2 population of 493 individuals derived from a cross between IR73571-3B-11-3-K3 and Ilpum using a 7K SNP chip. Of these QTLs, one major QTL, qBB_11, on chromosome 11 explained 61.58% of the total phenotypic variance in the population, with an LOD value of 113.59, based on SNPs 11964077 and 11985463. The single major R-gene, with recessive gene action, was designated xa44(t) and was narrowed down to a 120-kb segment flanked within 28.00 Mbp to 28.12 Mbp. Of nine ORFs present in the target region, two ORFs revealed significantly different expression levels of the candidate genes. These candidate genes (Os11g0690066 and Os11g0690466) are described as “serine/threonine protein kinase domain containing protein” and “hypothetical protein,” respectively. The results will be useful to further understand BB resistance mechanisms and provide new sources of resistance, together with DNA markers for MAS breeding to improve BB resistance in rice.
  相似文献   

19.
20.
We have previously identified a sulfate methane transition zone (SMTZ) within the methane hydrate-bearing sediment in the Ulleung Basin, East Sea of Korea, and the presence of ANME-1b group in the sediment has been shown by phylogenetic analysis of a 16S rRNA gene. Herein, we describe taxonomic and functional profiling in the SMTZ sample by metagenomic analysis, comparing with that of surface sediment. Metagenomic sequences of 115 Mbp and 252 Mbp were obtained from SMTZ and surface sediments, respectively. The taxonomic profiling using BLASTX against the SEED within MG-RAST showed the prevalence of methanogens (19.1%), such as Methanosarcinales (12.0%) and Methanomicrobiales (4.1%) predominated within the SMTZ metagenome. A number of 185,200 SMTZ reads (38.9%) and 438,484 surface reads (62.5%) were assigned to functional categories, and methanogenesis-related reads were statistically significantly overrepresented in the SMTZ metagenome. However, the mapping analysis of metagenome reads to the reference genomes, most of the sequences of the SMTZ metagenome were mapped to ANME-1 draft genomes, rather than those of methanogens. Furthermore, the two copies of the methyl-coenzyme M reductase gene (mcrA) segments of the SMTZ metagenome were clustered with ANME-1b in the phylogenetic cluster. These results indicate that ANME-1b reads were miss-annotated to methanogens due to limitation of database. Many of key genes necessary for reverse methanogenesis were present in the SMTZ metagenome, except for N5,N10-methenyl-H4MPT reductase (mer) and CoB-CoM heterodisulfide reductase subunits D and E (hdrDE). These data suggest that the ANME-1b represents the primary player the anaerobic methane oxidation in the SMTZ, of the methane hydrate-bearing sediment at the Ulleung Basin, East Sea of Korea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号